NLO QCD Corrections to $t\bar{t}Z$ Production

Thomas McElmurry

University of Wisconsin–Madison

A. Lazopoulos, TM, K. Melnikov, F. Petriello,

arXiv:0804.2220[hep-ph]

The top quark

- Discovered in 1995 by CDF and D0
- Heaviest known elementary particle
 - $m_t \approx v/\sqrt{2}$: top may play a special role in EWSB.
- $t\overline{t}$ production at Tevatron depends only on top mass and color charge.
- EW properties largely unknown
 (e.g. ttγ, ttZ, ttH couplings)
 - sensitive to new physics (e.g. Z', T quark, ...)
 - ttZ couplings:
 - inaccessible at Tevatron
 - can be studied at ILC via $e^+e^- \to \gamma^*/Z^* \to t\overline{t}$
 - or at LHC via $pp \rightarrow t\overline{t}Z$

Top quark electroweak couplings

General ttZ coupling:

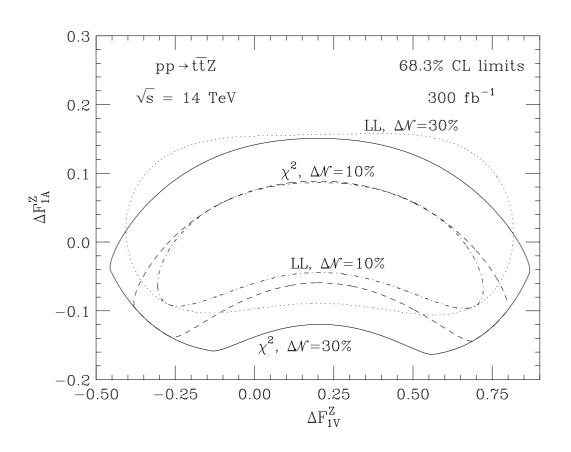
$$\begin{split} \Gamma_{\mu}^{ttZ}(k) &= -ie \left[\gamma_{\mu} F_{1V}^{Z}(k^{2}) + \gamma_{\mu} \gamma_{5} F_{1A}^{Z}(k^{2}) \right. \\ &+ \frac{i}{2m_{t}} \sigma_{\mu\nu} k^{\nu} F_{2V}^{Z}(k^{2}) + \frac{1}{2m_{t}} \sigma_{\mu\nu} \gamma_{5} k^{\nu} F_{2A}^{Z}(k^{2}) \right] \end{split}$$

- No direct measurements of form factors
- F_{1V}^{Z} and F_{1A}^{Z} tightly but indirectly constrained by LEP:

$$-0.044 \leqslant -\Delta F_{1A}^{Z}(0) \left[1 + 0.842 \Delta F_{1A}^{Z}(0) \right] \ln \left(\frac{\Lambda^{2}}{m_{t}^{2}} \right) \leqslant 0.065,$$

$$-0.029 \leqslant -\left[\Delta F_{1A}^{Z}(0) - \frac{3}{5}\Delta F_{1V}^{Z}(0)\right] \ln\left(\frac{\Lambda^{2}}{m_{t}^{2}}\right) \leqslant 0.143$$

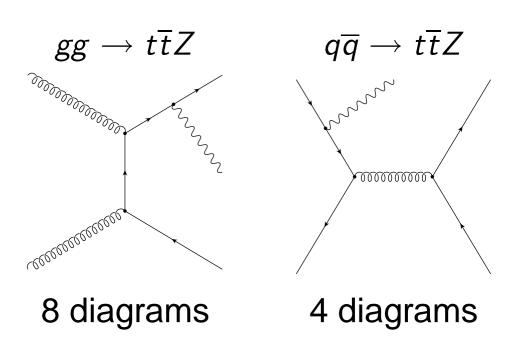
Top quark electroweak couplings



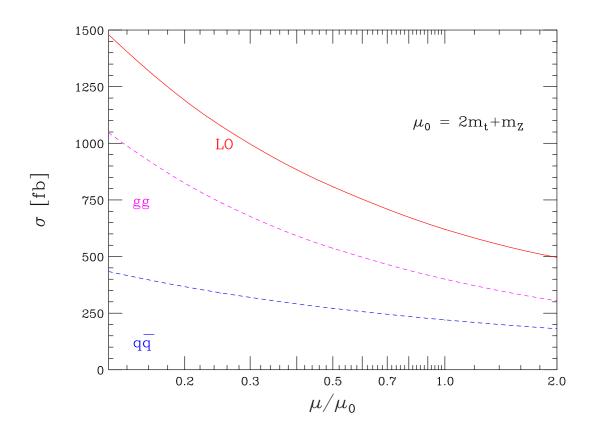
[Baur, Juste, Orr, Rainwater, 2005]

- ullet Dominant uncertainty is signal normalization \mathcal{N} .
- Reducing ΔN from 30% to 10% improves sensitivity by factor of 2.

$pp \rightarrow t\overline{t}Z$: LO



$pp \rightarrow t\overline{t}Z$: LO



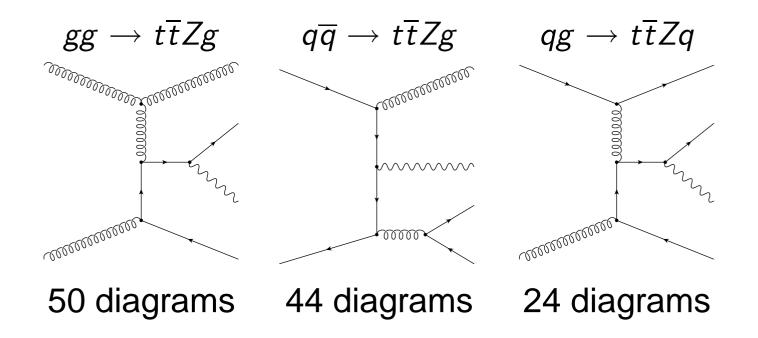
- Significant scale dependence contributes to ΔN .
- NLO QCD calculation is necessary!

$pp \rightarrow t\overline{t}Z$: NLO

Full set of complexities that appear in multi-leg one-loop calculations:

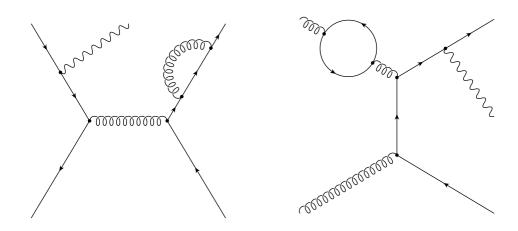
- Multiple mass scales
- Soft and collinear singularities on boundaries of phase space and Feynman-parameter space
- Threshold singularities in interior of Feynman-parameter space
- Pentagon diagrams with 1–4 massive propagators

NLO: Real radiative corrections



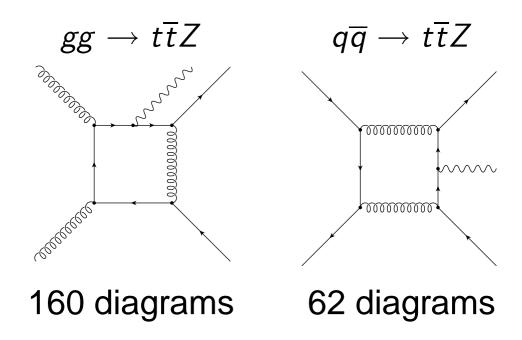
- Use QGRAF [Nogueira, 1993], FORM [Vermaseren, 2000], and MAPLE to calculate amplitudes and generate FORTRAN or C++ code; use CUBA [Hahn, 2004] for numerical integration.
- Two-cutoff phase space slicing to isolate soft and collinear singularities [Harris, Owens, 2002]

NLO: Renormalization



- Top mass and wavefunction renormalized on shell
- α_s renormalized using \overline{MS} for 5 light quarks, zero-momentum subtraction for top

NLO: Virtual corrections



- Soft and collinear singularities extracted using sector decomposition [Binoth, Heinrich, 2000]
- Threshold singularities avoided using contour deformation [Nagy, Soper, 2006; Lazopoulos, Melnikov, Petriello, 2007]

Sector decomposition

- Use $\delta(x_1 + \cdots + x_n 1)$ to form *n* primary sectors.
- Singularities appear when some set $\{x_i, x_j, ...\}$ of Feynman parameters vanish.
- e.g. $\int_0^1 dx_1 \int_0^1 dx_2 (x_1 + x_2)^{-2 \epsilon}$
- Split integration region into sectors: $x_1 > x_2$ and $x_1 < x_2$
- Change variables in each sector: $x_2 \rightarrow x_1 x_2$, $x_1 \rightarrow x_1 x_2$
- Integral becomes

$$\int_0^1 dx_1 \int_0^1 dx_2 \left[x_1^{-1-\epsilon} (1+x_2)^{-2-\epsilon} + x_2^{-1-\epsilon} (1+x_1)^{-2-\epsilon} \right]$$

Extract singularities using plus distributions:

$$x^{-1-\epsilon} = -\frac{1}{\epsilon}\delta(x) + \sum_{n=0}^{\infty} \frac{(-\epsilon)^n}{n!} \left(\frac{\ln^n x}{x}\right)_+$$

Contour deformation

• After sector decomposition, we have a denominator $(\Delta - i0)^{-a-b\epsilon}$, where

$$\Delta = Z + Y_i x_i + \frac{1}{2} X_{ij} x_i x_j + \frac{1}{3} W_{ijk} x_i x_j x_k + \cdots$$

- Avoid threshold singularities by deforming the integration contour.
- Set $x_i = y_i i\tau_i$, where

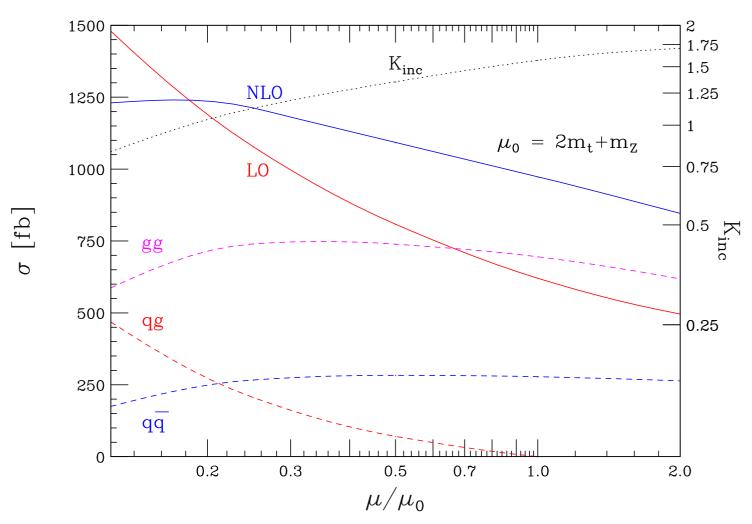
$$\tau_i = \frac{\lambda}{y_i}(1 - y_i) \left[Y_i + X_{ij}y_j + W_{ijk}y_jy_k + \cdots \right]$$

• Im Δ < 0 for small λ ; we can check that we cross no poles as we increase λ .

Checks

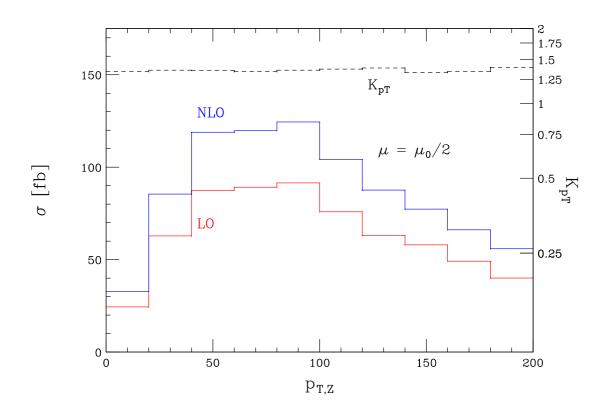
- LO result agrees with MADEVENT [Maltoni, Stelzer, 2003; Alwall et al., 2007].
- Soft parts of virtual corrections agree with eikonal approximation.
- ullet All poles in ϵ cancel.
- ▶ Virtual corrections independent of λ (magnitude of contour deformation)
- Real corrections independent of δ_s and δ_c (phase-space slicing cutoffs)
- Agreement between multiple independent codes

Results



- Vary scale from $\mu_0/4$ to μ_0 : uncertainty is $\pm 11\%$.
- $K_{\text{inc}} = 1.35 \text{ for } \mu = \mu_0/2.$

Results



- ▶ NLO corrections do not change the shape of the $p_T(Z)$ distribution.
- We expect the same for other kinematic distributions.

Summary

- We have computed the NLO QCD corrections to $pp \rightarrow t\bar{t}Z$.
- Automated, fully numerical approach
 - arbitrary kinematic distributions
- K = 1.35 for $\mu = (2m_t + m_Z)/2$, independent of $p_T(Z)$
- Theoretical uncertainty reduced from $\sim 30\%$ to $\pm 11\%$
 - ⇒ improvement by factor of 1.5–2 in measurement of ttZ couplings
- Straightforward to extend to $t\bar{t}\gamma$, $t\bar{t}W$