Electroweak and QCD corrections to Higgs-boson production in vector-boson fusion at the LHC

Stefan Dittmaier MPI Munich

in collaboration with M.Ciccolini and A.Denner

based on PRL 99 (2007) 161803 [arXiv:0707.0381, hep-ph] and PRD 77 (2008) 013002 [arXiv:0710.4749, hep-ph]

Contents

- 1 Introduction
- 2 Details of the NLO calculation
- **3** Numerical results
- 4 Conclusions

1 Introduction

Cross sections and significance of the Higgs signal at the LHC

Higgs production via VBF ("qqH") is cornerstone in Higgs search in entire $M_{\rm H}$ range

 \hookrightarrow calculate / control higher orders to reduce theoretical uncertainty down to the level of PDF ($\sim 3-4\%$) and experimental uncertainties ($\sim 5-10\%$)

Process topology of Higgs production via VBF

- colour exchange between quark lines suppressed \Rightarrow small QCD corrections
 - Han, Valencia, Willenbrock '92; Spira '98; Djouadi, Spira '00; Figy, Oleari, Zeppenfeld '03
 - \hookrightarrow "t-channel approximation" (vertex corrections)

VBF cuts and background suppression:

- 2 hard "tagging" jets demanded: $p_{\rm Tj} > 20 \,{
 m GeV}$, $|y_{\rm j}| < 4.5$
- tagging jets forward-backward directed: $\Delta y_{\rm jj} > 4$, $y_{\rm j1} \cdot y_{\rm j2} < 0$
- \hookrightarrow Suppression of background
 - from other (non-Higgs) processes, such as $t\bar{t}$ or WW production Zeppenfeld et al. '94-'99
 - induced by Higgs production via gluon fusion, such as $gg \rightarrow ggH$ _{Del Duca et al. '06; Campbell et al. '06}

WWH and ZZH coupling analyses

- Higgs via VBF plays important role in global Higgs couplings analysis
 Dührssen et al. '04
- azimuthal angle difference $\Delta \phi_{jj}$ of tagging jets is sensitive to BSM effects:

Work on radiative corrections to the production of Higgs+2jets

- NLO QCD corrections to VBF in "t-channel approximation" (vertex corrections)
 - ♦ total cross section Han, Valencia, Willenbrock '92; Spira '98; Djouadi, Spira '00
 - distributions
 Figy, Oleari, Zeppenfeld '03; Berger, Campbell '04
 - \hookrightarrow impact $\sim 5{-}10\%$
- NLO QCD corrections to gluon-initiated channels (effective Hgg coupling)
 → contribution to VBF ~ 5% Nikitenko. Vazquez '07
 (NLO scale uncertainty ~ 35%)
- (full) NLO QCD+EW corrections to VBF \hookrightarrow NLO QCD \sim NLO EW $\sim 5-10\%$ \rightarrow discussed in this talk !
- QCD loop-induced interferences between VBF and gluon-initiated channels

Andersen, Binoth, Heinrich, Smillie '07 Bredenstein, Hagiwara, Jäger '08

ightarrow impact $\lesssim 10^{-3}$ % (negligible!)

• SUSY QCD+EW corrections $\rightarrow |MSSM - SM| \leq 1\%$ for SPS points (2-4% for low SUSY scales)

2 Details of the NLO calculation

EW production of Higgs+2jets in LO:

- many subcontributions from qq, $q\bar{q}$, and $\bar{q}\bar{q}$ channels
- each channel receives contributions from one or two topologies ("*t*, *u*, *s*"):

 $\hookrightarrow\,$ all contributions and interferences taken into account in LO and NLO

EW production of Higgs+2jets in NLO:

- partonic channels for
 - $\diamond\,$ one-loop diagrams: $qq,\,q\bar{q},\,\bar{q}\bar{q}$
 - \diamond real QCD corrections qq, $q\bar{q}$, $\bar{q}\bar{q}$ (gluon emission), qg, $\bar{q}g$ (gluon induced)
 - \diamond real QED corrections qq, $q\bar{q}$, $\bar{q}\bar{q}$ (photon emission), $q\gamma$, $\bar{q}\gamma$ (photon induced)
- collinear initial-state singularities from QCD and QED splittings
 - $\hookrightarrow\,$ factorization and PDF redefinition for QCD and QED singularities

Recycling strategy:

obtain all LO and NLO amplitudes via crossing

from NLO EW and QCD corrections to $H \rightarrow WW/ZZ \rightarrow 4f$ Bredenstein, Denner, S.D., Weber '06

Survey of Feynman diagrams for NLO EW and QCD corrections

(one or two diagrams per flavour channel)

Typical one-loop diagrams:

diagrams = $\mathcal{O}(200-400)$

+ tree graphs with real photons or gluons

Classification of QCD corrections

Possible Born diagrams:

diagrams (2) only for $q\bar{q}q\bar{q}$ and $q\bar{q}q'\bar{q}'$ channels (q' = weak-isospin partner of q)

Classification of QCD corrections into four categories: (typical diagrams shown)

(a) contains previously known "t-channel approximation"

(b,c,d) = corrections to interferences (only for $q\bar{q}q\bar{q}$ and $q\bar{q}q'\bar{q}'$ channels)

Technical details of the calculation:

 \hookrightarrow two independent calculations of each ingredient !

Virtual corrections:

- algebraic part:
 - version 1:
 - diagram generation with FEYNARTS 1 Böhm, Denner, Eck, Küblbeck '90,'92
 - algebraic reduction by in-house Mathematica routines
 - ◊ version 2:
 - diagram generation with FEYNARTS 3 Hahn '01
 - algebraic reduction based on FORMCALC Hahn, Perez-Victoria '99; Hahn '00
- tensor and scalar loop integrals: two independent in-house libraries supporting complex masses in loops
- leading 2-loop heavy-Higgs effects $\propto G_{\mu}^2 M_{\rm H}^4$ Ghinculov '95 Frink, Kniehl, Kreimer, Riesselmann '96

Real corrections:

- compact matrix elements via helicity spinor formalism
- multi-channel Monte Carlo integration Berends, Kleiss, Pittau '94; Kleiss, Pittau '94
- singularities isolated via two-cutoff slicing or dipole subtraction

Catani, Seymour '96; S.D. '00; S.D., Kabelschacht, Kasprzik '08

Main complications in the loop calculation:

- numerical instabilities in Passarino–Veltman reduction of tensor integrals
 - \hookrightarrow new reduction methods developed Denner, S.D. '02,'05
- gauge-invariant treatment of W and Z resonances (appearing in s-channels)
 - ← "complex-mass scheme" Denner, S.D., Roth, Wieders '05

New concepts already used in NLO EW correction to $e^+e^- \rightarrow 4f_{\text{Denner, S.D., Roth, Wieders '05}}$ and NLO QCD+EW corrections to $H \rightarrow 4f_{\text{Bredenstein, Denner, S.D., Weber '06}}$

Numerical evaluation of one-loop integrals

Passarino–Veltman reduction of tensor to scalar integrals

- \hookrightarrow inverse Gram determinants of external momenta
- \hookrightarrow serious numerical instabilities where $det(Gram) \rightarrow 0$ (at phase-space boundary but not only !)

Our solutions: Denner, S.D., Nucl.Phys. B734 (2006) 62 [hep-ph/0509141]

- 1- and 2-point integrals \rightarrow stable direct calculation
- 3- and 4-point integrals \rightarrow two hybrid methods
 - (i) Passarino–Veltman \oplus seminumerical method \oplus analytical special cases related to Ferroglia et al. '02
 - (ii) Passarino–Veltman \oplus expansions in small Gram and other kin. determinants related to R.K.Ellis, Giele, Zanderighi '04,'05
- 5- and 6-point integrals
 - \hookrightarrow stable reduction to lower-point integrals without Gram determinants related to Binoth et al. '05

 \Rightarrow Techniques ready for further applications

(dim. regularization for IR singularities possible; complex masses supported)

The complex-mass scheme at NLO Denner, S.D., Roth, Wieders '05

Basic idea: mass² = location of propagator pole in complex p^2 plane \hookrightarrow consistent use of complex masses everywhere ! Application to gauge-boson resonances:

- replace $M_W^2 \rightarrow \mu_W^2 = M_W^2 iM_W\Gamma_W$, $M_Z^2 \rightarrow \mu_Z^2 = M_Z^2 iM_Z\Gamma_Z$ and define (complex) weak mixing angle via $c_W^2 = 1 - s_W^2 = \frac{\mu_W^2}{\mu_Z^2}$
- virtues:
 - ◊ gauge-invariant result (Slavnov–Taylor identities, gauge-parameter independence)
 - \hookrightarrow unitarity cancellations respected !
 - perturbative calculations as usual (loops and counterterms)
 - on double counting of contributions (bare Lagrangian unchanged !)
- drawbacks:
 - ♦ unitarity-violating spurious terms of $\mathcal{O}(\alpha^2) \rightarrow$ but beyond NLO accuracy ! (from *t*-channel/off-shell propagators and complex mixing angle)
 - ◊ complex gauge-boson masses also in loop integrals

Checks:

- UV structure of virtual corrections
 - $\hookrightarrow\,$ independence of reference mass μ of dimensional regularization
- IR structure of virtual + soft-photonic corrections

 \hookrightarrow independence of $\ln m_{\gamma}$ (m_{γ} = formally infinitesimal photon mass)

- mass singularities of virtual + related collinear photonic corrections
 - \hookrightarrow independence of $\ln m_{f_i}$ (m_{f_i} = small masses of external fermions)
- gauge invariance of amplitudes with $\Gamma_W, \Gamma_Z \neq 0$
 - \hookrightarrow identical results in 't Hooft–Feynman and background-field gauge

Denner, S.D., Weiglein '94

- real corrections
 - ← squared amplitudes compared with MADGRAPH Stelzer, Long '94
- combination of virtual and real corrections
 - \hookrightarrow identical results with two-cutoff slicing and dipole subtraction

Catani, Seymour '96; S.D. '00; S.D., Kabelschacht, Kasprzik '08

two completely independent calculations of all ingredients !

Comparison of subtraction and slicing results:

- slicing cuts in partonic CM frame: soft region: $E_{\gamma} < \delta_{s} \frac{\sqrt{\hat{s}}}{2}$, collinear cone: $1 - \cos(\theta_{\{\gamma,g\}q}) < \delta_{c}$
- slicing: 10^9 events, subtraction: 10^8 events

 \hookrightarrow subtraction is much more efficient!

3 Numerical results

Definition of observables

- Jet definition: $k_{
 m T}$ algorithm as used at Tevatron run II Blazey et al. '00
 - \hookrightarrow clusters partons with $|\eta| < 5$ into jets with D = 0.8 (photons included!)
- VBF cuts:
 - \diamond 2 hard "tagging" jets demanded: $p_{\mathrm{Tj}_1} > p_{\mathrm{Tj}_2} > 20 \,\mathrm{GeV}$, $|y_{\mathrm{j}_{1,2}}| < 4.5$
 - \diamond tagging jets forward–backward directed: $\Delta y_{jj} > 4$, $y_{j_1} \cdot y_{j_2} < 0$
 - no cuts on Higgs momentum (should be adjusted to specific decays)

NLO settings:

- central scales: $\mu_{\rm ren} = \mu_{\rm fact} = M_{\rm W}$
- PDFs: MRST2004QED which includes QED corrections and γ PDF
- $\alpha_{
 m s}(\mu_{
 m ren})$ with 5 active flavours (top-quark decoupled)
- α defined in G_{μ} scheme: $\alpha_{G_{\mu}} = \sqrt{2}G_{\mu}M_{W}^{2}(1 M_{W}^{2}/M_{Z}^{2})/\pi$ \hookrightarrow absorbs running of α from Q = 0 to EW scale and $\Delta \rho$ in $Wq\bar{q}'$ coupling

3.1 Results on integrated cross sections

- QCD and EW corrections are of same generic size
- scale uncertainty $\sim 3\%$ within $M_W/2 < \mu_{ren/fact} < 2M_W$ in NLO ($\sim 10\%$ in LO)
- sensitivity to cuts: large for QCD, small for EW corrections
- heavy-Higgs corrections at $M_{\rm H} \sim 700 \,{\rm GeV}$: $G_{\mu} M_{\rm H}^2 \sim (G_{\mu} M_{\rm H}^2)^2 \sim 4\%$
 - \hookrightarrow breakdown of perturbation theory

2-loop

1-loop

Size of specific corrections and subcontributions to cross sections:

Ciccolini, Denner, S.D. '07

	no cuts		VBF cuts		
$M_{ m H}[{ m GeV}]$	120 - 200	700	120 - 200	700	
various corrections:					_
$\delta_{ m QCD(a)}[\%]$	4 - 0.5	+1	≈ -5	-7	$\mathcal{O}(5{-}10\%)$
$\delta_{ m QCD(b+c+d)}[\%]$	$\lesssim 0.2$	-0.1	< 0.1	< 0.1	negligible
$\delta_{\mathrm{EW},qq} [\%]$	≈ -6	+6	pprox -7	+5	$\mathcal{O}(5{-}10\%)$
$\delta_{\mathrm{EW},q\gamma} [\%]$	$\approx +1$	+2	$\approx +1$	+2	
$\delta_{G^2_{\mu} M^4_{ m H}} [\%]$	< 0.1	+4	< 0.1	+4	negligible for $M_{\rm H} < 400 {\rm GeV}$
specific contributions:					-
$\Delta_{s-\text{channel}}[\%]$	30 - 10	1	< 0.6	< 0.1	negligible with VBF cuts
$\Delta_{t/u-\mathrm{interference}}[\%]$	< 0.5	< 0.1	< 0.1	< 0.1	negligible
$\Delta_{ m b-quarks}[\%]$	≈ 4	1	≈ 2	1	

3.2 Selected results on differential cross sections

Distribution in the Higgs transverse momentum $p_{\mathrm{T,H}}$

Ciccolini, Denner, S.D. '07

 \hookrightarrow QCD and EW corrections distort shapes QCD+EW ~ 20%(40%) at $p_{T,H} = 200 \,\text{GeV}(500 \,\text{GeV})$

Distribution in the rapidity y_{j_1} of the leading tagging jet

Ciccolini, Denner, S.D. '07

→ Significant shape distortions by QCD effects, but EW effects almost uniform

Distribution in the azimuthal angle difference $\Delta \phi_{jj}$ of the tagging jets

Ciccolini, Denner, S.D. '07

 $\,\hookrightarrow\,$ QCD+EW corrections induce small distortions similar to BSM effects

4 Conclusions

Higgs production via VBF is important at the LHC

- for Higgs discovery
- for Higgs coupling analyses

Recent progress in predictions:

- Full NLO QCD confirms validity of old "*t*-channel approximation" for VBF setup
- NLO EW corrections are as important as NLO QCD effects:
 - \diamond each = $\mathcal{O}(5-10\%)$ for cross sections
 - larger corrections to distributions which get distorted
 - ◇ heavy-Higgs effects negligible for $M_{\rm H} < 400 \,{\rm GeV}$,
 but 1-loop ~ 2-loop at $M_{\rm H} \sim 700 \,{\rm GeV}$ (breakdown of perturbation theory)
- Suppressed effects ($\leq 1-2\%$ at least in VBF setup): b-quarks in initial/final states, photon-induced processes, *s*-channel contributions, interferences among s/t/u channels, gluon-induced strong/weak interferences
- → Theoretical accuracy (for intermediate Higgs masses)
 matches uncertainties from PDFs and expected experimental errors

Extra slides

Scale dependence of LO and NLO cross sections

Ciccolini, Denner, S.D. '07

$$egin{aligned} \mathsf{QCD:} & \mu \, = \, \mu_{ ext{fact}} \, = \, \mu_{ ext{ren}} \ \mathsf{QCD':} & \mu \, = \, \mu_{ ext{fact}} \, = \, M_{ ext{W}}^2/\mu_{ ext{ren}} \end{aligned}$$

Higgs rapidity distribution

Ciccolini, Denner, S.D. '07

→ Significant shape distortions by QCD effects, but EW effects almost uniform

Distribution in the transverse momentum p_{Tj_1} of the leading tagging jet

Ciccolini, Denner, S.D. '07

 \hookrightarrow QCD and EW corrections distort shapes QCD+EW ~ 25%(40%) at $p_{\rm T,H} = 200 \,{\rm GeV}(500 \,{\rm GeV})$

A typical example with small Gram determinant:

A typical example with small Gram determinant:

A typical example with small Gram determinant:

