Higgs plus three jets via vector boson fusion at NLO QCD

Terrance Figy

Institute for Particle Physics Phenomenology Durham University

Loopfest VII, Buffalo, NY May 15, 2008

In collaboration with V. Hankele and D. Zeppenfeld JHEP 0802 (2008) 076 [arXiv:0710.5621]

A (B) + A (B) + A (B) +

Outline

< 注→ < 注→

NLO Results

Conclusions

SM Higgs boson

・ロト ・回ト ・ヨト ・ヨト

SM Higgs boson

Is the neutral scalar-like resonance a SM Higgs?

- CP quantum numbers ?
- Measure its couplings to gauge bosons and fermions

伺 ト イヨト イヨト

SM Higgs boson

Is the neutral scalar-like resonance a SM Higgs?

- CP quantum numbers ?
- Measure its couplings to gauge bosons and fermions

$SU(2)_L$ doublet of scalar Higgs fields

$$\Phi = egin{pmatrix} \Phi^+ \ \Phi^0 \end{pmatrix}, \qquad Y = 1$$

$$SU(2)_L imes U(1)_Y o U(1)_{em}$$

- 4 周 ト - 4 国 ト - 4 国

Introduction

The NLO Calculation

NLO Results

Conclusions

SM Higgs boson Higgs couplings to fermions

Fermion masses arise from Yukawa couplings via $\Phi^{\dagger} \rightarrow \left(0, \frac{\nu+H}{\sqrt{2}}\right).$

$$\mathcal{L}_{\mathrm{Yukawa}} = -\sum_{f} m_{f} \bar{f} f \left(1 + \frac{H}{v} \right)$$

- Test SM prediction: $\overline{f} fH$ Higgs coupling strength $= m_f/v$
- Observation of *Hf f* Yukawa coupling is no proof that a v.e.v exists (maybe a scalar singlet)

Introduction

The NLO Calculation

NLO Results

Conclusions

SM Higgs boson Higgs couplings to gauge bosons

Kinetic energy term of the Higgs doublet field:

$$(D^{\mu}\Phi)^{\dagger} (D_{\mu}\Phi) = \frac{1}{2} \partial^{\mu} H \partial_{\mu} H + \left[\left(\frac{gv}{2} \right)^{2} W^{\mu+} W^{-}_{\mu} + \frac{1}{2} \frac{(g^{2} + g'^{2})v^{2}}{4} Z^{\mu} Z_{\mu} \right] \left(1 + \frac{H}{v} \right)^{2} Z^{\mu} Z_{\mu}$$

- W,Z mass generation: $m_W^2 = \left(\frac{gv}{2}\right)^2$, $m_Z^2 = \frac{(g^2+g'^2)v^2}{4}$
- WWH and ZZH couplings are generated:coupling strength $= \frac{2m_V^2}{v} \approx g^2 v$ within SM

伺下 イヨト イヨト

э

< ∃⇒

A ■

< ∃⇒

A⊒ ▶ ∢ ∃

< ∃⇒

A⊒ ▶ ∢ ∃

University of Durham

Total SM Higgs cross sections at the LHC

NLO Results

Conclusions

Decay of the SM Higgs

▲ □ ► < □ ►</p>

< ∃⇒

University of Durham

Statistical and systematic errors at the LHC

hep-ph/0203187

< ≣⇒

< ∃⇒

Discovery potential

T. Figy Higgs plus three jets via vector boson fusion at NLO QCD

NLO Results

Vector Boson Fusion

Higgs search channels: • $H \rightarrow W^+ W^-$. $m_{H} > 120 \,\,{\rm GeV}$ • $H \rightarrow \tau^+ \tau^-$. $m_{H} < 140 {
m ~GeV}$ • $H \to \gamma \gamma$, $m_{H} < 150 \,\,{\rm GeV}$ Eboli, Hagiwara, Kauer, Plehn, Rainwater, Zeppenfeld, . . .

|田子 (日子)(日子)

university of Dur

Vector Boson Fusion

Event Characteristics

• Energetic jets in the forward and backward directions $(p_T > 20 \text{ GeV})$

Vector Boson Fusion

Event Characteristics

- Energetic jets in the forward and backward directions ($p_T > 20 \text{ GeV}$)
- Higgs decay products between tagging jets

< 3 >

NLO Results

Vector Boson Fusion

Event Characteristics

- Energetic jets in the forward and backward directions ($p_T > 20 \text{ GeV}$)
- Higgs decay products between tagging jets
- Little gluon radiation in the central-rapidity region (colorless *W*/*Z* exchange)

< 🗇 > < 🗆 >

-

Vector Boson Fusion

The Central Jet Veto Proposal

- Distinguishing feature of VBF: at LO no color is exchanged in the t-channel.
- The central-jet veto is based on the different radiation pattern expected for VBF versus its major backgrounds

hep-ph/9412276, hep-ph/0012351

Events are discarded if any additional jet satisfies the criteria:

$$p_{Tj}^{veto} > p_{T,veto}, \quad y_j^{veto} \in (y_j^{ ext{tag 1}}, y_j^{ ext{tag 2}})$$

T. Figy

Vector Boson Fusion

Gluon fusion vs vector boson fusion

Higgs plus three jets via VBF at LO

Born amplitude

Higgs plus three jets via VBF at LO Veto Probability

< ≣ >

-∢ ≣ ▶

Higgs plus three jets via VBF at LO Veto Probability

- Scale variation at LO for σ_3 : +33% to -17% for $p_{T,veto} = 15 \text{ GeV}$
- Theoretical uncertainy in Prob_{veto} feeds into the uncertainty in determining couplings.
- In order to constrain couplings more precisely, compute the NLO QCD corrections to *Hjjj*

Higgs plus three jets via VBF at NLO Dipole subtraction method

Catani and Seymour, hep-ph/9605323

NLO cross section:

$$\sigma_{ab}^{NLO}(p,\bar{p}) = \sigma_{ab}^{NLO\{4\}}(p,\bar{p}) + \sigma_{ab}^{NLO\{3\}}(p,\bar{p}) + \int_{0}^{1} dx [\hat{\sigma}_{ab}^{NLO\{3\}}(x,xp,\bar{p}) + \hat{\sigma}_{ab}^{NLO\{3\}}(x,p,x\bar{p})]$$

$$\sigma_{ab}^{NLO\{4\}}(p,\bar{p}) = \int_{4} [d\sigma_{ab}^{R}(p,\bar{p})_{\epsilon=0} - d\sigma_{ab}^{A}(p,\bar{p})_{\epsilon=0}]$$

回 と く ヨ と く ヨ と

Higgs plus three jets via VBF at NLO Dipole subtraction method

Catani and Seymour, hep-ph/9605323

NLO cross section:

$$\sigma_{ab}^{NLO}(p,\bar{p}) = \sigma_{ab}^{NLO\{4\}}(p,\bar{p}) + \sigma_{ab}^{NLO\{3\}}(p,\bar{p}) + \int_{0}^{1} dx [\hat{\sigma}_{ab}^{NLO\{3\}}(x,xp,\bar{p}) + \hat{\sigma}_{ab}^{NLO\{3\}}(x,p,x\bar{p})]$$

$$\sigma_{ab}^{NLO{3}}(p,ar{p}) = \int_{3} [d\sigma_{ab}^{V}(p,ar{p}) + d\sigma_{ab}^{B}(p,ar{p}) \otimes \mathbf{I}]_{\epsilon=0}$$

回 と く ヨ と く ヨ と

Higgs plus three jets via VBF at NLO Dipole subtraction method

Catani and Seymour, hep-ph/9605323

NLO cross section:

$$\sigma_{ab}^{NLO}(p,\bar{p}) = \sigma_{ab}^{NLO\{4\}}(p,\bar{p}) + \sigma_{ab}^{NLO\{3\}}(p,\bar{p}) + \int_{0}^{1} dx [\hat{\sigma}_{ab}^{NLO\{3\}}(x,xp,\bar{p}) + \hat{\sigma}_{ab}^{NLO\{3\}}(x,p,x\bar{p})]$$

$$\int_0^1 dx \hat{\sigma}_{ab}^{NLO\{3\}}(x, xp, \bar{p}) = \sum_{a'} \int_0^1 dx \int_3 \{ d\sigma_{a'b}^B(xp, \bar{p}) \otimes [\mathbf{P}(x) + \mathbf{K}(x)]^{aa'} \}_{\epsilon=0}$$

回 と く ヨ と く ヨ と

Higgs plus three jets via VBF at NLO Virtual and Real Corrections

- Virtual: Two gauge covariant subsets
 - Vertex + Propagator + Box
 - Pentagon + Hexagon
- Real: 4 final state partons + Higgs via VBF

T. M. Figy, Ph.D. Thesis, UMI-32-34582.

Higgs plus three jets via VBF at NLO Virtual and Real Corrections

Higgs plus three jets via VBF at NLO Virtual and Real Corrections

Neglected hexagons and pentagons

These graphs contribute to the virtual corrections for $qQ \rightarrow qQgH$ and are color suppressed ($d_F = 3, d_G = 8$).

Higgs plus three jets via VBF at NLO Virtual and Real Corrections

Neglected hexagons and pentagons

$$2 \operatorname{Re} \left[\mathcal{M}_{V} \mathcal{M}_{B}^{*} \right] = d_{F}^{2} C_{F}^{2} 2 \operatorname{Re} \left[(\operatorname{Box}(1a)) \mathcal{M}_{B,1a}^{*} \right] \\ + d_{F}^{2} C_{F}^{2} 2 \operatorname{Re} \left[(\operatorname{Box}(2b)) \mathcal{M}_{B,2b}^{*} \right] \\ + \frac{d_{F}^{2} C_{F}^{2}}{d_{G}} 2 \operatorname{Re} \left[(\operatorname{Hex}(1a) + \operatorname{Pent}(1a)) \mathcal{M}_{B,2b}^{*} \right] \\ + \frac{d_{F}^{2} C_{F}^{2}}{d_{G}} 2 \operatorname{Re} \left[(\operatorname{Hex}(2b) + \operatorname{Pent}(2b)) \mathcal{M}_{B,1a}^{*} \right]$$

→
 →

NLO Results

Conclusions

Higgs plus three jets via VBF at NLO Virtual and Real Corrections

Real Corrections

Higgs plus three jets via VBF at NLO Virtual and Real Corrections

Treat Real Corrections Consistently!

$$|\mathcal{M}_{4}|^{2} = d_{F}^{2}C_{F}^{2}\left\{\left|\underbrace{\underline{}}_{\underline{F}}\right|^{2} + \left|\underbrace{\underline{}}_{\underline{F}}\right|^{2} + \cdots\right\} + \frac{d_{F}^{2}C_{F}^{2}}{d_{G}} 2\operatorname{Re}\left\{\left(\underbrace{\underline{}}_{\underline{F}}\right)\left(\underbrace{\underline{}}_{\underline{F}}\right)^{*} + \cdots\right\}$$

The term $\propto 1/d_G$ when integrated over PS gives rise to a soft divergence. This soft divergence is cancelled against the soft divergence arising from the hexagons and pentagons. For consistency, this term is also neglected.

Higgs plus three jets via VBF at <u>NLO</u> Virtual and Real Corrections

Error Estimate on the Approximation

$$\Delta \mathsf{NLO} \propto 2 \; \mathrm{Re} \left[\left(\mathcal{M}_{B,1a}
ight) \left(\mathcal{M}_{B,2b}
ight)^*
ight]$$

Higgs plus three jets via VBF at NLO Virtual and Real Corrections

Other approximations

- *s*-channel weak boson exchange ($VHj \rightarrow Hjjj$) is explicitly excluded at NLO and LO.
 - The interference between VBF and Higgsstrulung is very small in the VBF PS region. C. Georg; Smillie, Anderson, Binoth, Heinrich;

Ciccolini, Denner, Dittmaier

- Hence, Higgsstrulung is viewed as separate process.
- Gluon fusion contributions are viewed a separate process. The interference between GF and VBF is at the level 10^{-3} fb.
- Pauli interference has been systematically neglected in the real corrections as it is negligible.

<ロ> (四) (四) (三) (三)

Higgs plus three jets via VBF at NLO

NLO parton level Monte Carlo Program

- The dipole subtraction method of Catani and Seymour hep-ph/9605323
- α cut on the PS of the dipoles hep-ph/0307268.
- Real amplitudes with MADGRAPH.
- *b*-quarks for neutral current processes.
- The Monte Carlo integration –VEGAS.
- CTEQ6M PDFs at NLO with $\alpha_s(M_Z) = 0.118$ and CTEQ6L1 PDFs at LO with $\alpha_s(M_Z) = 0.130$.
- SM parameters: LO electroweak relations with M_Z , M_W , and G_F as inputs

- 4 同 6 4 日 6 4 日 6

NLO vs LO VBF Selection Cuts

- k_T algorithm: Require at least 3 hard jets with $p_{Tj} \ge 20 \text{ GeV}$ and $|y_j| \le 4.5$.
- Tagging jets: 2 jets of $p_{Tj}^{\text{tag}} \ge 30 \text{ GeV}$ and $|y_j^{\text{tag}}| \le 4.5$.

• Higgs decay products:

$$p_{\mathcal{T}\ell} \ge 20 \,\, \mathrm{GeV}\,, \qquad |\eta_\ell| \le 2.5\,, \qquad riangle R_{j\ell} \ge 0.6$$

$$y_{j,min}^{ ext{tag}} + 0.6 < \eta_{\ell_{1,2}} < y_{j,max}^{ ext{tag}} - 0.6.$$

NLO vs LO VBF Selection Cuts

• Rapidity gap and opposite detector hemispheres:

$$y_j^{ ext{tag 1}} \cdot y_j^{ ext{tag 2}} < 0$$

 $\Delta y_{jj} = |y_j^{ ext{tag 1}} - y_j^{ ext{tag 2}}| > 4$

• Invariant mass of tagging jets:

$$m_{jj} = \left(p_j^{ ext{tag 1}} + p_j^{ ext{tag 2}}
ight)^2 > 600 \,\, ext{GeV}$$

伺下 イミト イミト

NLO vs LO Total Cross section

NLO vs LO

K-factor and relative change

$$K(x) = \frac{d\sigma_3^{NLO}(\mu_R = \mu_F = \xi \mu_0)/dx}{d\sigma_3^{LO}(\mu_R = \mu_F = \mu_0)/dx}$$

relative change =
$$\frac{d\sigma_3(\mu_R = \mu_F = \xi\mu_0)/dx}{d\sigma_3(\mu_R = \mu_F = \mu_0)/dx}$$

・ロ・ ・ 日・ ・ 日・ ・ 日・

University of Durham

NLO vs LO Tagging Jet Distributions

Tagging Jet Rapidity Separation 80 solid: K-factor 1.4 dots: LO dashes: NLC 60 relative change ¢=0.5 1.2 dơ∕d∆y_{jj}[fb] 40 1.0 0.8 20 £=2 0.6 0 íα. 5 R 7 з 5 7 Δy_{ii} Δy_{ii}

▲ 御 ▶ | ▲ 臣 ▶

- ∢ ≣ →

University of Durham

< ∃⇒

<u>NL</u>O vs LO Tagging Jet Distributions

Tagging Jet Invariant mass

A ■ < Ξ.

NLO vs LO Veto Jet Distributions

Veto Jet Rapidity: $y_{\rm rel} = y_j^{\rm veto} - (y_j^{\rm tag 1} + y_j^{\rm tag 2})/2$

T. Figy

Higgs plus three jets via vector boson fusion at NLO QCD

NLO vs LO Veto Jet Distributions

Veto Jet P_T

T. Figy

Higgs plus three jets via vector boson fusion at NLO QCD

NLO vs LO Veto Jet Distributions

- Veto is slightly softer at NLO.
- $\xi = 2^{\pm 1}$ scale variations at $y_{rel} = 0$:
 - LO: -27% to +42%
 - NLO: -20% to +7%

• Suppressed radiation in the vicinity of $y_{rel} = 0$.

NLO Results

NLO vs LO Veto Probability for the VBF Signal

(< ≥) < ≥)</p>

NLO Results

NLO vs LO Veto Probability for the VBF Signal

- The dominant NLO QCD corrections have been computed for VBF *Hjjj* in the form of a fully flexible NLO partonic Monte Carlo program.
- Scale dependence is reduced for the total cross section and distributions at NLO.
- QCD corrections are small while *K* factors are phase space dependent.

