Precision Electroweak Measurements

Robert Clare UC Riverside (plus a cast of 1000s!)

Marcus Weber

Electroweak corrections

Experimental inputs

Effective couplings in the Standard Model

More experimental inputs

The Electroweak global fit

Higgs mass limits

Conclusions

University at Buffalo The State University of New York

Electroweak Radiative Corrections

Precision measurements: knowledge of Standard Model parameters through radiative corrections

$$\rho = \frac{m_{W}^{2}}{m_{Z}^{2}\cos^{2}\theta_{W}} = 1 \implies \bar{\rho} = 1 + \Delta\rho$$

$$\sin^{2}\theta_{W} = 1 - \frac{m_{W}^{2}}{m_{Z}^{2}} \implies \sin^{2}\theta_{eff} = (1 + \Delta\kappa)\sin^{2}\theta_{W}$$

$$m_{W}^{2} = \frac{\pi\alpha}{\sqrt{2}\sin^{2}\theta_{W}G_{F}} \implies m_{W}^{2} = \frac{\pi\alpha}{\sqrt{2}\sin^{2}\theta_{W}G_{F}} (1 + \Delta r)$$

$$\alpha(0) \implies \alpha(m_{Z}^{2}) = \frac{\alpha(0)}{1 - \Delta\alpha}$$
with : $\Delta\alpha = \Delta\alpha_{lept} + \Delta\alpha_{top} + \Delta\alpha_{had}^{(5)}$

$$\Delta\rho, \Delta\kappa, \Delta r = f(m_{t}^{2}, \log(m_{H}), ...)$$

$$H$$

$$M_{W} = \frac{1}{M} = \frac{1}{M} = \frac{1}{M}$$

Effective Z couplings

The state of the s

$$g_{Vf} = \sqrt{\bar{\rho}} \left(T_{f}^{(3)} - 2Q_{f} \sin^{2} \theta_{eff} \right)$$

 $g_{Af} = \sqrt{\bar{\rho}} T_f^{(3)}$

$$\mathcal{A}_{f} = 2\frac{g_{Vf}g_{Af}}{g_{Vf}^{2} + g_{Af}^{2}} = 2\frac{g_{Vf}/g_{Af}}{1 + (g_{Vf}/g_{Af})^{2}}$$

What we would like to have measured

Jacob and the state of the stat

What we really measured

Jacob and the second of the se

What we really measured

Handled with a QED radiator function (3rd order):

 $\sigma(s) = \int_{4m_{\rm f}^2/s}^{1} H_{\rm QED}^{\rm tot}(z, s) \sigma_{\rm ew}(zs)$

Behrends, van Neerven, Burgers; Montagna, Nicrosini, Piccinni; Jadach, Skryzpek, Pietrzyk,

Settimated error: \bigcirc 0.3 MeV on m_Z \bigcirc 0.2 MeV on Γ_Z \bigcirc 0.02% on σ_{had}^0

Dítto for forward-backward Asymmetries

The second of th

Special care: electron final states

Jacob and the state of the stat

7

What was actually measured

Water and the second of the se

Hadronic Cross-section

Number of neutrino generations

$N_v = 2.9840 \pm 0.0082$

Robert Clare UC Riverside

Loopfest VII

Standard Model tests: leptonic couplings

Walk and the second of the sec

Heavy Flavor Selection Techniques

The second state of the se

Mass tags

An Example Asymmetry

Effective couplings for quarks

West a state water is for wash's monose correct

Quarks vs Leptons

horizontal band: \mathcal{A}_{b} , $\mathcal{A}_{c}(SLD)$; vertical band: $\mathcal{A}_{\ell}(LEP+SLD)$; diagonal band : $\mathcal{A}_{FB}^{0,b}$, $\mathcal{A}_{FB}^{0,c}(LEP)$; $\leftarrow m_{H} \in [114, 1000]$

Standard model tests: $\sin^2 \theta_{eff}^{lept}$

The second state of the se

Assuming lepton universality:

 $\chi^2/dof(lept.) = 1.6/2 (P = 44.0\%)$ $\chi^2/dof(hadr.) = 0.02/2 (P = 98.8\%)$ $\chi^2/dof(tot.) = 11.8/5 (P = 3.7\%)$

hadrons vs leptons 3.2σ 3.2σ between 2 most precise quantities $(\mathcal{A}_{\ell} \text{ and } A^{0,b}_{FB})$

N mass from LEP

⊜qqqq

Results final; only combination is preliminary

Summer 2006 - LEP Preliminary

Robert Clare UC Riverside

Loopfest VII

May 14, 2008 16

W mass from Tevatron + Combination

- All Run I results FINAL
- CDF/DØ fit transverse mass

Systematics are coming down with increased statistics:

Service Service Service Anticember Service Ser

Selection Also constrained by Z events

CDF Run II: with only 200 pb-1, already the best single measurement:

 $m_{\rm W} = 80.413 \pm 0.034({\rm stat}) \pm 0.034({\rm sys}) \,{\rm GeV}$

PDFs and QED account for 17 MeV

For consistency, the LEP and Tevatron experiments use m_W with a running width: $\frac{d\sigma}{dm} \propto \frac{m^2}{(m^2 - m_W^2)^2 - m^4 \Gamma_W^2/m_W^2}$

$m_{\rm W} = 80.398 \pm 0.025 \, {\rm GeV}_{\rm LEP + Tevatron}$

Robert Clare UC Riverside

Loopfest VII

May 14, 2008 17

Robert Clare UC Riverside

Loopfest VII

Top quark mass

Best Independent Measurements of the Mass of the Top Quark (*=Preliminary)

Dominant systematic errors in the combination: JES: 0.9 GeV "Signal" (ISR, FSR, PDF): 0.5 GeV Backgrounds: 0.4 GeV CDF/D0 control/measure using data \rightarrow all should decrease with more luminosity...

$m_{\rm t} = 172.6 \pm 0.8 \pm 1.1 \, \text{GeV}$

Robert Clare UC Riverside

Loopfest VII

May 14, 2008

19

What is mt?

The error on m_t is now getting close to the width of the top quark...

- What exactly is m_t?
 - PMAS(6,1) in Pythia!
 - Pole mass?
 - Something else?
 - \bigcirc What are effects of Γ_t ?
 - Need to know that what we measure and what we compare to SM makes sense.

The electroweak fit: cross-checks

March 2008 - LEP2 and Tevatron (prel.) Excellent LEP1 and SLD 80.5 agreement 68% CL between direct 5 9 9 80.4 and indirect M M Both prefer low m_H 80.3 200 150 175 m, [GeV]

The electroweak fit: cross-checks

The global EW fit

The 5 primary fit results:

$$\Delta \alpha_{\text{had}}^{(5)} = 0.02767 \pm 0.0034$$

 $\alpha_{\rm s}(m_{\rm Z}) = 0.1185 \pm 0.0026$

- $m_Z = 91.1874 \pm 0.0021 \text{ GeV}$
- $m_{\rm t} = 172.8 \pm 1.4 \, {\rm GeV}$

$$m_{\rm H} = 87^{+36}_{-27} \,\,{
m GeV}$$

$$(\log m_{\rm H} = 1.94 \pm 0.16)$$

The largest correlations are between

log $m_{\rm H}$ and $m_{\rm t}$ (0.32) and log $m_{\rm H}$ and $\Delta \alpha_{\rm had}^{(5)}$ (-0.56) **Solution** The fit is good:

 $\chi^2/dof = 17.2/13$ (19%)

The global electroweak fit

Higgs mass and individual measurements

The state of the second of the

26

Beyond the SM - the MSSM

In the SM, the Higgs mass is a free parameter, and $m_{\rm t}$ and $m_{\rm W}$ can be related to it.

In the MSSM, the Higgs mass is no longer free. $m_{\rm H}$, $m_{\rm t}$, and $m_{\rm W}$ depend on the SUSY parameters.

Unfortunately, they are free!

MSSM seems somewhat more compatible with the data, at least for Heavy SUSY...

27

Conclusions

- The Standard Model describes with unprecedented precision a huge amount of data
- \bigcirc Theory errors (with the exception of sin² θ_{eff}^{lept}) under control.
- □ The largest discrepancies are due to $𝓜_ℓ$ and to $𝔼_{FB}^{0,b}$; interpreted as statistical fluctuations they are ≤ 3 σ
- Global fit:

Future inputs:

- Final results from LEP-II: *m*W
- Improved measurements of m_W, m_t from Tevatron Run II and LHC
- Far far far far future
 - Linear Collider and GigaZ?