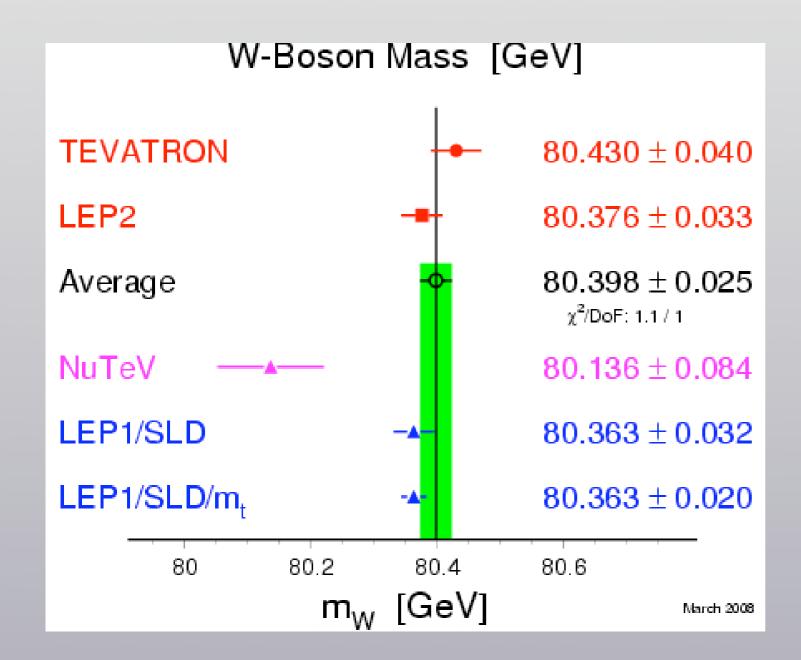
Precision Electroweak Measurements and Constraints on New Physics

Witold Skiba, Yale U

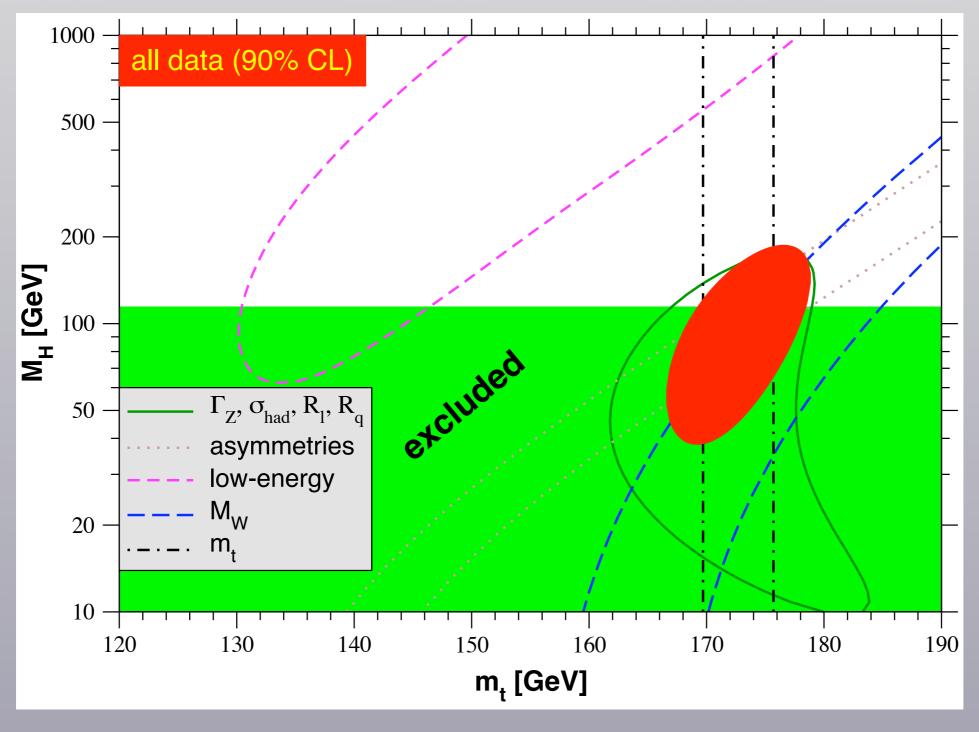
Outline


- Precision electroweak tests of the Standard Model
- Effective operator approach to BSM physics
- Simple examples
- Little Higgs theories

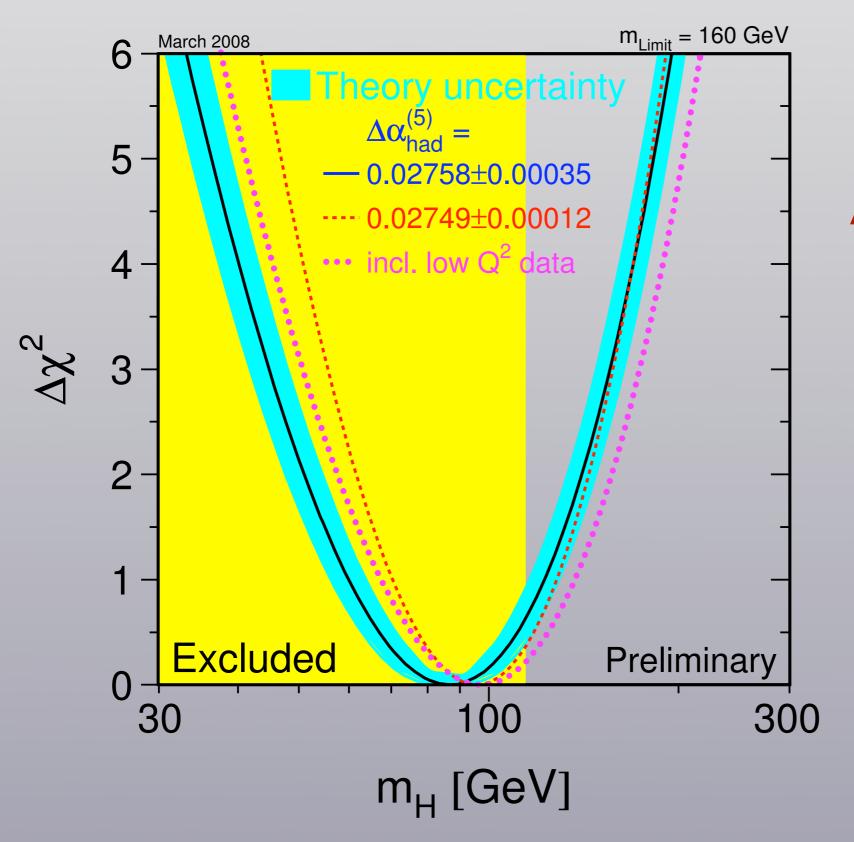
Standard Model agrees with the data better than we hoped it would.

Two discrepancies larger than 2 sigma are F-B asymmetry in b production and NuTeV result for the weak angle.

LEP Electroweak
Working Group
Winter '08

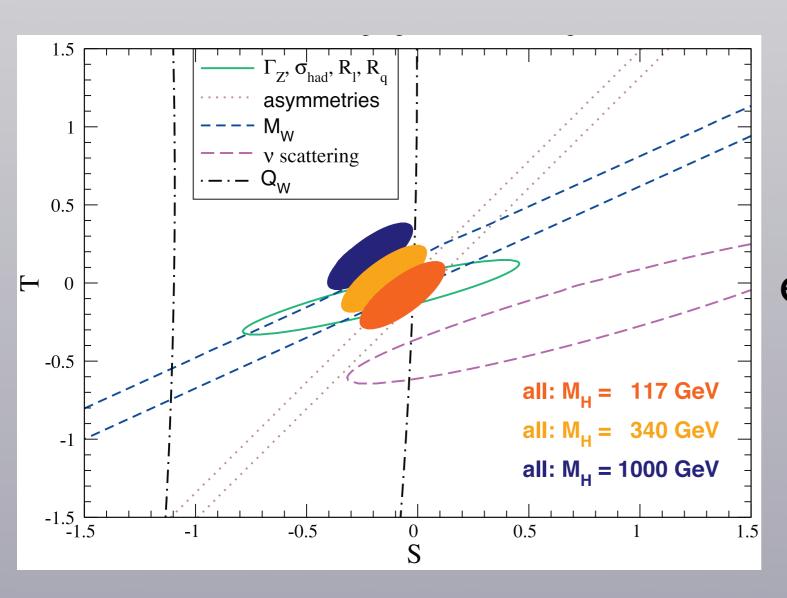


W mass is known with an error of 25 MeV!


The NuTeV result for the weak mixing angle can be translated into a determination of the W mass and the resulting value is lower than other measurements.

1) Light SM Higgs from Z line shape and cross sections alone

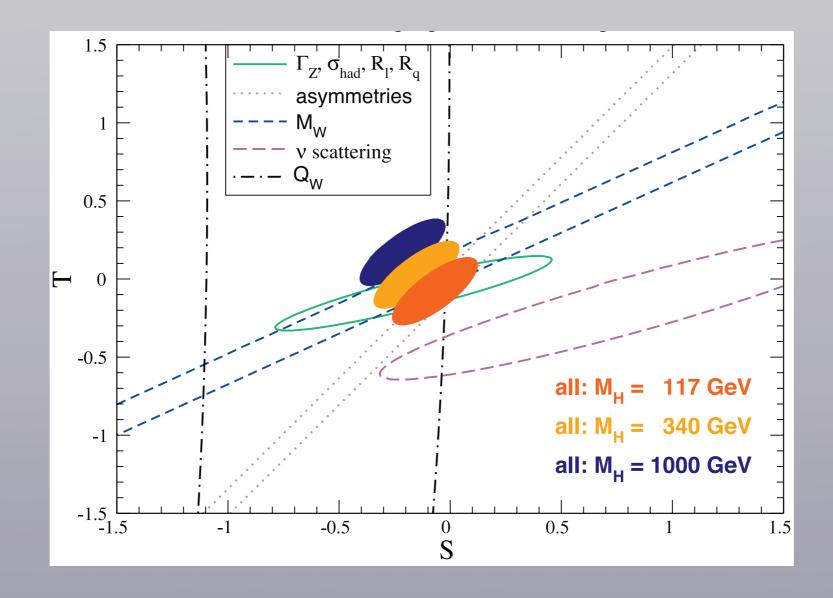
2) The NuTeV result pulls the fit towards larger Higgs mass


Erler, Langacker PDG '06

Assuming no new physics!

LEP Electroweak
Working Group
March '08

Heavier Higgs boson can be consistent with the data if there are (positive) contributions to the T parameter


Contributions to T are common in BSM theories 500 GeV Higgs boson OK e.g. if there is a triplet with

$$\frac{v'}{v} \approx 0.04$$

Erler, Langacker PDG

Effective operator approach

- well known for oblique corrections (S and T parameters)
- correlations between different operators crucial
- no need to compute cross sections, asymmetries, etc.
- all relevant data is distilled into the bounds on S and T

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i} a_i O_i$$

- The coefficients a_i encode the dependence on the masses and couplings of the heavy fields.
- -The operators O_i contain SM field only and are consistent with SM gauge symmetries and some global symmetries.

Buchmuller & Wyler, Nucl. Phys. B268 (1986) 621: all operators of dimension 6 that preserve B, L (80 such operators)

Impose flavor symmetry (U(3))^5 Consider only well-bounded operators

[Reduced flavor symmetry, $(U(2)xU(1))^5$, later on.]

```
80 operators
       CP + flavor symmetry
52
       some leptons or electroweak gauge fields
34
        not observable (h^{\dagger}hF_{\mu\nu}F^{\mu\nu}, (h^{\dagger}h)^3, \ldots)
28
       poorly constrained O_{fF} \equiv i (f \gamma^{\mu} D^{\nu} f) F_{\mu\nu}
     (our basis)
```

a) Higgs and gauge fields

$$O_{WB} = (h^{\dagger} \sigma^a h) W^a_{\mu\nu} B^{\mu\nu} \quad O_h = |h^{\dagger} D_{\mu} h|^2$$

$$S = \frac{4scv^2}{\alpha} a_{WB}$$

$$T = -\frac{v^2}{2\alpha}a_h$$

b) 4 fermions

$$O_{ff} = (\overline{f}\gamma^{\mu}f)(\overline{f}\gamma_{\mu}f)$$

$$\text{e.g.} \ \ O^s_{lq} = (\overline{l}\gamma^\mu l) \left(\overline{q}\gamma_\mu q\right) \ \ O^t_{lq} = (\overline{l}\gamma^\mu \sigma^a l) \left(\overline{q}\gamma_\mu \sigma^a q\right)$$

c) 2 fermions, Higgs, and gauge fields

$$O_{hq} = i(h^{\dagger}D^{\mu}h)(\overline{f}\gamma_{\mu}f) + \text{h.c.}$$

e.g.
$$O^t_{hl}=i(h^\dagger\sigma^aD^\mu h)(\overline{f}\gamma_\mu\sigma^a f)+\mathrm{h.c.}$$

d) gauge fields only

$$O_W = \epsilon^{abc} W^{a\nu}_{\mu} W^{b\lambda}_{\nu} W^{c\mu}_{\lambda}$$

(1)

(7+6)

(11+10)

Experiments

	Standard Notation	Measurement
Atomic parity	$Q_W(Cs)$	Weak charge in Cs
violation	$Q_W(Tl)$	Weak charge in Tl
DIS	g_L^2, g_R^2	ν_{μ} -nucleon scattering from NuTeV
	$R^{ u}$	ν_{μ} -nucleon scattering from CDHS and CHARM
	κ	ν_{μ} -nucleon scattering from CCFR
	$g_V^{ u e}, g_A^{ u e}$	ν -e scattering from CHARM II
Z-pole	Γ_Z	Total Z width
	σ_h^0	e^+e^- hadronic cross section at Z pole
	$R_f^0(f=e,\mu,\tau,b,c)$	Ratios of decay rates
	$R_f^0(f = e, \mu, \tau, b, c)$ $A_{FB}^{0,f}(f = e, \mu, \tau, b, c)$	Forward-backward asymmetries
	$\sin^2 heta_{eff}^{lept}(Q_{FB})$	Hadronic charge asymmetry
	$A_f(f = e, \mu, \tau, b, c)$	Polarized asymmetries
Fermion pair	$\sigma_f(f=q,\mu,\tau)$	Total cross sections for $e^+e^- \to f\overline{f}$
production at	$A_{FB}^f(f=\mu,\tau)$	Forward-backward asymmetries for $e^+e^- \to f\overline{f}$
LEP2	$d\sigma_e/d\cos\theta$	Differential cross section for $e^+e^- \rightarrow e^+e^-$
W pair	$d\sigma_W/d\cos\theta$	Differential cross section for $e^+e^- \to W^+W^-$
	M_W	W mass

For a measured quantity X

$$X(a_i) = X(SM) + a_i X_i + a_i^2 \hat{X}_i$$

$$\frac{1}{\Lambda_i^2} \qquad \left(\frac{E/v}{\Lambda_i}\right)^2 \qquad \left(\frac{E/v}{\Lambda_i}\right)^4 \text{ (neglect!)}$$

$$\chi^{2}(a_{i}) \equiv \sum_{observablesX_{k}} \frac{\left(X_{k}^{th}(a_{i}) - X_{k}^{exp}\right)^{2}}{\sigma_{k}^{2}}$$

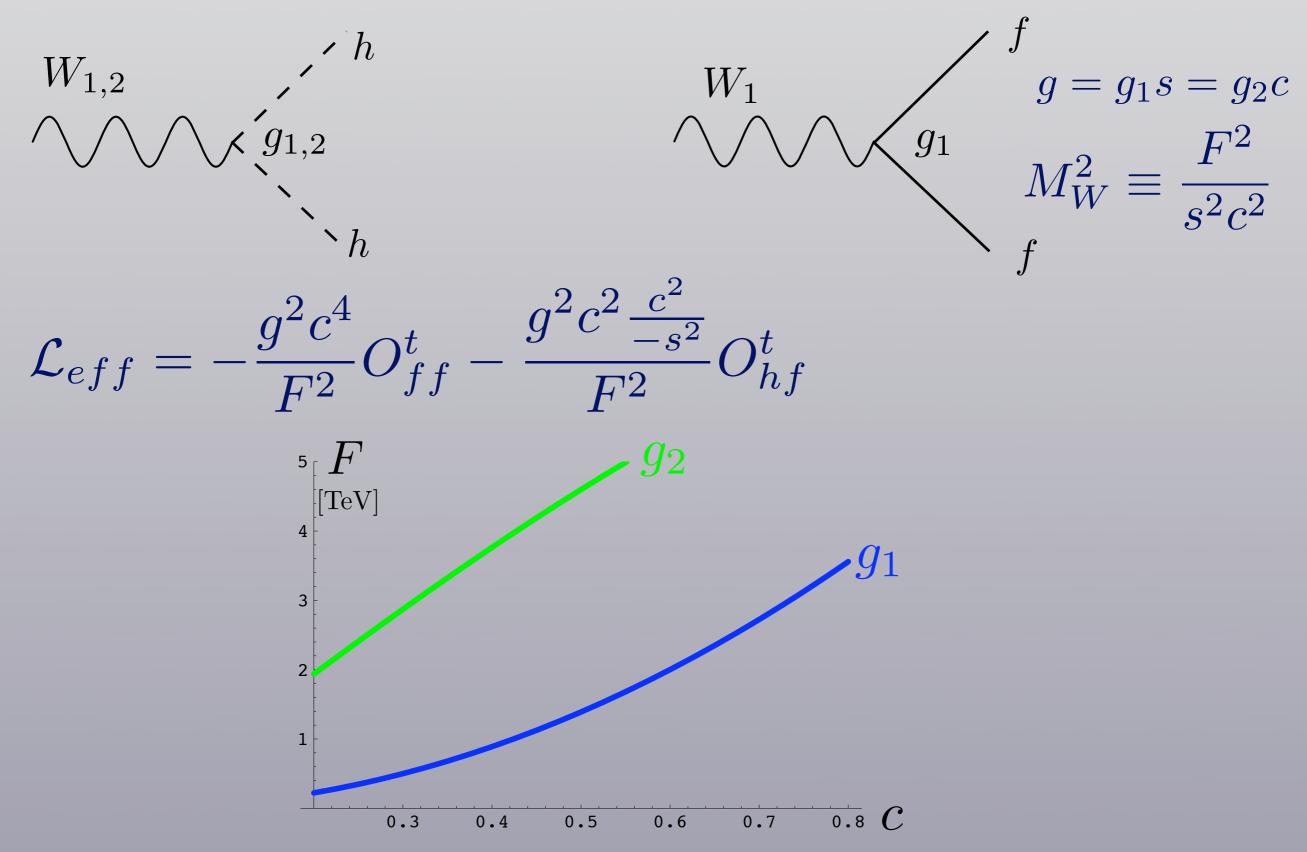
$$X_k^{th}(a_i) = X_k^{SM} + a_i \hat{X}_{k;i} + \mathcal{O}(a_i^2)$$

$$\chi^2(a_i) = \chi^2_{min} + (a_i - \hat{a}_i) \mathcal{M}_{ij}(a_j - \hat{a}_j)$$

 \hat{a}_i , \mathcal{M}_{ij} are constants determined from experiments

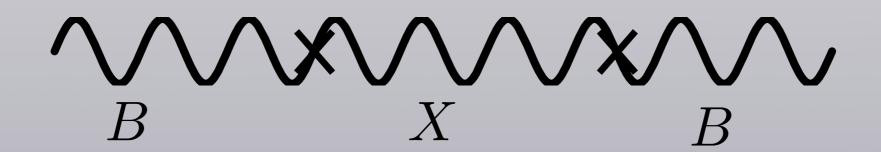
```
S,T parameters
             7.9e3
             -51.
                    5.8e2
     -78.
     -3.9e4 - 1.2e4 6.7e2
                            2.2e4
     -1.4e3 - 1.6e2
                            1.5e2
                                    2.7e3
                            5.9e2
     -5.5e2 - 1.4e2
                                    4.6e2
                                            2.9e3
             -9.7
                    2.8e2
                            3.0e2
                                                   1.3e3
      -56.
              72.
                           -1.4e2 -2.7e3 -7.4e2
     1.3e3
                                                    0.
                                                          2.8e3
     -4.0e2
              3.8
                           -1.1e2 1.2e3 -2.5e2
                                                    0.
                                                         -1.2e3 7.1e2
     -6.9e2 -6.9
                             66.
                                    1.4e3
                                            3.3e2
                                                        -1.4e3 5.8e2
a_{ld}
             -42.
                    5.3e2
                            6.1e2
                                      0.
                                                                                4.8e2
                                                   2.6e2
     -59.
                                              0.
                           -2.1e2 -1.3e3 -9.1e2
     7.8e2
           1.1e2
                                                    0.
                                                          1.4e3 -4.8e2 -7.3e2
     4.2e2 -83.
                            1.7e2 -1.3e3 5.5e2
                                                    0.
                                                          1.3e3 -7.3e2 -6.8e2
                                                                                       4.7e2
     -1.7e4 - 4.1e3
                    1.5e2
                                                    17.
                                                          3.7e2 -3.9e2 -1.6e2 \cdot 1.3e2
                                                                                               3.8e2
                                                                                                      5.5e4
                            9.7e3 -5.9e2 8.3e2
                                                         6.6e2
                                                                                                47.
                                                                                                       1.5e4
     5.9e4 \quad 1.7e4
                     -43.
                           -3.0e4 - 7.1e2 - 6.6e2
                                                   -31.
                                                                  -82. \quad -3.4e2 \quad -32. \quad 4.9e2
     -1.9e3 - 1.4e3
                            2.7e3 - 2.6e3 - 72.
                                                          2.6e3 -1.2e3 -1.4e3 0.
                                                                                       1.2e3
                                                                                               1.4e3 -6.6e3 -8.7e3 6.0e3
                                    -49. 3.5e2
                                                               -1.4e2 -36.
                                                                                       -64.
                                                                                              1.8e2 -2.4e4 -3.1e4 \ 7.7e3 \ \ 2.6e4
     -9.3e3 - 4.5e3
                            8.7e3
                                                           56.
                                                                                  0.
     -6.1e2 -6.6e2
                            1.2e3 -1.2e3
                                                          1.2e3 -5.1e2 -6.9e2
                                                                                               6.7e2 -3.7e3 -4.4e3 \ 2.2e3 \ 4.1e3 \ 1.4e3
                                                                                 0.
                                                                                       5.7e2
                                                                                                      3.3e3
                                                                                                              3.6e3 4.2e2 -2.9e3 1.6e2 1.1e3
     1.2e3 \quad 4.3e2
                           -8.1e2 - 1.4e3 - 1.3e2
                                                          1.4e3 -6.9e2 -7.2e2
                                                                                 0.
                                                                                       6.7e2
                                                                                               7.3e2
a_{hd}
                                                    23.
                                                        -4.5e2 2.5e2
                                                                         2.4e2 -96. -1.7e2 -3.0e2 -2.5e4 -3.2e4 \ 4.5e3 \ 1.7e4 \ 2.3e3 -2.1e3 \ 3.2e4
     -2.8e4 - 4.6e3 - 1.1e2 9.0e3
                                    4.6e2 -1.6e2
              4.5
                             -4.2
                                      0.
                                              0.
                                                    0.
                                                           0.
                                                                   0.
                                                                           0.
                                                                                  0.
                                                                                         0.
                                                                                                        6.3
                                                                                                               -1.7
                                                                                                                             0.8
                                                                                                                                                  1.4 2.6
      7.7
                      a_{ll}^s
                              a_{ll}^t
                                                                                                        a_{hl}^s
                                                                                                               a_{hl}^t
                                                                                                                             a_{hq}^t
              a_h
                                                    a_{le}
                                                                           a_{ld}
                                                                                 a_{ee}
                                                                                                                                    a_{hu}
     a_{WB}
                                                                   a_{lu}
                                                                                                                                                  a_{he} a_W
```

(Times $10^{12} (\text{GeV})^4$


$$\chi^{2} = \chi^{2}_{min} + (a_{i} - \hat{a}_{i})\mathcal{M}_{ij}(a_{j} - \hat{a}_{j})$$

 \mathcal{M}_{ij} only depends on the errors (experimental and theoretical), and would change if precision of the data improves

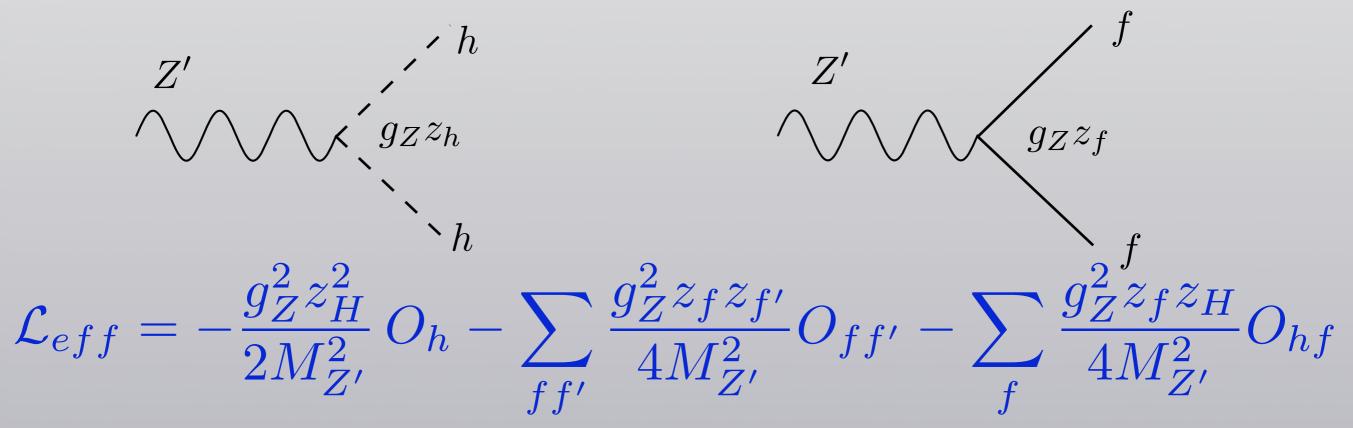
 \hat{a}_i


depend on the SM predictions, central values of observables, and experimental errors

W' from SU(2)xSU(2) broken to the diagonal SU(2)_L

Kinetic mixing between hypercharge B and Z'

$$\mathcal{L} = -\frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{4}X_{\mu\nu}X^{\mu\nu} + \frac{\lambda}{2}B_{\mu\nu}X^{\mu\nu}$$



$$\mathcal{L}_{eff} = \frac{\lambda^2}{M_X^2} (\partial^{\mu} B_{\mu\nu})^2$$

 $\mathcal{L}_{eff} = \frac{\lambda^2}{M_X^2} (\partial^\mu B_{\mu\nu})^2 \quad \begin{array}{l} \text{(Related to the Y parameter} \\ \text{introduced by Barbieri,} \\ \text{Pomarol, Rattazzi, Strumia)} \end{array}$

$$-(\frac{0.7}{1 \text{ TeV}})^2 < \frac{\lambda^2}{M_X^2} < (\frac{0.2}{1 \text{ TeV}})^2$$

Generic Z' boson

Constraints from individual measurements:

$$T o M_{Z'}>0.9~{
m TeV},~~\Gamma_Z o M_{Z'}>1.2~{
m TeV}$$
 (Assuming $g_z z_h=e,~g_z z_f=\pm rac{e}{3}$)

Global analysis: $M_{Z'} > 2.2 \, (2.4) \, \mathrm{TeV}$

An extra vector-like doublet of quarks

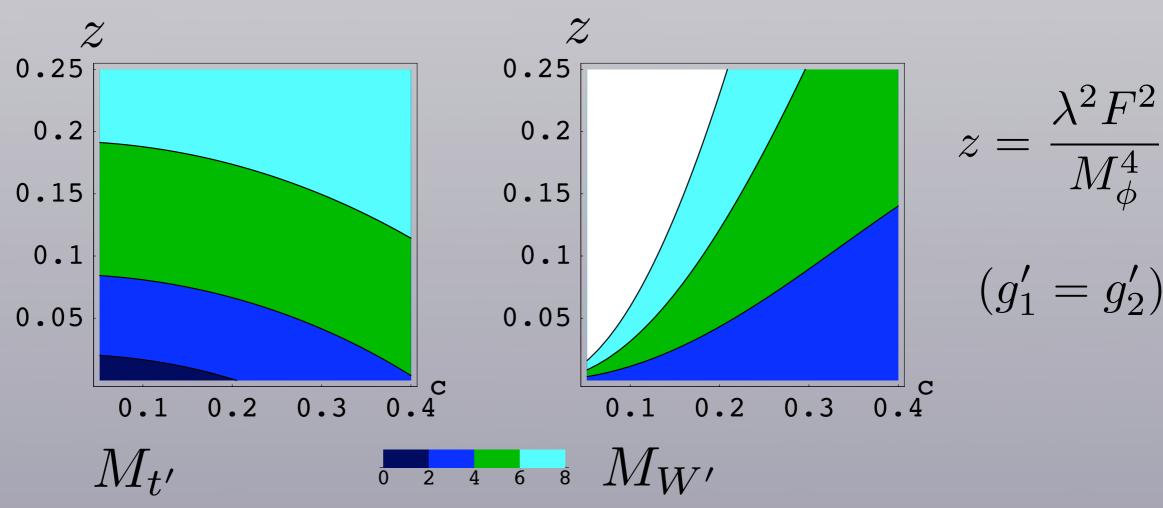
$$\mathcal{L} = -M\overline{Q}Q - \lambda_d\overline{Q}dh - \lambda_u\overline{Q}u\tilde{h} + \text{h.c.}$$

$$h$$
, h , u , d Q u , d

$$\mathcal{L}_{eff}=rac{\lambda_d^2}{2M^2}O_{hd}-rac{\lambda_u^2}{2M^2}O_{hu}$$
 yields 95% CL bounds:

$$-0.093 < \frac{\lambda_d^2}{2M^2} < 0.036 - 0.083 < \frac{\lambda_u^2}{2M^2} < 0.032 \left[\frac{1}{\text{TeV}}^2 \right]$$

(Assuming universal

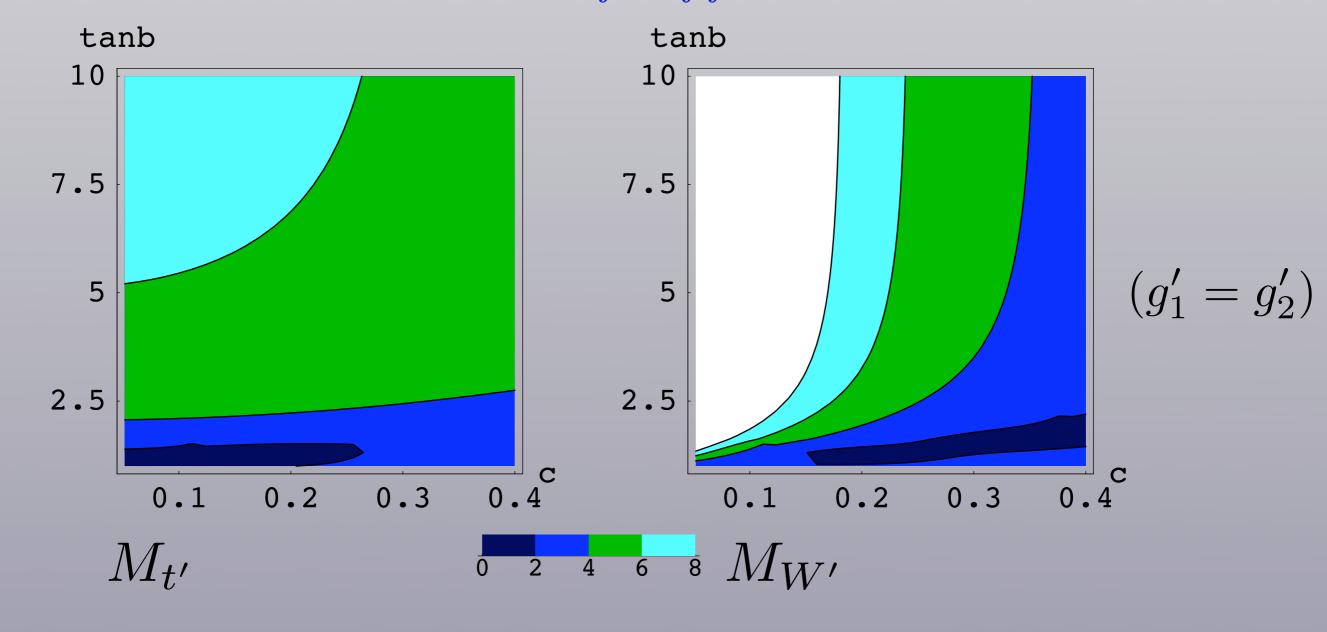

family couplings)

Littlest Higgs: $(SU(2) \times U(1))^2 \rightarrow SU(2) \times U(1)$

Contributions from

scalar triplets: a_h

Z' bosons: a_h, a_{hf}^s, a_{ff}^s W' bosons: a_{hf}^t, a_{ff}^t

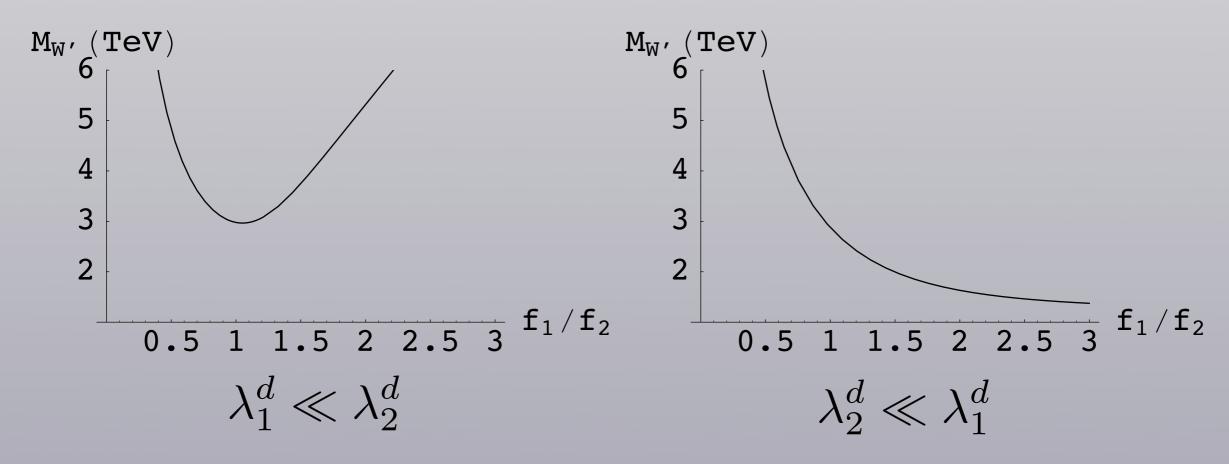

$$(g_1' = g_2')$$

Antisymmetric condensate LH: $(SU(2) \times U(1))^2 \rightarrow SU(2) \times U(1)$

Contributions from

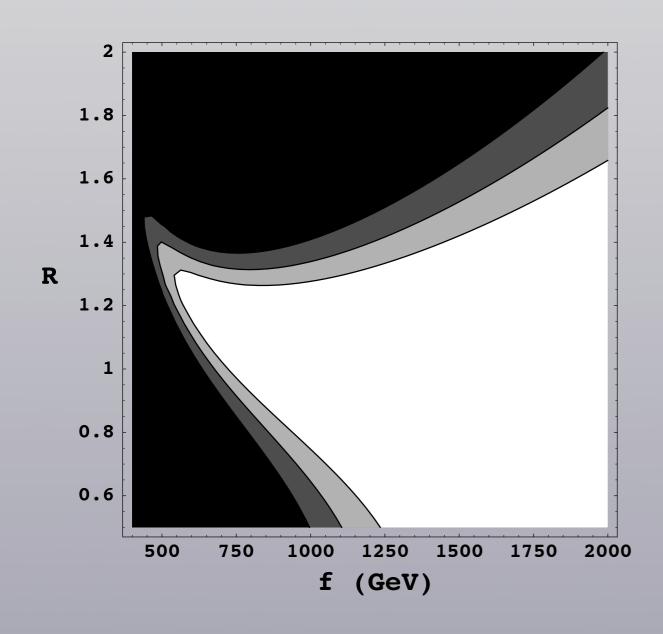
Z' bosons: a_h, a_{hf}^s, a_{ff}^s

W' bosons: a_{hf}^t, a_{ff}^t



Simplest Little Higgs: $SU(3) \times U(1) \rightarrow SU(2) \times U(1)$

Contributions from


gauge bosons: a_h, a_{hf}^s, a_{ff}^s

and fermions: a_{hf}^s, a_{hf}^t

(Two different ways of arranging down quark Yukawa couplings.)

Little Higgs Models with T parity (H.-C. Cheng+l. Low)

Loop contributions to S and T and to 4-fermi operators

$$R = \frac{\lambda_1}{\lambda_2}$$
 (Ratio of Yukawa couplings)

Summary

- Standard Model works extremely well placing constraints in several TeV range on new states
- No substantial improvement of EW data anytime soon
- Effective Lagrangian approach to "global" analysis is possible, easy, and useful
- Lots of interesting models within the LHC reach

the end -