Top-Mass from Jets at the ILC: Two loop results and more

Iain Stewart, MIT
LoopFest VII

Based on:
A. Hoang, S. Fleming, S. Mantry, \& I.S. (hep-ph/0703207)
A. Hoang \& I.S. (arXiv:0709.3519)
A. Hoang, S. Fleming, S. Mantry, \& I.S. (arXiv:07II.2079) A. Jain, I. Scimemi, \& I.S. (arXiv:08or.0743)

Outline

- Importance of Top Mass measurements. Which mass?

$$
M_{t}^{\text {peak }}=\overbrace{t}+(\text { nonperturbative effects })+\text { (perturbative effects })
$$

- Factorization theorem for Jet Invariant Masses

$$
e^{+} e^{-} \rightarrow t \bar{t} \quad Q \gg m_{t} \gg \Gamma_{t}
$$

- Summation of Large Logs
- Heavy-Quark Jet Function (perturbative shift, NNLO \& NNLL)
- Gluon Soft Function (nonperturbative shift)
- Cross Sections Results

Motivation

- The top mass is a fundamental parameter of the Standard Model

$$
m_{t}=172.6 \pm 1.4 \mathrm{GeV} \quad\left(\mathrm{a} 0.8 \% \text { error) } \quad \begin{array}{l}
\text { (theory error? } \\
\text { what mass is it?) }
\end{array}\right.
$$

- Important for precision e.w. constraints

A 2 GeV shift in m_{t} changes the central values by 15%

- Top Yukawa coupling is large. Top parameters are important for analyzing many new physics models. (eg. Higgs masses in MSSM)
- Top is very unstable, it decays before it has a chance to hadronize. This provides an intrinsic smearing for jet observables, making them more amenable to perturbative analysis.

$$
\Gamma_{t}=1.4 \mathrm{GeV} \quad \text { from } \quad t \rightarrow b W
$$

$\longrightarrow Q \simeq 1 \mathrm{TeV}$ Production scale
$\longrightarrow m_{t}=172.6 \pm 1.4 \mathrm{GeV}$ Mass scale
$p p \xrightarrow{\sigma} t \bar{t} X$
 Λ_{QCD}

CDF \& D0:

 exploit kinematic info (eg. template method) to achieve high sensitivity
uncertainties: combinatorics, jet-energy scale, pdf's, kinematics with LO Monte Carlo, b-tagging, ...

$$
m_{t}=172.6 \pm 0.8(\text { stat }) \pm 1.1(\text { syst }) \mathrm{GeV}
$$

LHC: $\quad p p \rightarrow t \bar{t} X$
top factory, 8 million $t \bar{t}$ / year
$\delta m_{t} \sim 1 \mathrm{GeV}$ systematics dominated
Future -ILC: $\quad e^{+} e^{-} \rightarrow t \bar{t}$
exploit threshold region $\sqrt{s} \simeq 2 m_{t}$ with high precision theory calculations $\quad \delta m_{t} \sim 0.1 \mathrm{GeV}$

What mass?

$$
m_{t}=172.6 \pm 0.8(\text { stat }) \pm 1.1(\text { syst }) \mathrm{GeV}
$$

- pole mass?
- ambiguity $\delta m \sim \Lambda_{\mathrm{QCD}}$, linear sensitivity to IR momenta
- poor behavior of α_{s} expansion
- not used anymore for m_{b}, m_{c}

$\delta m \sim \alpha_{s}(\Gamma) \Gamma$

$$
\text { e.g. } m_{b}^{1 S}=(4.70 \pm 0.04) \mathrm{GeV}
$$

quark masses are Lagrangian parameters, use a suitable scheme

$$
m_{t}^{\text {pole }}=m_{t}^{\text {schemeA }}\left(1+\alpha_{s}+\alpha_{s}^{2}+\ldots\right)
$$

or

$$
m_{t}^{\text {pole }}=m_{t}^{\text {schemeB }}+R\left(\alpha_{s}+\alpha_{s}^{2}+\ldots\right)
$$

- top $\overline{\mathrm{MS}}$ mass? $\quad m^{\text {pole }}-m^{\overline{\mathrm{MS}}}(m) \sim 8 \mathrm{GeV}$

If top-decay is described by Breit-Wigner, the answer is NO
When we switch to a short-distance mass scheme we must expand in α_{s}

$$
\delta \bar{m} \sim \alpha_{s} \bar{m} \gg \Gamma
$$

$$
\begin{aligned}
\frac{\Gamma}{\left[\frac{\left(M_{t}^{2}-m^{\text {pole } 2}\right)^{2}}{m^{p^{201 c^{2}}}}+\Gamma^{2}\right]}= & \frac{\Gamma}{\left[\frac{\left(M_{t}^{2}-\bar{m}^{2}\right)^{2}}{\bar{m}^{2}}+\Gamma^{2}\right]}+\frac{(4 \hat{s} \Gamma) \delta \bar{m}}{\left[\frac{\left(M_{t}^{2}-m^{2}\right)^{2}}{\bar{m}^{2}}+\Gamma^{2}\right]^{2}} \\
& \sim 1 / \Gamma \quad \sim \alpha_{s} \bar{m} / \Gamma^{2} \text { it swamps the ist term }
\end{aligned}
$$

- must be a "top-resonance mass scheme" $\quad R \sim \Gamma$

$$
m^{\text {pole }}-m \sim \alpha_{s} \Gamma
$$

Lesson: some schemes are more appropriate than others

Theory Issues for $p p \rightarrow t \bar{t} X$

- jet observable $\star \star$
- suitable top mass for jets \star
- initial state radiation
- final state radiation \star
- underlying events
- color reconnection \star
- beam remnant
- parton distributions
- sum large logs

Here we'll study $e^{+} e^{-} \rightarrow t \bar{t} X$ and the issues \star

Top Mass from Jets far above threshold at the ILC

$$
Q \gg m_{t} \gg \Gamma_{t}
$$

Measure what observable?

$$
\frac{d^{2} \sigma}{d M_{t}^{2} d M_{\bar{t}}^{2}}
$$

Hemisphere Invariant Masses

Peak region:

$$
\begin{aligned}
& s_{t} \equiv M_{t}^{2}-m^{2} \sim m \Gamma \ll m^{2} \\
& \hat{s}_{t} \equiv \frac{M_{t}^{2}-m^{2}}{m} \sim \Gamma \ll m
\end{aligned}
$$

Breit Wigner: $\quad \frac{m \Gamma}{s_{t}^{2}+(m \Gamma)^{2}}=\left(\frac{\Gamma}{m}\right) \frac{1}{\hat{s}_{t}^{2}+\Gamma^{2}}$

- $Q \gg m$ "dijets" dominate, inclusive in decay products
- $m \gg \Gamma=$ physical width

$$
\Gamma=\Gamma_{t}+\ldots
$$

- $m \gg \hat{s}_{t}$
- $\Gamma>\Lambda_{\mathrm{QCD}}$
$\hat{s}_{t} \equiv \frac{M_{t}^{2}-m^{2}}{m}$

Disparate Scales \rightarrow Effective Field Theory

Derive a Factorization Theorem:

$$
\begin{aligned}
\left(\frac{d^{2} \sigma}{d M_{t}^{2} d M_{t}^{2}}\right)_{\text {hemi }}= & \sigma_{0} H_{Q}\left(Q, \mu_{m}\right) H_{m}\left(m, \frac{Q}{m}, \mu_{m}, \mu\right) \quad \text { Answer } \\
& \times \int_{-\infty}^{\infty} d \ell^{+} d \ell^{-} B_{+}\left(\hat{s}_{t}-\frac{Q \ell^{+}}{m}, \Gamma, \mu\right) B_{-}\left(\hat{s}_{\bar{t}}-\frac{Q \ell^{-}}{m}, \Gamma, \mu\right) S_{\text {hemi }}\left(\ell^{+}, \ell^{-}, \mu\right) .
\end{aligned}
$$

$$
+\mathcal{O}\left(\frac{m \alpha_{s}(m)}{Q}\right)+\mathcal{O}\left(\frac{m^{2}}{Q^{2}}\right)+\mathcal{O}\left(\frac{\Gamma_{t}}{m}\right)+\mathcal{O}\left(\frac{s_{t}, s_{\bar{t}}}{m^{2}}\right)
$$

Valid to all orders in α_{s}

Compare to factorization theorem for massless dijets:

$$
\left(\frac{d^{2} \sigma}{d M_{a}^{2} d M_{b}^{2}}\right)=\sigma_{0} H(Q, \mu) \int d \ell^{+} d \ell^{-} J_{+}\left(M_{a}^{2}-Q \ell^{+}, \mu\right) J_{-}\left(M_{b}^{2}-Q \ell^{-}, \mu\right) S_{\mathrm{hemi}}\left(\ell^{+}, \ell^{-}, \mu\right)
$$

Korchemsky \& Sterman

Hard Production modes integrated

Answer

"Hard" collinear gluons integrated out

$$
\left(\frac{d^{2} \sigma}{d M_{t}^{2} d M_{\bar{t}}^{2}}\right)_{\mathrm{hemi}}=\sigma_{0} H_{Q}\left(Q, \mu_{m}\right) H_{m}\left(m, \frac{Q}{m}, \mu_{m}, \mu\right)
$$

$$
\times \int_{-\infty}^{\infty} d \ell^{+} d \ell^{-} B_{+}\left(\hat{s}_{t}-\frac{Q \ell^{+}}{m}, \Gamma, \mu\right) B_{-}\left(\hat{s}_{\bar{t}}-\frac{Q \ell^{-}}{m}, \Gamma, \mu\right) S_{\text {hemi }}\left(\ell^{+}, \ell^{-}, \mu\right) .
$$

Evolution and decay of top quark close to mass shell

Non-perturbative Cross talk

At tree level in α_{s} expansion this is a Breit-Wigner.

- B.W. receives calculable perturbative corrections

$$
\begin{aligned}
\left(\frac{d^{2} \sigma}{d M_{t}^{2} d M_{\hat{t}}^{2}}\right)_{\text {hemi }}= & \sigma_{0} H_{Q}\left(Q, \mu_{m}\right) H_{m}\left(m, \frac{Q}{m}, \mu_{m}, \mu\right) \quad \text { Answer } \\
& \times \int_{-\infty}^{\infty} d \ell^{+} d \ell^{-} B_{+}\left(\hat{s}_{t}-\frac{Q \ell^{+}}{m}, \Gamma, \mu\right) B_{-}\left(\hat{s}_{\bar{t}}-\frac{Q \ell^{-}}{m}, \Gamma, \mu\right) S_{\mathrm{hemi}}\left(\ell^{+}, \ell^{-}, \mu\right) .
\end{aligned}
$$

- cross-section depends on a hadronic soft function, not just B.W.'s ** the B.W. is only a good approx. for collinear top \& gluons **
- the formula removes the largest component of soft momentum to get the correct argument for evaluating the B.W. functions

$$
\hat{s}_{t}=\frac{M_{t}^{2}-m^{2}}{m}
$$

Everything but the soft function is calculable in perturbation theory.
S_hemi is universal, \& measured in massless jet event shapes (at LEP!)

Eg. Thrust data from massless quark jets at LEP

$$
T=\max _{\hat{\mathbf{t}}} \frac{\sum_{i}\left|\hat{\mathbf{t}} \cdot \mathbf{p}_{i}\right|}{Q}
$$

Korchemsky \& Sterman

$$
1=\int d T \delta\left(1-T-\frac{M_{a}^{2}+M_{b}^{2}}{Q^{2}}\right)
$$

$$
\left(\frac{d^{2} \sigma}{d M_{a}^{2} d M_{b}^{2}}\right)=\sigma_{0} H(Q, \mu) \int d \ell^{+} d \ell^{-} J_{+}\left(M_{a}^{2}-Q \ell^{+}, \mu\right) J_{-}\left(M_{b}^{2}-Q \ell^{-}, \mu\right) S_{\mathrm{hemi}}\left(\ell^{+}, \ell^{-}, \mu\right)
$$

For our event shape for massive quarks:

$$
\left(\frac{d^{2} \sigma}{d M_{t}^{2} d M_{t}^{2}}\right)_{\mathrm{hemi}}=\sigma_{0} H_{Q}\left(Q, \mu_{m}\right) H_{m}\left(m, \frac{Q}{m}, \mu_{m}, \mu\right)
$$

Answer

$$
\times \int_{-\infty}^{\infty} d \ell^{+} d \ell^{-} B_{+}\left(\hat{s}_{t}-\frac{Q \ell^{+}}{m}, \Gamma, \mu\right) B_{-}\left(\hat{s}_{\bar{t}}-\frac{Q \ell^{-}}{m}, \Gamma, \mu\right) S_{\mathrm{hemi}}\left(\ell^{+}, \ell^{-}, \mu\right) .
$$

$$
M^{\text {peak }}=m_{t}+\Gamma_{t}\left(\alpha_{s}+\alpha_{s}^{2}+\ldots\right)+\frac{Q \Lambda_{\mathrm{QCD}}}{m_{t}}
$$

Short distance m_{t} can (in principle) be determined to better than Λ_{QCD}

Fleming, Hoang,
Mantry, I.S.

Summing the Large Logs

$$
\begin{aligned}
\frac{d \sigma}{d M_{t}^{2} d M_{t}^{2}} & =\sigma_{0} H_{Q}\left(Q, \mu_{m}\right) H_{m}\left(m_{J}, \frac{Q}{m_{J}}, \mu_{m}, \mu\right) \\
& \times \int d \ell^{+} d \ell^{-} B_{+}\left(\hat{s}_{t}-\frac{Q \ell^{+}}{m_{J}}, \Gamma_{t}, \mu\right) B_{-}\left(\hat{s}_{\bar{t}}-\frac{Q \ell^{-}}{m_{J}}, \Gamma_{t}, \mu\right) S\left(\ell^{+}, \ell^{-}, \mu\right)
\end{aligned}
$$

The various functions are sensitive to different scales

Matching \&

 matrix elementsScales
To minimize the logs we need several stages of matching and running

$$
\begin{aligned}
\mu_{Q} & \simeq Q \\
\mu_{m} & \simeq m \\
\mu_{\Gamma} & \simeq \mathcal{O}\left(\Gamma_{t}+\frac{Q \Lambda}{m}+\frac{s_{t, \bar{t}}}{m}\right), \\
\mu_{\Lambda} & \simeq \mathcal{O}\left(\Lambda+\frac{m \Gamma_{t}}{Q}+\frac{s_{t, \bar{t}}}{Q}\right) .
\end{aligned}
$$

so typically $\frac{\mu_{\Gamma}}{\mu_{\Delta}} \sim \frac{Q}{m}$

Result with resummation:

$$
\begin{aligned}
\frac{d^{2} \sigma}{d M_{t}^{2} d M_{\bar{t}}^{2}}= & \sigma_{0} H_{Q}\left(Q, \mu_{h}\right) U_{H_{Q}}\left(Q, \mu_{h}, \mu_{m}\right) H_{m}\left(m, \mu_{m}\right) U_{H_{m}}\left(\frac{Q}{m_{J}}, \mu_{m}, \mu_{\Lambda}\right) \\
& \times \int_{-\infty}^{\infty} d \hat{s}_{t}^{\prime} d \hat{s}_{\bar{t}}^{\prime} U_{B_{+}}\left(\hat{s}_{t}-\hat{s}_{t}^{\prime}, \mu_{\Lambda}, \mu_{\Gamma}\right) U_{B_{-}}\left(\hat{s}_{\bar{t}}-\hat{s}_{\bar{t}}^{\prime}, \mu_{\Lambda}, \mu_{\Gamma}\right) \\
& \times \int_{-\infty}^{\infty} d \ell^{+} d \ell^{-} B_{+}\left(\hat{s}_{t}^{\prime}-\frac{Q \ell^{+}}{m}, \Gamma, \mu_{\Gamma}\right) B_{-}\left(\hat{s}_{\bar{t}}^{\prime}-\frac{Q \ell^{-}}{m}, \Gamma, \mu_{\Gamma}\right) S\left(\ell^{+}, \ell^{-}, \mu_{\Lambda}\right)
\end{aligned}
$$

Here: sum double logs $\quad \mathrm{LL}=\sum_{k}\left[\alpha_{s} \ln ^{2}\right]^{k}$

$$
\begin{array}{cc}
\mu \frac{d}{d \mu} H_{m}\left(m, \frac{Q}{m}, \mu\right)=\gamma_{H_{m}}\left(\frac{Q}{m}, \mu\right) H_{m}\left(m, \frac{Q}{m}, \mu\right) & \mu \frac{d}{d \mu} B_{ \pm}(\hat{s}, \mu)=\int d \hat{s}^{\prime} \gamma_{B_{ \pm}}\left(\hat{s}-\hat{s}^{\prime}, \mu\right) B_{ \pm}\left(\hat{s}^{\prime}, \mu\right) \\
H_{m}\left(m, \frac{Q}{m}, \mu_{m}, \mu\right)=H_{m}\left(m, \mu_{m}\right) U_{H_{m}}\left(\frac{Q}{m}, \mu_{m}, \mu\right) & B_{ \pm}(\hat{s}, \mu)=\int d \hat{s}^{\prime} U_{B}\left(\hat{s}-\hat{s}^{\prime}, \mu, \mu_{\Gamma}\right) B_{ \pm}\left(\hat{s}^{\prime}, \mu_{\Gamma}\right)
\end{array}
$$

Only the logs between μ_{Γ} and μ_{Λ} can modify the shape of the invariant mass distribution (the rest just modify normalization)

Heavy Quark Jet Function

unstable boosted HQET

fluctuations beneath the mass

$$
\begin{aligned}
v_{+}^{\mu}= & \left(\frac{m}{Q}, \frac{Q}{m}, \mathbf{0}_{\perp}\right) \\
& \sim\left(\lambda, \lambda^{-1}, 0\right)
\end{aligned}
$$

collinear, but with smaller overall scale
 one HQET for antitop

$$
\mathcal{L}_{+}=\bar{h}_{v_{+}}\left(i v_{+} \cdot D_{+}-\delta m+\frac{i}{2} \Gamma_{\mathrm{t}}\right) h_{v_{+}}, \quad \mathcal{L}_{-}=\bar{h}_{v_{-}}\left(i v_{-} \cdot D_{-}-\delta m+\frac{i}{2} \Gamma_{\mathrm{t}}\right) h_{v_{-}}
$$

mass scheme choice

$$
\delta m=m^{\text {pole }}-m
$$

our observable is inclusive in top decay products
a)

Heavy Quark Jet Function

Can be computed perturbatively

$$
B\left(\hat{s}, \delta m, \Gamma_{t}, \mu\right)=\operatorname{Im}\left[\mathcal{B}\left(\hat{s}, \delta m, \Gamma_{t}, \mu\right)\right]
$$

$$
\mathcal{B}\left(2 v_{+} \cdot r, \delta m, \Gamma_{t}, \mu\right)=\frac{-i}{4 \pi N_{c} m} \int d^{4} x e^{i r \cdot x}\langle 0| T\left\{\bar{h}_{v_{+}}(0) W_{n}(0) W_{n}^{\dagger}(x) h_{v_{+}}(x)\right\}|0\rangle
$$

shift property $\mathcal{B}\left(\hat{s}, \delta m, \Gamma_{t}, \mu\right)=\mathcal{B}\left(\hat{s}-2 \delta m+i \Gamma_{t}, \mu\right)$

Renormalization and RGE:

convolutions $\quad \mathcal{B}(\hat{s}, \mu)=\int d \hat{s}^{\prime} Z_{B}^{-1}\left(\hat{s}-\hat{s}^{\prime}, \mu\right) \mathcal{B}^{\text {bare }}\left(\hat{s}^{\prime}\right)$

$$
\mu \frac{d}{d \mu} \mathcal{B}(\hat{s}, \mu)=\int d \hat{s}^{\prime} \gamma_{B}\left(\hat{s}-\hat{s}^{\prime}, \mu\right) \mathcal{B}\left(\hat{s}^{\prime}, \mu\right)
$$

$$
\begin{gathered}
\gamma_{B}(\hat{s}, \mu)=-2 \underbrace{\text { cusp }\left[\alpha_{s}\right]} \frac{1}{\mu}\left[\frac{\mu \theta(\hat{s})}{\hat{s}}\right]_{+}+\underbrace{\gamma\left[\alpha_{s}\right] \delta(\hat{s})}_{\text {non-cusp }} \\
\text { anom.dim. } \\
\text { term }
\end{gathered}
$$

Position space: $\quad \tilde{\gamma}_{B}(y, \mu)=2 \Gamma^{c}\left[\alpha_{s}\right] \ln \left(e^{\gamma^{\vartheta}} y \mu\right)+\gamma\left[\alpha_{s}\right]$
known to now known
3 loops Solution: $\quad \tilde{B}(y, \mu)=e^{K\left(\mu, \mu_{0}\right)}\left(i e^{\gamma_{E}} y \mu_{0}\right)^{\omega\left(\mu, \mu_{0}\right)} \tilde{B}\left(y, \mu_{0}\right)$

$$
\omega\left(\mu, \mu_{0}\right)=2 \int_{\alpha_{s}\left(\mu_{0}\right)}^{\alpha_{s}(\mu)} \frac{d \alpha}{\beta[\alpha]} \Gamma^{c}[\alpha] \quad, \quad K\left(\mu, \mu_{0}\right)=\ldots
$$

Momentum space:

$$
B(\hat{s}, \mu)=\int_{-\infty}^{+\infty} d \hat{s}^{\prime} U_{B}\left(\hat{s}-\hat{s}^{\prime}, \mu, \mu_{0}\right) B\left(\hat{s}^{\prime}, \mu_{0}\right), \quad U_{B}\left(\hat{s}-\hat{s}^{\prime}, \mu, \mu_{0}\right)=\frac{e^{K}\left(e^{\gamma_{E}}\right)^{\omega}}{\mu_{0} \Gamma(-\omega)}\left[\frac{\mu_{0}^{1+\omega} \theta\left(\hat{s}-\hat{s}^{\prime}\right)}{\left(\hat{s}-\hat{s}^{\prime}\right)^{1+\omega}}\right]_{+}
$$

Two-Loop Result

$$
\begin{aligned}
m \mathcal{B}_{2}(\hat{s}, \delta m, \mu) & =C_{F}^{2}\left[\frac{1}{2} L^{4}+L^{3}+\left(\frac{3}{2}+\frac{13 \pi^{2}}{24}\right) L^{2}+\left(1+\frac{13 \pi^{2}}{24}-4 \zeta_{3}\right) L^{1}+\left(\frac{1}{2}+\frac{7 \pi^{2}}{24}+\frac{53 \pi^{4}}{640}-2 \zeta_{3}\right) L^{0}\right] \\
& +C_{F} C_{A}\left[\left(\frac{1}{3}-\frac{\pi^{2}}{12}\right) L^{2}+\left(\frac{5}{18}-\frac{\pi^{2}}{12}-\frac{5 \zeta_{3}}{4}\right) L^{1}+\left(-\frac{11}{54}+\frac{5 \pi^{2}}{48}-\frac{19 \pi^{4}}{960}-\frac{5 \zeta_{3}}{8}\right) L^{0}\right] \\
& +C_{F} \beta_{0}\left[\frac{1}{6} L^{3}+\frac{2}{3} L^{2}+\left(\frac{47}{36}+\frac{\pi^{2}}{12}\right) L^{1}+\left(\frac{281}{216}+\frac{23 \pi^{2}}{192}-\frac{17 \zeta_{3}}{48}\right) L^{0}\right] \\
& -2 \delta m_{2}\left(L^{0}\right)^{\prime}+2\left(\delta m_{1}\right)^{2}\left(L^{0}\right)^{\prime \prime}-2 \delta m_{1} C_{F}\left[L^{2}+L^{1}+\left(1+\frac{5 \pi^{2}}{24}\right) L^{0}\right]^{\prime} .
\end{aligned}
$$

$$
L^{k}=\frac{1}{\pi(-\hat{s}-i 0)} \ln ^{k}\left(\frac{\mu}{-\hat{s}-i 0}\right)
$$

Still need to specify a suitable

 mass scheme$$
\delta m=\frac{\alpha_{s}(\mu)}{\pi} \delta m_{1}(\mu)+\frac{\alpha_{s}^{2}(\mu)}{\pi^{2}} \delta m_{2}(\mu)+\ldots
$$

Mass Scheme should:

- be renormalon free (not $m^{\text {pole }}$)
- be a top-resonance mass scheme $\delta m \sim \alpha_{s} \Gamma_{t}$ (not $\overline{\mathrm{MS}}$)
- have a RGE in μ
$\delta m=m_{\text {pole }}-m$
3 possibilites for scheme with stable peak position:

$$
\begin{array}{ccc}
\text { "peak" a) } & \frac{d}{d \hat{s}} B\left(\hat{s}, \delta m^{\text {peak }}, \Gamma_{t}, \mu\right) & \left.\right|_{s=0}=0, \\
\text { "moment" b) } & \int_{-\infty}^{R} d \hat{s} \hat{s} B\left(\hat{s}, \delta m^{\operatorname{mom}}, \mu\right)=0, & R \sim \Gamma_{t} \\
\text { "position" c) } & \delta m_{J}=\left.\frac{-i}{2 \tilde{B}(y, \mu)} \frac{d}{d y} \tilde{B}(y, \mu)\right|_{y=-i e^{-\gamma E / R}}=\left.e^{\gamma \mathbb{E}} \frac{R}{2} \frac{d}{d \ln (i y)} \ln \tilde{B}(y, \mu)\right|_{i y^{\prime} e^{\gamma} E=1 / R} .
\end{array}
$$

Only c) has a consistent anomalous dimension equation.
"top jet mass scheme"
(two loop conversion to $\overline{\mathrm{MS}}$ is now known)

Position scheme is nice:

$$
\frac{d m_{J}(\mu)}{d \ln \mu}=-e^{\gamma_{E}} R \Gamma^{c}\left[\alpha_{s}(\mu)\right]
$$

anom.dim. is determined by cusp term, and therefore is known to 3 loops

Result is jet-function with resummation:

$$
\begin{aligned}
B\left(\hat{s}, \delta m_{J}, \Gamma_{t}, \mu_{\Lambda}, \mu_{\Gamma}\right) & \equiv \int d \hat{s}^{\prime} U_{B}\left(\hat{s}-\hat{s}^{\prime}, \mu_{\Lambda}, \mu_{\Gamma}\right) B\left(\hat{s}^{\prime}, \delta m_{J}, \Gamma_{t}, \mu_{\Gamma}\right) \\
& =\int d \hat{s}^{\prime} d \hat{s}^{\prime \prime} U_{B}\left(\hat{s}-\hat{s}^{\prime}, \mu_{\Lambda}, \mu_{\Gamma}\right) B(\underbrace{\left.\hat{s}^{\prime}-\hat{s}^{\prime \prime}, \delta m_{J}, \mu_{\Gamma}\right) \frac{\Gamma_{t}}{\pi\left(\hat{s}^{\prime \prime 2}+\Gamma_{t}^{2}\right)}} .
\end{aligned}
$$

convolute result from the previous page to sum logs and include width effects

Jet Function Results up to NNLL:
(3 curves vary μ_{Γ})

Soft Function

$$
S_{\mathrm{hemi}}\left(\ell^{+}, \ell^{-}, \mu\right)=\frac{1}{N_{c}} \sum_{X_{s}} \delta\left(\ell^{+}-k_{s}^{+a}\right) \delta\left(\ell^{-}-k_{s}^{-b}\right)\langle 0| \underbrace{\bar{Y}_{\bar{n}} Y_{n}}_{\text {soft Wilson lines }}(0)\left|X_{s}\right\rangle\left\langle X_{s}\right| \underbrace{Y_{n}^{\dagger} \bar{Y}_{\bar{n}}^{\dagger}}(0)|0\rangle
$$

b)
c)
d)

$$
S_{\mathrm{part}}\left(\ell^{+}, \ell^{-}, \mu\right)=\delta\left(\ell^{+}\right) \delta\left(\ell^{-}\right)+\delta\left(\ell^{+}\right) S_{\mathrm{part}}^{1}\left(\ell^{-}, \mu\right)+\delta\left(\ell^{-}\right) S_{\mathrm{part}}^{1}\left(\ell^{+}, \mu\right)
$$

$$
S_{\mathrm{part}}^{1}(\ell, \mu)=\frac{C_{F} \alpha_{s}(\mu)}{\pi}\left[\frac{\pi^{2}}{24} \delta(\ell)-2 \mathcal{L}^{1}(\ell)\right]
$$

$$
\mathcal{L}^{1}(\ell)=\frac{1}{\mu}\left[\frac{\theta(\ell) \ln (\ell / \mu)}{\ell / \mu}\right]_{+}
$$

$S\left(\ell^{+}, \ell^{-}, \mu\right)$

- Anomalous dimension determined by partonic calculation.

$$
\begin{aligned}
& \text { it has cusp } \\
& \text { anom.dim. } \quad \int_{-\infty}^{L} d \ell^{+} \int_{-\infty}^{L} d \ell^{-} S\left(\ell^{+}, \ell^{-}, \mu\right)=1+\frac{C_{F} \alpha_{s}(\mu)}{\pi}\left\{\frac{\pi^{2}}{12}-2 \ln ^{2}\left(\frac{L}{\mu}\right)\right\}+\ldots
\end{aligned}
$$

- Cross-section in the tail region has $\quad \ell^{ \pm} \sim \frac{\hat{s} m}{Q} \gg \Lambda_{\mathrm{QCD}} \quad$ and the soft function becomes perturbatively calculable
- In the peak region $\ell^{ \pm} \sim \Lambda_{\mathrm{QCD}} \rightarrow$ nonperturbative soft function
these features should be built into S

$$
S\left(\ell^{+}, \ell^{-}, \mu\right)=\int_{-\infty}^{+\infty} d \tilde{\ell}^{+} \int_{-\infty}^{+\infty} d \tilde{\ell}^{-} S_{\mathrm{part}} \underbrace{\left.\ell^{+}-\tilde{\ell}^{+}, \ell^{-}-\tilde{\ell}^{-}, \mu\right)} \underbrace{S_{\bmod }\left(\tilde{\ell}^{+}, \tilde{\ell}^{-}\right.})
$$

partonic soft function
calculated at fixed order
normalized model function (exponential fall off)

$$
\int_{-\infty}^{+\infty} d \ell^{+} d \ell^{-} S_{\bmod }\left(\ell^{+}, \ell^{-}\right)=1
$$

- Soft-function has a $(u=1 / 2)$ renormalon ambiguity implying that the partonic and model parts are sensitively tied together
- This is removed by introducing a minimum energy gap for the soft radiation

$$
\begin{aligned}
S\left(\ell^{+}, \ell^{-}, \mu\right) & =\int_{-\infty}^{+\infty} d \tilde{\ell}^{+} \int_{-\infty}^{+\infty} d \tilde{\ell}^{-} S_{\text {part }}\left(\ell^{+}-\tilde{\ell}^{+}, \ell^{-}-\tilde{\ell}^{-}, \mu\right) f_{\exp }\left(\tilde{\ell}^{+}-\Delta, \tilde{\ell}^{-}-\Delta\right) \\
& =\int_{-\infty}^{+\infty} d \tilde{\ell}^{+} \int_{-\infty}^{+\infty} d \tilde{\ell}^{-} S_{\text {part }}\left(\ell^{+}-\tilde{\ell}^{+}-\delta, \ell^{-}-\tilde{\ell}^{-}-\delta, \mu\right) f_{\exp }\left(\tilde{\ell}^{+}-\bar{\Delta}, \tilde{\ell}^{-}-\bar{\Delta}\right) \\
\Delta & =\bar{\Delta}+\delta=\bar{\Delta}+\left(\alpha_{s}+\alpha_{s}^{2}+\ldots\right) \quad \bar{\Delta}=\text { renormalon free }
\end{aligned}
$$

Analysis at NLL order

(Next-to-Leading-Order with resummation to all orders of next-to-leading logarithms)

Analysis to NLL order

- One-loop matching
- One-loop matrix element for B_{+}, and for the soft function:

$$
S\left(\ell^{+}, \ell^{-}, \mu\right)=\int_{-\infty}^{+\infty} d \tilde{\ell}^{+} \int_{-\infty}^{+\infty} d \tilde{\ell}^{-} S_{\text {part }}\left(\ell^{+}-\tilde{\ell}^{+}, \ell^{-}-\tilde{\ell}^{-}, \mu, \delta_{i}\right) S_{\bmod }\left(\tilde{\ell}^{+}, \tilde{\ell}^{-}\right)
$$

- Renormalon Free Schemes for top-mass and soft function parameters
- RGE evolution, sum large logs $\quad Q \gg m \gg \Gamma \sim \hat{s}_{t, \bar{t}}$ (Two-loop cusp anom.dims. \& One-loop non-cusp)
- Proper choice for the scales

NLL Cross-Section Results

normalized

$$
\frac{d^{2} \sigma}{d M_{t} d M_{\bar{t}}}=\frac{\sigma_{0}}{\Gamma_{t}^{2}} F\left(M_{t}, M_{\bar{t}}, m_{J}, \frac{Q}{m_{J}}\right)
$$

numerical

$$
F\left(M_{t}, M_{\bar{t}}, m_{J}, \frac{Q}{m_{J}}\right)=\int_{-\infty}^{\infty} d \ell^{+} d \ell^{-} \mathrm{P}\left(\hat{s}_{t}-\frac{Q \ell^{+}}{m_{J}}-\frac{Q \bar{\Delta}\left(\mu_{\Lambda}\right)}{m_{J}}, \hat{s}_{\bar{t}}-\frac{Q \ell^{-}}{m_{J}}-\frac{Q \bar{\Delta}\left(\mu_{\Lambda}\right)}{m_{J}}, \mu_{\Lambda}\right) S^{\bmod }\left(\ell^{+}, \ell^{-}, 0\right)
$$

perturbative part is analytic

$$
\begin{gathered}
\mathrm{P}\left(\hat{s}_{t}, \hat{s}_{t}, \mu_{\Lambda}\right)=4 M_{t} M_{\hat{t}} \Gamma_{t}^{2} H_{Q}\left(Q, \mu_{h}\right) U_{H_{Q}}\left(Q, \mu_{h}, \mu_{m}\right) H_{m}\left(m, \mu_{m}\right) U_{H_{m}}\left(\frac{Q}{m_{J}}, \mu_{m}, \mu_{\Lambda}\right) \\
\quad \times G_{+}\left(\hat{s}_{t}, \frac{Q}{m_{J}}, \Gamma_{t}, \mu_{\Lambda}\right) G_{-}\left(\hat{s}_{\bar{t}}, \frac{Q}{m_{J}}, \Gamma_{t}, \mu_{\Lambda}\right) . \\
G_{ \pm}\left(\hat{s}, \frac{Q}{m_{J}}, \Gamma_{t}, \mu_{\Lambda}\right) \equiv \int_{-\infty}^{+\infty} d \hat{s}^{\prime} d \hat{s}^{\prime \prime} d \ell^{\prime} U_{B}\left(\hat{s}-\hat{s}^{\prime}, \mu_{\Lambda}, \mu_{\Gamma}\right) \\
\quad \times B_{ \pm}^{\Gamma=0}\left(\hat{s}^{\prime}-\hat{s}^{\prime \prime}-\frac{Q}{m_{J}} \ell^{\prime}, \mu_{\Gamma}, \delta m\right) \tilde{S}_{\mathrm{part}}\left(\ell^{\prime}, \mu_{\Lambda}, \delta_{1}\right) \frac{\Gamma_{t}}{\pi\left(\hat{s}^{\prime \prime 2}+\Gamma_{t}^{2}\right)}
\end{gathered}
$$

NLL Cross-Section Results

$\sim 2 \mathrm{GeV}$ shift from the soft radiation

Perturbative corrections

$$
\mu_{Q}=430,860,1720 \mathrm{GeV}
$$

effect of removing

$$
\mu_{\Gamma}=3.3,5,7.5 \mathrm{GeV}
$$

$$
\mu_{\Lambda}=0.8,1.0,1.2 \mathrm{GeV}
$$

$$
\mu_{\Lambda}=0.8,1.0,1.2 \mathrm{GeV} \quad \text { with }
$$ $\mu_{\Gamma} / \mu_{\Lambda}=Q / m$

Normalized Cross-Section

$\mathrm{F}\left(M_{t}, M_{t}\right)$ versus M_{t}.

$$
\mu_{\Gamma}=3.3,5,7.5 \mathrm{GeV}
$$

Peak Positions vs. μ_{Γ}

Beyond the peak region

$\mathrm{F}\left(M_{t}, M_{t}\right)$

What (if anything) can be said about the Tevatron mass?

- Given that top decay is described by a Breit-Wigner, we know that the mass should be close to a pole mass (top-resonance mass scheme)

$$
\begin{gathered}
m_{\text {pole }}=m(R, \mu)+\delta m(R, \mu), \quad \delta m(R, \mu)=R \sum_{n=1}^{\infty} \sum_{k=0}^{n} a_{n k}\left[\frac{\alpha_{s}(\mu)}{4 \pi}\right]^{n} \ln ^{k}\left(\frac{\mu}{R}\right) \\
R \sim \Gamma
\end{gathered}
$$

- Recently we derived an RGE for R, which allows us to smoothly connect these schemes to $\overline{\mathrm{MS}}$ where $R=\bar{m}(\mu)$
Hoang, Jain, Scimemi, I.S. (arXiv:0803.42I4)
- We can estimate the scheme uncertainty of the Tevatron measurement by varying the initial $R=R_{0}=3_{-2}^{+6} \mathrm{GeV}$ (since any such mass is any equally good short distance scheme):

$$
m_{t}\left(R_{0}\right)=172.6 \pm 1.4 \mathrm{GeV}
$$

$$
\bar{m}_{t}\left(\bar{m}_{t}\right)=163.0 \pm 1 . \mathbf{H}_{0.0 .5}^{ \pm 0.5} \pm 0.05 \mathrm{GeV}
$$

$$
R_{0}=3_{-2}^{+6} \mathrm{GeV}
$$

conversion
uncertainty is small
(3 loop with RGE)

Summary \& Outlook

Top Jets

- Discussed a factorization theorem for invariant mass distributions for massive unstable particles: $\quad e^{+} e^{-} \rightarrow t \bar{t}$ separation of perturbative and non-perturbative effects for ILC
- Systematic relation of peak to a Lagrangian mass parameter: What mass is measured? "Jet mass"
- Effective Field Theory: can be extended to higher orders in the power and perturbative expansions

Future:

- Reexamine LEP massless jet data for high precision soft function
- Extension to large pT events for LHC

