Towards the completion of the NNLO program for $\bar{B} \rightarrow X_{s} \gamma: m_{c}$-dependent matrix elements

Radja Boughezal
University of Würzburg, Germany

Buffalo May 2008

Collaborators:
M. Czakon and T. Schutzmeier

Motivations

- $\bar{B} \rightarrow X_{s} \gamma$ most precise short-distance information currently available for $\Delta B=1$ FCNC

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\exp }=(3.55 \pm 0.26) \times 10^{-4}
$$

Motivations

- $\bar{B} \rightarrow X_{s} \gamma$ most precise short-distance information currently available for $\Delta B=1$ FCNC

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E \gamma}^{\exp }>1.6 \mathrm{GeV}=(3.55 \pm 0.26) \times 10^{-4}
$$

- less sensitive to non-perturbative effects
 dominant ones: $\mathcal{O}\left(\Lambda^{2} / m_{b}^{2}\right), \mathcal{O}\left(\Lambda^{2} / m_{c}^{2}\right), \mathcal{O}\left(\alpha_{s} \Lambda / m_{b}\right)$

$$
\begin{aligned}
\Longrightarrow \Gamma\left(\bar{B} \rightarrow X_{s} \gamma\right) & \approx \Gamma\left(b \rightarrow X_{s}^{\text {parton }} \gamma\right) \\
& =\Gamma(b \rightarrow s \gamma)+\Gamma(b \rightarrow s \gamma g)+\ldots
\end{aligned}
$$

Motivations

- $\bar{B} \rightarrow X_{s} \gamma$ most precise short-distance information currently available for $\Delta B=1$ FCNC

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\exp }=(3.55 \pm 0.26) \times 10^{-4}
$$

- less sensitive to non-perturbative effects
 dominant ones: $\mathcal{O}\left(\Lambda^{2} / m_{b}^{2}\right), \mathcal{O}\left(\Lambda^{2} / m_{c}^{2}\right), \mathcal{O}\left(\alpha_{s} \Lambda / m_{b}\right)$

$$
\begin{aligned}
\Longrightarrow \Gamma\left(\bar{B} \rightarrow X_{s} \gamma\right) & \approx \Gamma\left(b \rightarrow X_{s}^{\text {parton }} \gamma\right) \\
& =\Gamma(b \rightarrow s \gamma)+\Gamma(b \rightarrow s \gamma g)+\ldots
\end{aligned}
$$

- loop induced in SM and highly sensitive to new physics which is not suppressed by factors of α as compared to SM contributions

Motivations

- Theoretical error vs. experimental one:
- $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\mathrm{th}, \mathrm{NLO}}=(3.57 \pm 0.30) \times 10^{-4}$ [Misiak et al 2001,Buras et al 2002]
- $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)^{\exp }=(3.55 \pm 0.26) \times 10^{-4}$ [HFAG 2006]

Super-B factory: 5% uncertainty possible (more statistics, lower E_{γ})

$m_{c} / m_{b}=0.22 \pm 0.04(\overline{M S})$
$m_{c} / m_{b}=0.29 \pm 0.04$ (pole)

Motivations

- Theoretical error vs. experimental one:
- $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\mathrm{th}, \mathrm{NLO}}=(3.57 \pm 0.30) \times 10^{-4}$ [Misiak et al 2001,Buras et al 2002]
- $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)^{\exp }=(3.55 \pm 0.26) \times 10^{-4}$ [HFAG 2006]

Super-B factory: 5% uncertainty possible (more statistics, lower E_{γ})

$m_{c} / m_{b}=0.22 \pm 0.04(\overline{\mathrm{MS}})$$m_{c} / m_{b}=0.29 \pm 0.04$ (pole)
\Longrightarrow strong constraints on new physics require better theoretical precision

Motivations

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\exp }=(3.55 \pm 0.26) \times 10^{-4}
$$

- Contributions to the theory prediction

$$
\begin{aligned}
& \mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}=\mathcal{B}\left(\bar{B} \rightarrow X_{c} e \bar{\nu}\right)_{\exp }\left[\frac{\Gamma(b \rightarrow s \gamma)}{\Gamma(b \rightarrow c e \bar{\nu})}\right]_{\mathrm{LO} \mathrm{EW}} f\left(\frac{\alpha_{s}\left(M_{W}\right)}{\alpha_{s}\left(m_{b}\right)}\right) \times \\
& \times\left\{1+\underset{\mathrm{NLO}}{\mathcal{O}\left(\alpha_{s}\right)}+\underset{\mathrm{NNLO}}{\mathcal{O}\left(\alpha_{s}^{2}\right)}+\mathcal{O}\left(\alpha_{\mathrm{em}}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{m_{b}^{2}}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{m_{c}^{2}}\right)+\mathcal{O}\left(\frac{\Lambda}{m_{b}} \alpha_{s}\right)\right\} \\
& \sim 25 \% \sim 7 \% \quad \sim 4 \% \quad \sim 1 \% \quad \sim 3 \% \quad<\sim 5 \% \\
& \text { perturbative corrections } \\
& \text { non-perturbative corrections }
\end{aligned}
$$

Motivations

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\exp }=(3.55 \pm 0.26) \times 10^{-4}
$$

- Contributions to the theory prediction

$$
\begin{aligned}
& \mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E \gamma>1.6 \mathrm{GeV}}=\mathcal{B}\left(\bar{B} \rightarrow X_{c} e \bar{\nu}\right)_{\exp }\left[\frac{\Gamma(b \rightarrow s \gamma)}{\Gamma(b \rightarrow c e \bar{\nu})}\right]_{\mathrm{LO} \text { EW }} f\left(\frac{\alpha_{s}\left(M_{W}\right)}{\alpha_{s}\left(m_{b}\right)}\right) \times \\
& \times\left\{1+\underset{\text { NLO }}{\mathcal{O}\left(\alpha_{s}\right)}+\underset{\mathrm{NNLO}}{\mathcal{O}\left(\alpha_{s}^{2}\right)}+\mathcal{O}\left(\alpha_{\mathrm{em}}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{m_{b}^{2}}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{m_{c}^{2}}\right)+\mathcal{O}\left(\frac{\Lambda}{m_{b}} \alpha_{s}\right)\right\} \\
& \sim 25 \% \quad \sim 7 \% \quad \sim 4 \% \quad \sim 1 \% \quad \sim 3 \% \quad<\sim 5 \% \\
& \text { perturbative corrections } \\
& \text { non-perturbative corrections }
\end{aligned}
$$

expected NNLO corrections to $\mathcal{B}(\sim 7 \%)$ are of the same size as the experimental error

Motivations

- Charm quark mass definition ambiguity
- dependence of $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)^{\text {theo }}$
on m_{c} enters through the $\langle s \gamma| O_{1,2}|b\rangle$ which start contributing at $\mathcal{O}\left(\alpha_{s}\right)$
- $m_{c}^{\text {pole }} / m_{b}^{\text {pole }}=0.29 \pm 0.02$

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)^{\text {theo }}=(3.32 \pm 0.30) \times 10^{-4}
$$

- $\bar{m}_{c}\left(m_{b} / 2\right) / m_{b}^{\text {pole }}=0.22 \pm 0.04$

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)^{\text {theo }}=(3.70 \pm 0.30) \times 10^{-4}
$$

Motivations

- Charm quark mass definition ambiguity
- dependence of $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)^{\text {theo }}$
on m_{c} enters through the $\langle s \gamma| O_{1,2}|b\rangle$
which start contributing at $\mathcal{O}\left(\alpha_{s}\right)$
- $m_{c}^{\text {pole }} / m_{b}^{\text {pole }}=0.29 \pm 0.02$

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)^{\text {theo }}=(3.32 \pm 0.30) \times 10^{-4}
$$

- $\bar{m}_{c}\left(m_{b} / 2\right) / m_{b}^{\text {pole }}=0.22 \pm 0.04$

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)^{\text {theo }}=(3.70 \pm 0.30) \times 10^{-4}
$$

- difference between using $\bar{m}_{c}(\mu)$ and $m_{c}^{\text {pole }}$ is a NNLO effect in the branching ratio
\Longrightarrow resolving the ambiguity requires going to the NNLO level

Theoretical framework

- diagrams involve scales with large hierarchy
$M_{W}, M_{t} \gg m_{b} \gg m_{s} \Longrightarrow$ large $\log \left(\frac{M_{W}^{2}}{m_{b}^{2}}\right)$
\longrightarrow resummation of $\alpha_{s} \log \left(\frac{M_{W}^{2}}{m_{b}^{2}}\right)$ is necessary using RG techniques

- start by introducing an effective theory without the heavy fields

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{QCD} \times \mathrm{QED}}(u, d, s, c, b)+\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i} C_{i}(\mu) O_{i}(\mu)
$$

Theoretical framework

- diagrams involve scales with large hierarchy
$M_{W}, M_{t} \gg m_{b} \gg m_{s} \Longrightarrow$ large $\log \left(\frac{M_{W}^{2}}{m_{b}^{2}}\right)$
\longrightarrow resummation of $\alpha_{s} \log \left(\frac{M_{W}^{2}}{m_{b}^{2}}\right)$ is necessary using $R G$ techniques

- start by introducing an effective theory without the heavy fields

$$
\begin{aligned}
& \mathcal{L}_{\text {eff }}=\mathcal{L}_{\mathrm{QCD} \times \mathrm{QED}}(u, d, s, c, b)+\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i} C_{i}(\mu) O_{i}(\mu) \\
& O_{1,2}=\stackrel{\begin{array}{c}
c \\
\mathrm{~b} \\
\mathrm{~s}
\end{array}}{ }=\left(\bar{s} \Gamma_{i} c\right)\left(\bar{c} \Gamma_{i}^{\prime} b\right), \quad \text { from } \xrightarrow{\text { c. }} \mathrm{W} . \begin{array}{l}
\mathrm{c} \\
\mathrm{~s}
\end{array}, \quad\left|C_{i}\left(m_{b}\right)\right| \sim 1 \\
& O_{3,4,5,6}=\stackrel{\substack{\mathrm{q} \\
\mathrm{~b}}}{\mathrm{q}} \underset{\mathrm{~s}}{\mathrm{q}} \quad=\left(\bar{s} \Gamma_{i} b\right) \sum_{q}\left(\bar{q} \Gamma_{i}^{\prime} q\right), \quad\left|C_{i}\left(m_{b}\right)\right|<0.07 \\
& \begin{array}{lll}
O_{7}=\frac{\mathrm{b}\left\{_{\mathrm{s}}^{\{ }\right.}{\sum_{\mathrm{g}}}=\frac{e m_{b}}{16 \pi^{2}} \bar{s}_{L} \sigma^{\mu \nu} b_{R} F_{\mu \nu}, & C_{7}\left(m_{b}\right) \simeq-0.3 \\
O_{8}=\mathrm{b}^{\mathrm{b}} \mathrm{~s} & \frac{g m_{b}}{16 \pi^{2}} \bar{s}_{L} \sigma^{\mu \nu} T^{a} b_{R} G_{\mu \nu}^{a}, & C_{8}\left(m_{b}\right) \simeq-0.15
\end{array}
\end{aligned}
$$

Theoretical framework

Calculation done in three steps:

- Matching find the Wilson coefficients $C_{i}(\mu)$ by comparing the full and the effective theory at the mass scale $\mu \approx M_{W}$ \Rightarrow no large logarithms and only vacuum diagrams
- Mixing compute the anomalous dimensions of the operators and solve the renormalization group equations to go down with the Wilson coefficients to $\mu \approx m_{b}$

$$
\frac{d}{d \mu} C_{j}(\mu)=C_{i}(\mu) \gamma_{i j}(\mu)
$$

- Matrix elements calculate the matrix elements of all the operators at $\mu \approx m_{b} \Rightarrow$ no large logarithms as no heavy masses are present

Current state of the art for NNLO corrections

1. Matching

- 2-loop matching for $\left(O_{1}, \ldots, O_{6}\right)$
- 3-loop matching for O_{7} and O_{8}
[Misiak,Steinhauser 04]

2. Mixing

- 3-loop: $\left(O_{1}, \ldots, O_{6}\right)$ and $\left(O_{7}, O_{8}\right)$ sectors
- 4-loop $\left(O_{1}, \ldots, O_{6}\right) \longrightarrow\left(O_{7}, O_{8}\right)$

Current state of the art for NNLO corrections

1. Matching

- 2-loop matching for $\left(O_{1}, \ldots, O_{6}\right)$

[Bobeth,Misiak,Urban 00]

- 3-loop matching for O_{7} and O_{8}
[Misiak,Steinhauser 04]

2. Mixing

- 3-loop: $\left(O_{1}, \ldots, O_{6}\right)$ and $\left(O_{7}, O_{8}\right)$ sectors
- 4-loop $\left(O_{1}, \ldots, O_{6}\right) \longrightarrow\left(O_{7}, O_{8}\right)$
[Gorbahn,Haisch 05]
[Gorbahn,Haisch,Misiak 05]
[Czakon,Haisch,Misiak 06]

3. Matrix elements

- $O_{1}, O_{2}, O_{7}, O_{8}$ large β_{0}
- O_{7}
- O_{7}, photon spectrum
- O_{1}, O_{2} leading term for $m_{c} \gg m_{b}$
[Bieri,Greub,Steinhauser 03]
[Blokland,Czarnecki,Misiak,Slusarczyk,Tkachov 05]
[Asatrian, Hovhannisyan, Poghosyan, Ewerth, Greub, Hurth 06]
[Melnikov,Mitov 05] [Asatrian,Ewerth,Ferroglia,Gambino,Greub 06]
[Misiak,Steinhauser 06]

The NNLO estimated Branching Ratio

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\text {theo }}=(3.15 \pm 0.23) \times 10^{-4}
$$

[Misiak et al 06] [Misiak,Steinhauser 06]

- Decomposition of Uncertainty
- non-perturbative
- parametric
5%
$\mathcal{O}\left(\alpha_{s} \Lambda / m_{b}\right)$
3%
$\alpha_{s}\left(M_{Z}\right), \mathcal{B}_{S L}^{e x p}, m_{c} \ldots$
- m_{c} interpolation
- higher order
$3 \% \quad$ ($O_{1,2}$ matrix elements)
$3 \% \quad\left(\mu_{b}, \mu_{c}, \mu_{0}\right.$ dependence)

The NNLO estimated Branching Ratio

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\text {theo }}=(3.15 \pm 0.23) \times 10^{-4}
$$

[Misiak et al 06] [Misiak,Steinhauser 06]

- Decomposition of Uncertainty
- non-perturbative
5%
$\mathcal{O}\left(\alpha_{s} \Lambda / m_{b}\right)$
- parametric
3%
$\alpha_{s}\left(M_{Z}\right), \mathcal{B}_{S L}^{e x p}, m_{c} \ldots$
- m_{c} interpolation
$3 \% \quad\left(O_{1,2}\right.$ matrix elements)
- higher order
$3 \% \quad\left(\mu_{b}, \mu_{c}, \mu_{0}\right.$ dependence)

- source of the interpolation uncertainty is the missing $\mathcal{O}\left(\alpha_{s}^{2}\right)$ correction to $\langle s \gamma| O_{1,2}|b\rangle$

More about the interpolation uncertainty

- $\mathcal{O}\left(\boldsymbol{\alpha}_{s}^{2}\right)$ perturbative contribution to $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right): \quad P_{2}^{(2)}=\sum_{i, j=1}^{8} C_{i}^{(0)} C_{j}^{(0)}\left(n_{f} A_{i j}+B_{i j}\right)$
- using large β_{0} approx.

$$
P_{2}^{(2)}=\sum_{i, j=1}^{8} C_{i}^{(0)} C_{j}^{(0)}\left(\frac{-3}{2} \beta_{0} A_{i j}+B_{i j}^{\prime}\right)=P_{2}^{(2), \beta_{0}}+P_{2}^{(2), \text { rem }}
$$

- $P_{2}^{(2), \beta_{0}}$ known for $\langle s \gamma| O_{1,2,7,8}|b\rangle$
- expansions in limits $m_{c} / m_{b} \rightarrow 0$ and $m_{c} \gg m_{b}$ match nicely for $\operatorname{Re}\langle s \gamma| O_{2}|b\rangle^{\beta_{0}}$
- good approximation already for $n=0$
- no large $c \bar{c}$ threshold effects at $m_{c}=m_{b} / 2$
- calculate the leading term of large m_{c} expansion for $P_{2}^{(2), \text { rem }}$ and interpolate to physical m_{c}
- making assumptions for $P_{2}^{(2), \text { rem }}$ at $m_{c}=0$ is the source of the interpolation uncertainty

Reducing the overall uncertainty of $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\mathrm{th}+, \mathrm{NNLO}}$

- removing the interpolation uncertainty
\Longrightarrow need a complete calculation of $\langle s \gamma| O_{1,2}|b\rangle$ at $m_{c} \neq 0$

\longrightarrow working on the virtual part [R. B, Czakon, Schutzmeier]

Reducing the overall uncertainty of $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\mathrm{th}+, \mathrm{NNLO}}$

- removing the interpolation uncertainty
\Longrightarrow need a complete calculation of $\langle s \gamma| O_{1,2}|b\rangle$ at $m_{c} \neq 0$

\longrightarrow working on the virtual part [R. B, Czakon, Schutzmeier]

- reducing the interpolation uncertainty
\Longrightarrow need a complete calculation of $\langle s \gamma| O_{1,2}|\boldsymbol{b}\rangle$ at $m_{c}=0$

$$
\text { in progress } \quad[\text { R. B, Czakon, Schutzmeier }]
$$

Removing the interpolation uncertainty: virtual part

- approx. 400 3-loop on-shell vertex diagrams with two scales $m_{b} \& m_{c}$
- around 500 masters are involved in the bare amplitude
- symbolic reduction down to masters is not yet complete for the full 3-loop vertex
- $\mathcal{O}\left(\alpha_{s}^{2} n_{f}\right)$ correction to $\langle s \gamma| O_{1,2}|b\rangle$:

Removing the interpolation uncertainty: virtual part

- approx. 400 3-loop on-shell vertex diagrams with two scales $m_{b} \& m_{c}$
- around 500 masters are involved in the bare amplitude
- symbolic reduction down to masters is not yet complete for the full 3-loop vertex
- $\mathcal{O}\left(\alpha_{s}^{2} n_{f}\right)$ correction to $\langle s \gamma| O_{1,2}|b\rangle$:

- masters were calculated with Mellin Barnes
- first way: a numerical integration of the MB representations is performed for specific values
of z using the MB package
[MB:Czakon 05] ,
[MBrepresentation : Chachamis, Czakon 06]
- second way:
- perform an expansion in $z=m_{c}^{2} / m_{b}^{2}$ by closing contours
- coefficients of the expansion are given by at most a 1-dimensional MB integral expressed as a sum over residues
- sum these infinite series using XSummer

Removing the interpolation uncertainty: virtual part

- approx. 400 3-loop on-shell vertex diagrams with two scales m_{b} \& m_{c}
- around 500 masters are involved in the bare amplitude
- symbolic reduction down to masters is not yet complete for the full 3-loop vertex
- $\mathcal{O}\left(\alpha_{s}^{2} n_{f}\right)$ correction to $\langle s \gamma| O_{1,2}|b\rangle$:

- masters were calculated with Mellin Barnes
- first way: a numerical integration of the MB representations is performed for specific values of z using the MB package
[MB: Czakon 05] ,
[MBrepresentation: Chachamis, Czakon 06]
- second way:
- perform an expansion in $z=m_{c}^{2} / m_{b}^{2}$ by closing contours
- coefficients of the expansion are given by at most a 1-dimensional MB integral expressed as a sum over residues
- sum these infinite series using XSummer
- MB alone was not enough to calculate all the masters due to poor convergence
- use differential equations solved numerically
- boundaries were obtained using diagrammatic large mass expansion for $m_{c} \gg m_{b}$ \longrightarrow more about this method later

$\langle s \gamma| O_{2}|b\rangle \mathcal{O}\left(\alpha_{s}^{2} n_{f}\right)$

- Results for the massive fermionic contributions:

- massless approximation overestimates the massive b result and has the opposite sign !

- less pronounced differences for the c-quark \longrightarrow moderate negative corrections wrt. massless approximation

$\langle s \gamma| O_{2}|b\rangle_{\mathcal{O}\left(\alpha_{s}^{2} n_{f}\right)}$

- Results for the massive fermionic contributions:

- massless approximation overestimates the massive b result and has the opposite sign !

- less pronounced differences for the c-quark
\longrightarrow moderate negative corrections wrt. massless approximation
numerical impact of the mass corrections on $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)=+1.1 \%$ for $\mu_{b}=2.5 \mathrm{GeV}$

Reducing the interpolation uncertainty

- calculating $\mathcal{O}\left(\boldsymbol{\alpha}_{s}^{2}\right)$ correction to $\langle s \gamma| O_{1,2}|b\rangle$ at $m_{c}=0$ helps significantly in reducing the interpolation uncertainty

up to 4-particle cuts: $\gamma s, \gamma s g, \gamma s g g, \gamma s q \bar{q}$

Reducing the interpolation uncertainty

- calculating $\mathcal{O}\left(\boldsymbol{\alpha}_{s}^{2}\right)$ correction to $\langle s \gamma| O_{1,2}|b\rangle$ at $m_{c}=0$ helps significantly in reducing the interpolation uncertainty

up to 4-particle cuts: $\gamma s, \gamma s g, \gamma s g g, \gamma s q \bar{q}$
- 506 diagrams expressed through 42093 integrals
- if we do not distinguish between masters that differ only in their imaginary part:
~ 200 masters have to be calculated
BUT HOW ?

Reducing the interpolation uncertainty

- calculating $\mathcal{O}\left(\boldsymbol{\alpha}_{s}^{\mathbf{2}}\right)$ correction to $\langle s \gamma| O_{1,2}|b\rangle$ at $m_{c}=0$ helps significantly in reducing the interpolation uncertainty

up to 4-particle cuts: $\gamma s, \gamma s g, \gamma s g g, \gamma s q \bar{q}$
- 506 diagrams expressed through 42093 integrals
- if we do not distinguish between masters that differ only in their imaginary part:
~ 200 masters have to be calculated BUT HOW ?
- sectors: high precision results vs. running time . . .
- differential equations for $p_{b}^{2} \neq m_{b}^{2}$: needs boundaries ...
- Mellin Barnes: do we know how to use it for integrals with unitarity cuts ? dimension of the representations for 4 -loop cut self energy integrals with up to 4 internal massive lines is an issue

Reducing the interpolation uncertainty

- calculating $\mathcal{O}\left(\boldsymbol{\alpha}_{s}^{\mathbf{2}}\right)$ correction to $\langle s \gamma| O_{1,2}|b\rangle$ at $m_{c}=0$ helps significantly in reducing the interpolation uncertainty

up to 4-particle cuts: $\gamma s, \gamma s g, \gamma s g g, \gamma s q \bar{q}$
- 506 diagrams expressed through 42093 integrals
- if we do not distinguish between masters that differ only in their imaginary part:
~ 200 masters have to be calculated
BUT HOW ?
- sectors: high precision results vs. running time . . .
- differential equations for $p_{b}^{2} \neq m_{b}^{2}$: needs boundaries ...
- Mellin Barnes: do we know how to use it for integrals with unitarity cuts ? dimension of the representations for 4-loop cut self energy integrals with up to 4 internal massive lines is an issue
so what is the way out?

Combining methods

Merging methods is the way to go, but a long chain of steps:

$$
x=p_{b}^{2} / m_{b}^{2}
$$

Boundaries for DEQs: 2- and 3-particle cuts

idea

- derive a MB representation for loops on the left and the right of the cut
- integrate over the phase space analytically
- perform an analytic continuation in ε for $\varepsilon \rightarrow 0$
- expand in $x=p_{b}^{2} / m_{b}^{2}$ where $p_{b}^{2} \ll m_{b}^{2}$ by closing contours in the multi-fold MB integrals
- use Barnes Lemmas to remove some integrations if possible
- for multi-folds MB integrals (up to 3) integrate numerically \longrightarrow up to 16 digits for 3-folds integrals useful packages:
[MBasymptotics.m \& quadprec.m, M.Czakon]
a simple example

- MB representation for this integral:

$$
\begin{aligned}
& \left\{-\left(\left(E^{\wedge}((-I) \star P i-I * P i * z 1) \star\right.\right.\right. \\
& s 12^{\wedge}(-1-2 \star e p-z 1) \star \operatorname{Gamma}[1-e p]^{\wedge} 3 * \\
& \text { Gamma }[\mathrm{ep}] \star \text { Gamma }[-e p-z 1]^{\wedge} 2 \star \\
& \text { Gamma }[-z 1] \star \\
& \text { Gamma }[1+e p+z 1]) /(\text { Gamma }[2-2 \star e p] \star \\
& \text { Gamma }[1-2 \star e p-z 1] * G a m m a[1-e p-z 1]))\}
\end{aligned}
$$

- after phase space integration, analytic continuation to $\varepsilon \rightarrow 0$ and ε expansion:

```
{MBint[((-2*I) *Pi*Gamma[-z1]^4*
    Gamma[1+z1])/(E^(I*Pi*z1)*ep*x^z1*
    Gamma[1-z1]^2*Gamma[2-z1]),
{{ep -> 0},{z1 -> -1/2}}]}
```

- after closing contour: $i \pi x / \varepsilon+\mathcal{O}(1)$

DEQs: expansions and numerical integration

- calculate the off-shell master integrals with the help of numerical differential eqts [Caffo, Czyz, Remiddi 98]
- Our masters V_{i} are functions of ϵ and $x=p_{b}^{2} / m_{b}^{2}$
\Longrightarrow a system of differential eqts in x can be derived:

$$
\frac{d}{d x} V_{i}(x, \epsilon)=A_{i j}(x, \epsilon) V_{j}(x, \epsilon)
$$

- expand the masters in ϵ and x for $\epsilon, x \rightarrow 0$ using the ansatz:

$$
V_{i}(x, \epsilon)=\sum_{n m k} c_{i n m k}^{0} \epsilon^{n} x^{m} \log ^{k} x
$$

- solve recursively for $c_{i n m k}^{0}$ up to higher powers in x
- use the boundary conditions to fix the left over constants \rightarrow Mellin Barnes for 2- and 3-Pcuts,
\rightarrow diagrammatic large m_{b} expansion $\left(p_{b}^{2} \ll m_{b}^{2}\right)$ for 2-Pcuts
obtained high precision results for $x \approx 0$
- use them as starting point for numerical integration in the complex plane to $x \approx 1 \rightarrow$ ZVODE, Hindmarsh et al

DEQs: expansions and numerical integration

- calculate the off-shell master integrals with the help of numerical differential eqts [Caffo, Czyz, Remiddi 98]
- expand the masters in ϵ and x for $\epsilon, x \rightarrow 0$ using the ansatz:

$$
V_{i}(x, \epsilon)=\sum_{n m k} c_{i n m k}^{0} \epsilon^{n} x^{m} \log ^{k} x
$$

- solve recursively for $c_{i n m k}^{0}$ up to higher powers in x
- use the boundary conditions to fix the left over constants
\rightarrow Mellin Barnes for 2- and 3-Pcuts,
\rightarrow diagrammatic large m_{b} expansion $\left(p_{b}^{2} \ll m_{b}^{2}\right)$ for 2-Pcuts
obtained high precision results for $x \approx 0$
- use them as starting point for numerical integration in the complex plane to $x \approx 1 \rightarrow$ ZVODE, Hindmarsh et al

- perform an other power logarithmic expansion for $x \approx 1$
and solve recursively for $c_{i n m k}^{1}$

$$
V_{i}(x, \epsilon)=\sum_{n m k} c_{i n m k}^{1} \epsilon^{n}(1-x)^{m} \log ^{k}(1-x)
$$

- match with the results of ZVODE to fix left over $c_{i n m k}^{1}$

$$
\text { result for } x=1 \text { is the leading term }
$$

Some Results for 2- and 3-particle cuts

Preliminary results: sample masters with 2-and 3-particle cuts

Im

- Expansions:
- $x \rightarrow 0$: up to x^{18}
- $x \rightarrow 1$: up to $(1-x)^{12}$

$$
x=p_{b}^{2} / m_{b}^{2}
$$

Re

$$
x=p_{b}^{2} / m_{b}^{2}
$$

- Numerical integration: starts at $x_{0}=0.02$
- Matching: done at $x_{1}=0.9$

Some Results for 2- and 3-particle cuts

- Preliminary results at $x=1$: sample masters with 2- and 3-particle cuts

$$
\begin{aligned}
& =\frac{3.10453 i}{\varepsilon}+\mathcal{O}(1) \\
& =\frac{3.14159 i}{\varepsilon^{3}}+\frac{20.0142 i}{\varepsilon^{2}}+\frac{77.1378 i}{\varepsilon}+209.713 i+\mathcal{O}(\varepsilon) \\
& =\frac{-2.0944 i}{\varepsilon^{3}}-\frac{12.5778 i}{\varepsilon^{2}}-\frac{35.6402 i}{\varepsilon}-125.153 i+\mathcal{O}(\varepsilon) \\
& =\frac{-2.0944 i}{\varepsilon^{3}}-\frac{4.91208 i}{\varepsilon^{2}}-\frac{30.5699 i}{\varepsilon}-40.7068 i+\mathcal{O}(\varepsilon)
\end{aligned}
$$

Some Results for 2- and 3-particle cuts

- Preliminary results at $x=1$: sample masters with 2- and 3-particle cuts

$$
\begin{aligned}
& =\frac{3.10453 i}{\varepsilon}+\mathcal{O}(1) \\
& =\frac{3.14159 i}{\varepsilon^{3}}+\frac{20.0142 i}{\varepsilon^{2}}+\frac{77.1378 i}{\varepsilon}+209.713 i+\mathcal{O}(\varepsilon) \\
& =\frac{-2.0944 i}{\varepsilon^{3}}-\frac{12.5778 i}{\varepsilon^{2}}-\frac{35.6402 i}{\varepsilon}-125.153 i+\mathcal{O}(\varepsilon) \\
& =\frac{-2.0944 i}{\varepsilon^{3}}-\frac{4.91208 i}{\varepsilon^{2}}-\frac{30.5699 i}{\varepsilon}-40.7068 i+\mathcal{O}(\varepsilon)
\end{aligned}
$$

masters with 2-particle cuts are obtained with two independent calculations \rightarrow cross checks will be done soon

Some Results for 2- and 3-particle cuts

- Preliminary results at $x=1$: sample masters with 2- and 3-particle cuts

$$
\begin{aligned}
& =\frac{3.10453 i}{\varepsilon}+\mathcal{O}(1) \\
& =\frac{3.14159 i}{\varepsilon^{3}}+\frac{20.0142 i}{\varepsilon^{2}}+\frac{77.1378 i}{\varepsilon}+209.713 i+\mathcal{O}(\varepsilon) \\
& =\frac{-2.0944 i}{\varepsilon^{3}}-\frac{12.5778 i}{\varepsilon^{2}}-\frac{35.6402 i}{\varepsilon}-125.153 i+\mathcal{O}(\varepsilon) \\
& =\frac{-2.0944 i}{\varepsilon^{3}}-\frac{4.91208 i}{\varepsilon^{2}}-\frac{30.5699 i}{\varepsilon}-40.7068 i+\mathcal{O}(\varepsilon)
\end{aligned}
$$

masters with 2-particle cuts are obtained with two independent calculations \rightarrow cross checks will be done soon

- what we have:
- masters with massless internal lines:
all 2- and 3-particle cuts all 4-particle cuts but one
- masters with b-quark internal lines: 2- and 3-particle cuts are almost there
- still to be calculated: masters with 4-particle cuts and internal b-lines

Summary

- Matching current and future experimental precision for $\overline{\boldsymbol{B}} \rightarrow \boldsymbol{X}_{s} \gamma$ decay necessitates NNLO corrections on the theory side crucial missing piece: $O\left(\alpha_{s}^{2}\right)$ correction to $\langle s \gamma| O_{1,2}|b\rangle$
- Reducing the interpolation uncertainty: needs $O\left(\alpha_{s}^{2}\right)$ correction to $\langle s \gamma| O_{1,2}|b\rangle$ at $m_{c}=0$ $\rightarrow 70 \%$ of the project is completed
- Removing the interpolation uncertainty: needs $O\left(\alpha_{s}^{2}\right)$ correction to $\langle s \gamma| O_{1,2}|b\rangle$ at physical m_{c}
\longrightarrow completed the fermionic contribution
\rightarrow massless case: calculated in two ways and confirmed the findings of [Bieri, Greub, Steinhauser 03]
\rightarrow massive case: impact on the branching ratio $+1.1 \%$ for $\mu_{b}=2.5 \mathrm{GeV}$
\longrightarrow bosonic contribution: work in progress

