Towards the completion of the NNLO program for $\overline{B} \to X_s \gamma$: m_c -dependent matrix elements

Radja Boughezal

University of Würzburg, Germany

Buffalo May 2008

Collaborators: M. Czakon and T. Schutzmeier

• $\bar{B} \rightarrow X_s \gamma$ most precise short-distance information currently available for $\Delta B = 1$ FCNC

 $\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \,\text{GeV}}^{\text{exp}} = (3.55 \pm 0.26) \times 10^{-4} \quad \text{[HFAG2006]}$

• $\bar{B} \rightarrow X_s \gamma$ most precise short-distance information currently available for $\Delta B = 1$ FCNC

 $\mathcal{B}(\bar{B} \to X_s \gamma)^{\exp}_{E_{\gamma} > 1.6 \text{ GeV}} = (3.55 \pm 0.26) \times 10^{-4}$ [HFAG2006]

• less sensitive to non-perturbative effects dominant ones: $\mathcal{O}(\Lambda^2/m_b^2)$, $\mathcal{O}(\Lambda^2/m_c^2)$, $\mathcal{O}(\alpha_s \Lambda/m_b)$

$$\implies \Gamma(\bar{B} \to X_s \gamma) \approx \Gamma(b \to X_s^{parton} \gamma)$$
$$= \Gamma(b \to s\gamma) + \Gamma(b \to s\gamma g) + \dots$$

• $\bar{B} \rightarrow X_s \gamma$ most precise short-distance information currently available for $\Delta B = 1$ FCNC

 $\mathcal{B}(\bar{B} \to X_s \gamma)^{\exp}_{E_{\gamma} > 1.6 \text{ GeV}} = (3.55 \pm 0.26) \times 10^{-4}$ [HFAG2006]

• less sensitive to non-perturbative effects dominant ones: $\mathcal{O}(\Lambda^2/m_b^2)$, $\mathcal{O}(\Lambda^2/m_c^2)$, $\mathcal{O}(\alpha_s \Lambda/m_b)$

$$\implies \Gamma(\bar{B} \to X_s \gamma) \approx \Gamma(b \to X_s^{parton} \gamma)$$
$$= \Gamma(b \to s\gamma) + \Gamma(b \to s\gamma g) + \dots$$

• loop induced in SM and highly sensitive to new physics which is not suppressed by factors of α as compared to SM contributions

Theoretical error vs. experimental one:

- $\mathcal{B}(\bar{B} \to X_s \gamma)^{\mathrm{th,NLO}}_{E_{\gamma} > 1.6 \mathrm{GeV}} = (3.57 \pm 0.30) \times 10^{-4}$ [Misiak et al 2001,Buras et al 2002]
- $\mathcal{B}(\bar{B} \to X_s \gamma)^{\exp} = (3.55 \pm 0.26) \times 10^{-4}$ [HFAG 2006]

Super-B factory: 5% uncertainty possible (more statistics, lower E_{γ})

Theoretical error vs. experimental one:

- $\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \text{ GeV}}^{\text{th,NLO}} = (3.57 \pm 0.30) \times 10^{-4}$ [Misiak et al 2001,Buras et al 2002]
- $\mathcal{B}(\bar{B} \to X_s \gamma)^{\exp} = (3.55 \pm 0.26) \times 10^{-4}$ [HFAG 2006]

Super-B factory: 5% uncertainty possible (more statistics, lower E_{γ})

⇒ strong constraints on new physics require better theoretical precision

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \text{ GeV}}^{\text{exp}} = (3.55 \pm 0.26) \times 10^{-4}$$

[HFAG 2006]

Contributions to the theory prediction

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \,\text{GeV}} = \mathcal{B}(\bar{B} \to X_c e \bar{\nu})_{\exp} \left[\frac{\Gamma(b \to s \gamma)}{\Gamma(b \to c e \bar{\nu})} \right]_{\text{LO EW}} f\left(\frac{\alpha_s(M_W)}{\alpha_s(m_b)} \right) \times \\ \times \left\{ 1 + \mathcal{O}(\alpha_s) + \frac{\mathcal{O}(\alpha_s^2)}{NLO} + \mathcal{O}(\alpha_{\text{em}}) + \mathcal{O}\left(\frac{\Lambda^2}{m_b^2}\right) + \mathcal{O}\left(\frac{\Lambda^2}{m_c^2}\right) + \mathcal{O}\left(\frac{\Lambda}{m_b}\alpha_s\right) \right\} \\ \sim 25\% \qquad \sim 7\% \qquad \sim 4\% \qquad \sim 1\% \qquad \sim 3\% \qquad <\sim 5\%$$

perturbative corrections

non-perturbative corrections

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \text{ GeV}}^{\text{exp}} = (3.55 \pm 0.26) \times 10^{-4}$$

[HFAG 2006]

Contributions to the theory prediction

$$\mathcal{B}(\bar{B} \to X_{s}\gamma)_{E_{\gamma}>1.6 \,\text{GeV}} = \mathcal{B}(\bar{B} \to X_{c}e\bar{\nu})_{\exp} \left[\frac{\Gamma(b \to s\gamma)}{\Gamma(b \to ce\bar{\nu})}\right]_{\text{LO EW}} f\left(\frac{\alpha_{s}(M_{W})}{\alpha_{s}(m_{b})}\right) \times \\ \times \left\{1 + \mathcal{O}(\alpha_{s}) + \mathcal{O}(\alpha_{s}^{2}) + \mathcal{O}(\alpha_{\text{em}}) + \mathcal{O}\left(\frac{\Lambda^{2}}{m_{b}^{2}}\right) + \mathcal{O}\left(\frac{\Lambda^{2}}{m_{c}^{2}}\right) + \mathcal{O}\left(\frac{\Lambda}{m_{b}}\alpha_{s}\right)\right\} \\ \xrightarrow{\text{NLO}} \sim 25\% \sim 7\% \sim 4\% \sim 1\% \sim 3\% \ll 5\% \\ \xrightarrow{\text{perturbative corrections}} \text{non-perturbative corrections}$$

expected NNLO corrections to ${\cal B}~(\sim7\%)$ are of the same size as the experimental error

- Charm quark mass definition ambiguity
 - dependence of $\mathcal{B}(\bar{B} \to X_s \gamma)^{theo}$ on m_c enters through the $\langle s\gamma | O_{1,2} | b \rangle$ which start contributing at $\mathcal{O}(\alpha_s)$
 - $m_c^{pole}/m_b^{pole} = 0.29 \pm 0.02$ $\mathcal{B}(\bar{B} \to X_s \gamma)^{theo} = (3.32 \pm 0.30) \times 10^{-4}$
 - $\overline{m}_c (m_b/2)/m_b^{pole} = 0.22 \pm 0.04$ $\mathcal{B}(\bar{B} \to X_s \gamma)^{theo} = (3.70 \pm 0.30) \times 10^{-4}$

- Charm quark mass definition ambiguity
 - dependence of $\mathcal{B}(\bar{B} \to X_s \gamma)^{theo}$ on m_c enters through the $\langle s\gamma | O_{1,2} | b \rangle$ which start contributing at $\mathcal{O}(\alpha_s)$
 - $m_c^{pole}/m_b^{pole} = 0.29 \pm 0.02$ $\mathcal{B}(\bar{B} \to X_s \gamma)^{theo} = (3.32 \pm 0.30) \times 10^{-4}$
 - $\overline{m}_c (m_b/2)/m_b^{pole} = 0.22 \pm 0.04$ $\mathcal{B}(\bar{B} \to X_s \gamma)^{theo} = (3.70 \pm 0.30) \times 10^{-4}$

- difference between using $\overline{m}_c(\mu)$ and m_c^{pole} is a NNLO effect in the branching ratio
 - \implies resolving the ambiguity requires going to the NNLO level

Theoretical framework

I diagrams involve scales with large hierarchy $M_W, M_t \gg m_b \gg m_s \implies \text{large} \log\left(\frac{M_W^2}{m_b^2}\right)$ $\longrightarrow \text{resummation of } \alpha_s \log\left(\frac{M_W^2}{m_b^2}\right) \text{ is necessary}$ using RG techniques

start by introducing an effective theory without the heavy fields

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{QCD} \times \text{QED}}(u, d, s, c, b) + \frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \sum_i C_i(\mu) O_i(\mu)$$

Theoretical framework

In diagrams involve scales with large hierarchy $M_W, M_t \gg m_b \gg m_s \implies \text{large} \log\left(\frac{M_W^2}{m_b^2}\right)$ $\longrightarrow \text{resummation of } \alpha_s \log\left(\frac{M_W^2}{m_b^2}\right) \text{ is necessary}$ using RG techniques

start by introducing an effective theory without the heavy fields

$$\mathcal{L}_{eff} = \mathcal{L}_{QCD\times QED}(u, d, s, c, b) + \frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \sum_i C_i(\mu) O_i(\mu)$$

$$O_{1,2} = \underbrace{b}_{s} = (\bar{s}\Gamma_i c)(\bar{c}\Gamma_i'b), \quad \text{from} \underbrace{b}_{b} = \underbrace{W}_{s} = |C_i(m_b)| \sim 1$$

$$O_{3,4,5,6} = \underbrace{b}_{s} = (\bar{s}\Gamma_i b)\Sigma_q(\bar{q}\Gamma_i'q), \quad |C_i(m_b)| < 0.07$$

$$O_7 = \underbrace{b}_{s} = \frac{em_b}{16\pi^2} \bar{s}_L \sigma^{\mu\nu} b_R F_{\mu\nu}, \quad C_7(m_b) \simeq -0.3$$

$$O_8 = \underbrace{b}_{s} = \frac{gm_b}{16\pi^2} \bar{s}_L \sigma^{\mu\nu} T^a b_R G_{\mu\nu}^a, \quad C_8(m_b) \simeq -0.15$$

Theoretical framework

Calculation done in three steps:

- Matching find the Wilson coefficients $C_i(\mu)$ by comparing the full and the effective theory at the mass scale $\mu \approx M_W$ \Rightarrow no large logarithms and only vacuum diagrams
- Mixing compute the anomalous dimensions of the operators and solve the renormalization group equations to go down with the Wilson coefficients to $\mu \approx m_b$

$$\frac{d}{d\mu} C_j(\mu) = C_i(\mu) \gamma_{ij}(\mu)$$

Matrix elements calculate the matrix elements of all the operators at $\mu \approx m_b \Rightarrow$ no large logarithms as no heavy masses are present

Current state of the art for NNLO corrections

- 1. Matching
 - **2**-loop matching for (O_1, \ldots, O_6)
 - **9** 3-loop matching for O_7 and O_8
- 2. Mixing
 - **9** 3-loop: (O_1, \ldots, O_6) and (O_7, O_8) sectors
 - **4-loop** $(O_1, \ldots, O_6) \longrightarrow (O_7, O_8)$

[Bobeth,Misiak,Urban00]

[Misiak,Steinhauser 04]

[Gorbahn,Haisch05] [Gorbahn,Haisch,Misiak05] [Czakon,Haisch,Misiak06]

Current state of the art for NNLO corrections

- 1. Matching
 - **2**-loop matching for (O_1, \ldots, O_6)
 - **9** 3-loop matching for O_7 and O_8
- 2. Mixing
 - **9** 3-loop: (O_1, \ldots, O_6) and (O_7, O_8) sectors
- 3. Matrix elements

 - **9** O₇
 - \square O_7 , photon spectrum
 - \bigcirc O_1, O_2 leading term for $m_c \gg m_b$

- [Bobeth,Misiak,Urban00]
- [Misiak,Steinhauser04]
- [Gorbahn,Haisch 05] [Gorbahn,Haisch,Misiak 05] [Czakon,Haisch,Misiak 06]

[Bieri,Greub,Steinhauser 03]

[Blokland,Czarnecki,Misiak,Slusarczyk,Tkachov05] [Asatrian,Hovhannisyan,Poghosyan,Ewerth,Greub,Hurth06] [Melnikov,Mitov05] [Asatrian,Ewerth,Ferroglia,Gambino,Greub06] [Misiak,Steinhauser06]

The NNLO estimated Branching Ratio

3%

3%

 $\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \, \text{GeV}}^{\text{theo}} = (3.15 \pm 0.23) \times 10^{-4}$

[Misiak et al 06] [Misiak,Steinhauser 06]

Decomposition of Uncertainty

- non-perturbative 5%
- parametric 3%
- m_c interpolation
- higher order

 $\mathcal{O}(lpha_s\Lambda/m_b)$

$$\alpha_s(M_Z), \mathcal{B}^{exp}_{SL}, m_c \dots$$

- $(O_{1,2} \text{ matrix elements})$
- (μ_b , μ_c , μ_0 dependence)

The NNLO estimated Branching Ratio

3%

3%

 $\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \, \text{GeV}}^{\text{theo}} = (3.15 \pm 0.23) \times 10^{-4}$

[Misiak et al 06] [Misiak, Steinhauser 06]

Decomposition of Uncertainty

- non-perturbative 5%
- parametric 3%
- m_c interpolation
- higher order

 ${\cal O}(lpha_s\Lambda/m_b)$

$$lpha_s(M_Z), \mathcal{B}^{exp}_{SL}$$
, $m_c \dots$

- $(O_{1,2} \text{ matrix elements})$
- (μ_b , μ_c , μ_0 dependence)

source of the interpolation uncertainty is the missing $\mathcal{O}\left(\alpha_s^2\right)$ correction to $\langle s\gamma | O_{1,2} | b \rangle$

More about the interpolation uncertainty

$$P_2^{(2)} = \sum_{i,j=1}^8 C_i^{(0)} C_j^{(0)} \left(n_f A_{ij} + B_{ij} \right)$$

• using large β_0 approx.

$$P_2^{(2)} = \sum_{i,j=1}^8 C_i^{(0)} C_j^{(0)} \left(\frac{-3}{2}\beta_0 A_{ij} + B'_{ij}\right) = P_2^{(2),\beta_0} + P_2^{(2),rem}$$

•
$$P_2^{(2),\beta_0}$$
 known for $\langle s\gamma|O_{1,2,7,8}|b
angle$

- expansions in limits $m_c/m_b \rightarrow 0$ and $m_c \gg m_b$ match nicely for $\operatorname{Re}\langle s\gamma | O_2 | b \rangle^{\beta_0}$
- **9** good approximation already for n = 0
- In the second secon
- Calculate the leading term of large m_c expansion for $P_2^{(2),rem}$ and interpolate to physical m_c
- making assumptions for $P_2^{(2),rem}$ at $m_c = 0$ is the source of the interpolation uncertainty

Reducing the overall uncertainty of $\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \text{ GeV}}^{\text{theo}, \text{NNLO}}$

- removing the interpolation uncertainty
 - \implies need a complete calculation of $\langle s \gamma | O_{1,2} | b \rangle$ at $m_c
 eq 0$

$$\frac{\gamma}{b} \underbrace{c}_{O_{1,2}} s + \underbrace{c$$

 \longrightarrow working on the virtual part [R. B, Czakon, Schutzmeier]

Reducing the overall uncertainty of $\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \text{ GeV}}^{\text{theo},\text{NNLO}}$

- removing the interpolation uncertainty
 - \implies need a complete calculation of $\langle s \gamma | O_{1,2} | b \rangle$ at $m_c \neq 0$

$$\frac{\gamma}{b} \underbrace{c}_{O_{1,2}} s + \underbrace{c$$

 \longrightarrow working on the virtual part [R. B, Czakon, Schutzmeier]

reducing the interpolation uncertainty

 \implies need a complete calculation of $\langle s\gamma | O_{1,2} | b \rangle$ at $m_c = 0$

in progress [R. B, Czakon, Schutzmeier]

Removing the interpolation uncertainty: virtual part

- ${}_{igstaclescolor}$ approx. 400~3-loop on-shell vertex diagrams with two scales $m_b~\&~m_c$
- around 500 masters are involved in the bare amplitude
- symbolic reduction down to masters is not yet complete for the full 3-loop vertex
- **9** $\mathcal{O}\left(\alpha_s^2 n_f\right)$ correction to $\langle s\gamma | O_{1,2} | b \rangle$:

Removing the interpolation uncertainty: virtual part

- approx. 400 3-loop on-shell vertex diagrams with two scales $m_b \& m_c$
- around 500 masters are involved in the bare amplitude
- symbolic reduction down to masters is not yet complete for the full 3-loop vertex

- masters were calculated with Mellin Barnes
 - first way: a numerical integration of the MB representations is performed for specific values of z using the MB package
 [MB : Czakon 05] ,
 [MBrepresentation : Chachamis, Czakon 06]
 - second way:
 - perform an expansion in $z = m_c^2/m_b^2$ by closing contours
 - coefficients of the expansion are given by at most a 1-dimensional MB integral expressed as a sum over residues
 - sum these infinite series using XSummer [Moch & Uwer 05]

Removing the interpolation uncertainty: virtual part

- approx. 400 3-loop on-shell vertex diagrams with two scales m_b & m_c
- around 500 masters are involved in the bare amplitude
- symbolic reduction down to masters is not yet complete for the full 3-loop vertex

- masters were calculated with Mellin Barnes
 - first way: a numerical integration of the MB representations is performed for specific values of z using the MB package
 [MB : Czakon 05] ,

```
[MBrepresentation : Chachamis, Czakon 06]
```

- second way:
 - perform an expansion in $z = m_c^2/m_b^2$ by closing contours
 - coefficients of the expansion are given by at most a 1-dimensional MB integral expressed as a sum over residues
 - sum these infinite series using XSummer [Moch & Uwer 05]

- MB alone was not enough to calculate all the masters due to poor convergence
- use differential equations solved numerically
 - ${\scriptstyle \bullet }$ boundaries were obtained using diagrammatic large mass expansion for $m_c \gg m_b$
 - \longrightarrow more about this method later

 $\langle s\gamma | O_2 | b \rangle_{\mathcal{O}(\alpha_s^2 n_f)}$

Results for the massive fermionic contributions:

massless approximation overestimates the massive b result and has the opposite sign !

less pronounced differences for the c-quark
 moderate negative corrections wrt. massless approximation

 $\langle s\gamma | O_2 | b \rangle_{\mathcal{O}(\alpha_s^2 n_f)}$

Results for the massive fermionic contributions:

massless approximation overestimates the massive b result and has the opposite sign !

less pronounced differences for the c-quark — moderate negative corrections wrt. massless approximation

numerical impact of the mass corrections on $\mathcal{B}(\bar{B} \to X_s \gamma) = +1.1\%$ for $\mu_b = 2.5 \text{ GeV}$

• calculating $\mathcal{O}(\alpha_s^2)$ correction to $\langle s\gamma | O_{1,2} | b \rangle$ at $m_c = 0$ helps significantly in reducing the interpolation uncertainty

up to 4-particle cuts: $\gamma s, \gamma s g, \gamma s g g, \gamma s q ar q$

• calculating $\mathcal{O}(\alpha_s^2)$ correction to $\langle s\gamma | O_{1,2} | b \rangle$ at $m_c = 0$ helps significantly in reducing the interpolation uncertainty

up to 4-particle cuts: γs , γsg , γsgg , γsgg , $\gamma sq\bar{q}$

- 506 diagrams expressed through 42093 integrals
- If we do not distinguish between masters that differ only in their imaginary part: ~ 200 masters have to be calculated
 BUT HOW ?

• calculating $\mathcal{O}\left(\alpha_s^2\right)$ correction to $\langle s\gamma | O_{1,2} | b \rangle$ at $m_c = 0$ helps significantly in reducing the interpolation uncertainty

up to 4-particle cuts: γs , γsg , γsgg , γsgg , $\gamma sq\bar{q}$

- 506 diagrams expressed through 42093 integrals
- If we do not distinguish between masters that differ only in their imaginary part: ~ 200 masters have to be calculated BUT HOW ?
 - sectors: high precision results vs. running time . . .
 - differential equations for $p_b^2 \neq m_b^2$: needs boundaries . . .
 - Mellin Barnes: do we know how to use it for integrals with unitarity cuts ? dimension of the representations for 4-loop cut self energy integrals with up to 4 internal massive lines is an issue

• calculating $\mathcal{O}(\alpha_s^2)$ correction to $\langle s\gamma | O_{1,2} | b \rangle$ at $m_c = 0$ helps significantly in reducing the interpolation uncertainty

up to 4-particle cuts: γs , γsg , γsgg , γsgg , $\gamma sq\bar{q}$

- 506 diagrams expressed through 42093 integrals
- If we do not distinguish between masters that differ only in their imaginary part: ~ 200 masters have to be calculated BUT HOW ?
 - sectors: high precision results vs. running time . . .
 - differential equations for $p_b^2 \neq m_b^2$: needs boundaries . . .
 - Mellin Barnes: do we know how to use it for integrals with unitarity cuts ? dimension of the representations for 4-loop cut self energy integrals with up to 4 internal massive lines is an issue

so what is the way out ?

Combining methods

Merging methods is the way to go, but a long chain of steps:

$$x = p_b^2 / m_b^2$$

Boundaries for DEQs: 2- and 3-particle cuts

idea

- derive a MB representation for loops on the left and the right of the cut
- integrate over the phase space analytically
- perform an analytic continuation in ε for $\varepsilon \to 0$
- expand in $x = p_b^2/m_b^2$ where $p_b^2 \ll m_b^2$ by closing contours in the multi-fold MB integrals
- use Barnes Lemmas to remove some integrations if possible
- for multi-folds MB integrals (up to 3) integrate numerically → up to 16 digits for 3-folds integrals

useful packages:

[MBasymptotics.m & quadprec.m, M.Czakon]

a simple example

- MB representation for this integral: {-((E^((-I)*Pi-I*Pi*z1)* s12^(-1-2*ep-z1)*Gamma[1-ep]^3* Gamma[ep]*Gamma[-ep-z1]^2* Gamma[-z1]* Gamma[1+ep+z1])/(Gamma[2-2*ep]* Gamma[1-2*ep-z1]*Gamma[1-ep-z1]))}
- after phase space integration, analytic continuation to $\varepsilon \to 0$ and ε expansion:

```
{MBint[((-2*I)*Pi*Gamma[-z1]^4*
   Gamma[1+z1])/(E^(I*Pi*z1)*ep*x^z1*
   Gamma[1-z1]^2*Gamma[2-z1]),
   {{ep -> 0},{z1 -> -1/2}}]
```

• after closing contour: $i\pi x/\varepsilon + \mathcal{O}(1)$

DEQs: expansions and numerical integration

- Calculate the off-shell master integrals with the help of numerical differential eqts [Caffo, Czyz, Remiddi 98]
 - Our masters V_i are functions of ϵ and $x = p_b^2/m_b^2$ \implies a system of differential eqts in x can be derived:

$$\frac{d}{dx}V_i(x,\epsilon) = A_{ij}(x,\epsilon)V_j(x,\epsilon)$$

• expand the masters in ϵ and x for ϵ , $x \to 0$ using the ansatz:

$$V_i(x,\epsilon) = \sum_{nmk} c_{inmk}^0 \epsilon^n x^m \log^k x$$

- solve recursively for c_{inmk}^0 up to higher powers in x
- use the boundary conditions to fix the left over constants
 - \rightarrow Mellin Barnes for 2- and 3-Pcuts,
 - ightarrow diagrammatic large m_b expansion ($p_b^2 \ll m_b^2$) for 2-Pcuts

obtained high precision results for $x \approx 0$

• use them as starting point for numerical integration in the complex plane to $x \approx 1 \rightarrow \text{ZVODE}$, Hindmarsh et al

DEQs: expansions and numerical integration

- Calculate the off-shell master integrals with the help of numerical differential eqts [Caffo, Czyz, Remiddi 98]
 - expand the masters in ϵ and x for ϵ , $x \to 0$ using the ansatz:

$$V_i(x,\epsilon) = \sum_{nmk} c_{inmk}^0 \epsilon^n x^m \log^k x$$

- solve recursively for c_{inmk}^0 up to higher powers in x
- use the boundary conditions to fix the left over constants
 - \rightarrow Mellin Barnes for 2- and 3-Pcuts,
 - ightarrow diagrammatic large m_b expansion ($p_b^2 \ll m_b^2$) for 2-Pcuts

obtained high precision results for $x \approx 0$

- use them as starting point for numerical integration in the complex plane to $x~\approx~1~\rightarrow$ ZVODE, Hindmarsh et al
- perform an other power logarithmic expansion for $x \approx 1$ and solve recursively for c_{inmk}^1

$$V_i(x,\epsilon) = \sum_{nmk} c_{inmk}^1 \epsilon^n (1-x)^m \log^k (1-x)$$

• match with the results of ZVODE to fix left over c_{inmk}^1

result for x = 1 is the leading term

Preliminary results: sample masters with 2- and 3-particle cuts Im Re 0.1 0.4 0.3 0.2 0.1 0.25 0.5 0.75 1 1.25 1.5 1.75 0.25 0.5 0.75 1 1.25 1.5 1.75 0 600 500 400 300 200 100 0 0.25 0.5 0.75 1 1.25 1.5 1.75 0.25 0.5 0.75 1 1.25 1.5 1.75 -80 -10 -100 -20 -120 -140 -30 -160 -40 -180 -50 -200 0.25 0.5 0.75 1 1.25 1.5 1.75 0.25 0.5 0.75 1.25 1.5 1.75 0 1 $x = p_b^2 / m_b^2$ $x = p_b^2 / m_b^2$ Expansions: Numerical integration: starts at $x_0 = 0.02$ • $x \to 0$: up to x^{18} Matching: done at $x_1 = 0.9$ • $x \to 1$: up to $(1-x)^{12}$

R.Boughezal, Buffalo, 14th May 2008 - p.19/21

Preliminary results at x = 1: sample masters with 2- and 3-particle cuts

$$= \frac{3.10453 i}{\varepsilon} + \mathcal{O}(1)$$

$$= \frac{3.14159 i}{\varepsilon^3} + \frac{20.0142 i}{\varepsilon^2} + \frac{77.1378 i}{\varepsilon} + 209.713 i + \mathcal{O}(\varepsilon)$$

$$= \frac{-2.0944 i}{\varepsilon^3} - \frac{12.5778 i}{\varepsilon^2} - \frac{35.6402 i}{\varepsilon} - 125.153 i + \mathcal{O}(\varepsilon)$$

$$= \frac{-2.0944 i}{\varepsilon^3} - \frac{4.91208 i}{\varepsilon^2} - \frac{30.5699 i}{\varepsilon} - 40.7068 i + \mathcal{O}(\varepsilon)$$

Preliminary results at x = 1: sample masters with 2- and 3-particle cuts

$$= \frac{3.10453 i}{\varepsilon} + \mathcal{O}(1)$$

$$= \frac{3.14159 i}{\varepsilon^3} + \frac{20.0142 i}{\varepsilon^2} + \frac{77.1378 i}{\varepsilon} + 209.713 i + \mathcal{O}(\varepsilon)$$

$$= \frac{-2.0944 i}{\varepsilon^3} - \frac{12.5778 i}{\varepsilon^2} - \frac{35.6402 i}{\varepsilon} - 125.153 i + \mathcal{O}(\varepsilon)$$

$$= \frac{-2.0944 i}{\varepsilon^3} - \frac{4.91208 i}{\varepsilon^2} - \frac{30.5699 i}{\varepsilon} - 40.7068 i + \mathcal{O}(\varepsilon)$$

masters with 2-particle cuts are obtained with two independent calculations \rightarrow cross checks will be done soon

Preliminary results at x = 1: sample masters with 2- and 3-particle cuts

$$= \frac{3.10453 i}{\varepsilon} + \mathcal{O}(1)$$

$$= \frac{3.14159 i}{\varepsilon^3} + \frac{20.0142 i}{\varepsilon^2} + \frac{77.1378 i}{\varepsilon} + 209.713 i + \mathcal{O}(\varepsilon)$$

$$= \frac{-2.0944 i}{\varepsilon^3} - \frac{12.5778 i}{\varepsilon^2} - \frac{35.6402 i}{\varepsilon} - 125.153 i + \mathcal{O}(\varepsilon)$$

$$= \frac{-2.0944 i}{\varepsilon^3} - \frac{4.91208 i}{\varepsilon^2} - \frac{30.5699 i}{\varepsilon} - 40.7068 i + \mathcal{O}(\varepsilon)$$

masters with 2-particle cuts are obtained with two independent calculations \rightarrow cross checks will be done soon

what we have:

- masters with massless internal lines: all 2- and 3-particle cuts all 4-particle cuts but one
- masters with b-quark internal lines:
 2- and 3-particle cuts are almost there
- still to be calculated: masters with 4-particle cuts and internal b-lines

- Matching current and future experimental precision for $\overline{B} \to X_s \gamma$ decay necessitates NNLO corrections on the theory side crucial missing piece: $O(\alpha_s^2)$ correction to $\langle s\gamma | O_{1,2} | b \rangle$
- Reducing the interpolation uncertainty: needs $O(\alpha_s^2)$ correction to $\langle s\gamma | O_{1,2} | b \rangle$ at $m_c = 0$ $\rightarrow 70\%$ of the project is completed
- Removing the interpolation uncertainty: needs $O(\alpha_s^2)$ correction to $\langle s\gamma | O_{1,2} | b \rangle$ at physical m_c \longrightarrow completed the fermionic contribution
 - \rightarrow massless case: calculated in two ways and confirmed the findings of [Bieri, Greub, Steinhauser 03]
 - \rightarrow massive case: impact on the branching ratio +1.1% for $\mu_b = 2.5 \text{GeV}$