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Motivations

B̄ → Xsγ most precise short-distance information currently available for ∆B = 1 FCNC

B(B̄ → Xsγ)exp
Eγ >1.6 GeV = (3.55 ± 0.26) × 10−4

[HFAG2006]

less sensitive to non-perturbative effects
dominant ones: O(Λ2/m2

b), O(Λ2/m2
c), O(αsΛ/mb)

=⇒ Γ(B̄ → Xsγ) ≈ Γ(b → Xparton
s γ)

= Γ(b → sγ) + Γ(b → sγg) + . . .

loop induced in SM and highly sensitive to new physics which is not
suppressed by factors of α as compared to SM contributions
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Motivations

Theoretical error vs. experimental one:

B(B̄ → Xsγ)th,NLO
Eγ >1.6 GeV = (3.57 ± 0.30) × 10−4

[Misiak et al 2001,Buras et al 2002]

B(B̄ → Xsγ)exp = (3.55 ± 0.26) × 10−4

[HFAG 2006]

Super-B factory: 5% uncertainty possible
(more statistics, lower Eγ )

=⇒ strong constraints on new physics require better theoretical precision
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Motivations

B(B̄ → Xsγ)exp
Eγ >1.6 GeV = (3.55 ± 0.26) × 10−4

[HFAG 2006]

Contributions to the theory prediction

B(B̄ → Xsγ)Eγ>1.6 G e V = B(B̄ → Xceν̄)e x p
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∼ 25 % ∼ 7 % ∼ 4 % ∼ 1 % ∼ 3 % <∼ 5 %
︸ ︷ ︷ ︸ ︸ ︷ ︷ ︸

pertu rb a tiv e c o rrec tio n s n o n -pertu rb a tiv e c o rrec tio n s
(m eth o d s: Optic a l T h eo rem ,

expected NNLO corrections to B (∼ 7%) are of the same size as the experimental error
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Motivations

Charm quark mass definition ambiguity

dependence of B(B̄ → Xsγ)theo

on mc enters through the 〈sγ|O1,2|b〉

which start contributing at O (αs)
b s

γ

O1, O2

c

mpole
c /mpole

b
= 0.29 ± 0.02

B(B̄ → Xsγ)theo = (3.32 ± 0.30) × 10−4

mc(mb/2)/mpole
b

= 0.22 ± 0.04

B(B̄ → Xsγ)theo = (3.70 ± 0.30) × 10−4

[Aubertetal 02]
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difference between using mc(µ) and mpole
c is a NNLO effect

in the branching ratio
=⇒ resolving the ambiguity requires going to the NNLO level
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Theoretical framework

diagrams involve scales with large hierarchy

MW , Mt � mb � ms =⇒ large log

„

M2
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«

−→ resummation of αs log

„
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b

«

is necessary

using RG techniques
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start by introducing an effective theory without the heavy fields

Leff = LQCD×QED(u, d, s, c, b) +
4GF√

2
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X

i

Ci(µ) Oi(µ)
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Theoretical framework

Calculation done in three steps:

Matching find the Wilson coefficients Ci(µ) by comparing the full
and the effective theory at the mass scale µ ≈ MW

⇒ no large logarithms and only vacuum diagrams

Mixing compute the anomalous dimensions of the operators and solve
the renormalization group equations to go down with the Wilson
coefficients to µ ≈ mb

d

dµ
Cj(µ) = Ci(µ)γij(µ)

Matrix elements calculate the matrix elements of all the operators
at µ ≈ mb ⇒ no large logarithms as no heavy masses are present
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Current state of the art for NNLO corrections

1. Matching

2-loop matching for (O1, . . . ,O6) [Bobeth,Misiak,Urban 00]

3-loop matching for O7 and O8 [Misiak,Steinhauser 04]

2. Mixing

3-loop: (O1, . . . , O6) and (O7, O8) sectors [Gorbahn,Haisch 05]

[Gorbahn,Haisch,Misiak 05]

4-loop (O1, . . . , O6) −→ (O7, O8) [Czakon,Haisch,Misiak 06]

3. Matrix elements
O1, O2, O7, O8 large β0 [Bieri,Greub,Steinhauser 03]

O7 [Blokland,Czarnecki,Misiak,Slusarczyk,Tkachov 05]

[Asatrian,Hovhannisyan,Poghosyan,Ewerth,Greub,Hurth 06]

O7, photon spectrum [Melnikov,Mitov 05] [Asatrian,Ewerth,Ferroglia,Gambino,Greub 06]

O1, O2 leading term for mc � mb [Misiak,Steinhauser 06]
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The NNLO estimated Branching Ratio

B(B̄ → Xsγ)theo
Eγ >1.6 GeV = (3.15 ± 0.23) × 10−4

[Misiak et al 06] [Misiak,Steinhauser 06]

Decomposition of Uncertainty

non-perturbative 5% O(αsΛ/mb)

parametric 3% αs(MZ), Bexp
SL , mc . . .

mc interpolation 3% (O1,2 matrix elements)

higher order 3% (µb, µc, µ0 dependence)

source of the interpolation
uncertainty is the missing O

`

α2

s

´

correction to 〈sγ|O1,2|b〉 +b s

c
γ

b s

c
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More about the interpolation uncertainty

O
`

α2

s

´

perturbative contribution to B(B̄ → Xsγ): P
(2)
2 =

8
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j
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2 β0 Aij + B′
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´
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2 + P

(2),rem
2

P
(2),β0
2 known for 〈sγ|O1,2,7,8|b〉

expansions in limits mc/mb → 0 and mc � mb

match nicely for Re〈sγ|O2|b〉β0

good approximation already for n = 0

no large cc̄ threshold effects at mc = mb/2
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is the source of the interpolation uncertainty
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Reducing the overall uncertainty of B(B̄ → Xsγ)theo,NNLO

Eγ>1.6 GeV

removing the interpolation uncertainty

=⇒ need a complete calculation of 〈sγ|O1,2|b〉 at mc 6= 0
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+ + + . . .
O1,2

−→ working on the virtual part [R. B, Czakon, Schutzmeier]
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reducing the interpolation uncertainty

=⇒ need a complete calculation of 〈sγ|O1,2|b〉 at mc = 0

b b

s

c

O2 O7

+ . . .

in progress [R. B, Czakon, Schutzmeier]
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Removing the interpolation uncertainty: virtual part

approx. 400 3-loop on-shell vertex diagrams with two scales mb & mc

around 500 masters are involved in the bare amplitude

symbolic reduction down to masters is not yet complete for the full 3-loop vertex

O
`

α2

snf

´

correction to 〈sγ|O1,2|b〉:

b s

γ

c

O2

masters were calculated with Mellin Barnes
first way: a numerical integration of the MB
representations is performed for specific values
of z using the MB package
[MB : Czakon 05] ,
[MBrepresentation : Chachamis, Czakon 06]

second way:

perform an expansion in z = m2
c/m2

b by
closing contours
coefficients of the expansion are given by at
most a 1-dimensional MB integral expressed
as a sum over residues
sum these infinite series using XSummer

[Moch & Uwer 05]

b s

γ

c

c, b

O2

MB alone was not enough to calculate
all the masters due to poor convergence

use differential equations solved numerically

boundaries were obtained using diagrammatic
large mass expansion for mc � mb

−→ more about this method later
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〈sγ|O2|b〉O(α2
snf)

Results for the massive fermionic contributions:
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massless approximation overestimates
the massive b result and has the opposite sign !
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less pronounced differences for the c-quark
−→ moderate negative corrections wrt. massless
approximation

numerical impact of the mass corrections on B(B̄ → Xsγ) = + 1.1% for µb = 2.5 GeV
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Reducing the interpolation uncertainty

calculating O
`

α2

s

´

correction to 〈sγ|O1,2|b〉 at mc = 0 helps significantly
in reducing the interpolation uncertainty

=⇒
b b

s

c

O2 O7

+ . . .

up to 4-particle cuts: γs, γsg, γsgg, γsqq̄

506 diagrams expressed through 42093 integrals

if we do not distinguish between masters that differ only in their imaginary part:
∼ 200 masters have to be calculated BUT HOW ?

sectors: high precision results vs. running time . . .

differential equations for p2
b 6= m2

b : needs boundaries . . .

Mellin Barnes: do we know how to use it for integrals with unitarity cuts ?

dimension of the representations for 4-loop cut self energy integrals with
up to 4 internal massive lines is an issue

so what is the way out ?
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differential equations for p2
b 6= m2

b : needs boundaries . . .

Mellin Barnes: do we know how to use it for integrals with unitarity cuts ?

dimension of the representations for 4-loop cut self energy integrals with
up to 4 internal massive lines is an issue

so what is the way out ?
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Combining methods

Merging methods is the way to go, but a long chain of steps:

x = p2
b/m2

b
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Boundaries for DEQs: 2- and 3-particle cuts

idea

derive a MB representation for loops on the
left and the right of the cut

integrate over the phase space analytically

perform an analytic continuation in ε for
ε → 0

expand in x = p2

b
/m2

b
where p2

b
� m2

b
by

closing contours in the multi-fold MB
integrals

use Barnes Lemmas to remove some
integrations if possible

for multi-folds MB integrals (up to 3)
integrate numerically
−→ up to 16 digits for 3-folds integrals

useful packages:
[MBasymptotics.m & quadprec.m, M.Czakon]

a simple example

b b

MB representation for this integral:
{-((Eˆ((-I)*Pi-I*Pi*z1)*
s12ˆ(-1-2*ep-z1)*Gamma[1-ep]ˆ3*
Gamma[ep]*Gamma[-ep-z1]ˆ2*
Gamma[-z1]*
Gamma[1+ep+z1])/(Gamma[2-2*ep]*
Gamma[1-2*ep-z1]*Gamma[1-ep-z1]))}

after phase space integration, analytic con-
tinuation to ε → 0 and ε expansion:

{MBint[((-2*I)*Pi*Gamma[-z1]ˆ4*
Gamma[1+z1])/(Eˆ(I*Pi*z1)*ep*xˆz1*
Gamma[1-z1]ˆ2*Gamma[2-z1]),

{{ep -> 0},{z1 -> -1/2}}]}

after closing contour: iπx/ε + O (1)

R.Boughezal, Buffalo, 14th May 2008 – p.16/21



DEQs: expansions and numerical integration

calculate the off-shell master integrals with the help of numerical differential eqts [Caffo, Czyz, Remiddi 98]

Our masters Vi are functions of ε and x = p2
b/m2

b

=⇒ a system of differential eqts in x can be derived:

d

dx
Vi(x, ε) = Aij(x, ε)Vj(x, ε)

expand the masters in ε and x for ε, x → 0 using the ansatz:

Vi(x, ε) =
X

nmk

c
0
inmkε

n
x

m
log

k
x

solve recursively for c0
inmk up to higher powers in x

use the boundary conditions to fix the left over constants
→ Mellin Barnes for 2- and 3-Pcuts,
→ diagrammatic large mb expansion (p2

b � m2
b ) for 2-Pcuts

obtained high precision results for x ≈ 0

use them as starting point for numerical integra-
tion in the complex plane to x ≈ 1 → ZVODE,
Hindmarsh et al

Im(x)

Re(x)
0 1

x0 x1
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obtained high precision results for x ≈ 0

use them as starting point for numerical integra-
tion in the complex plane to x ≈ 1 → ZVODE,
Hindmarsh et al

Im(x)

Re(x)
0 1

x0 x1

perform an other power logarithmic expansion for x ≈ 1

and solve recursively for c1
inmk

Vi(x, ε) =
X

nmk

c1
inmkεn(1 − x)m logk(1 − x)

match with the results of ZVODE to fix left over c1
inmk

result for x = 1 is the leading term
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Some Results for 2- and 3-particle cuts

Preliminary results: sample masters with 2- and 3-particle cuts

Im Re

b b
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x=p2
b/m2

b x=p2
b/m2

bExpansions:

x → 0: up to x18

x → 1: up to (1 − x)12

Numerical integration: starts at x0 = 0.02

Matching: done at x1 = 0.9
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Some Results for 2- and 3-particle cuts

Preliminary results at x = 1: sample masters with 2- and 3-particle cuts

b b =
3.10453 i

ε
+ O (1)

=
3.14159 i

ε3
+

20.0142 i

ε2
+

77.1378 i

ε
+ 209.713 i + O (ε)

=
−2.0944 i

ε3
−

12.5778 i

ε2
−

35.6402 i

ε
− 125.153 i + O (ε)

=
−2.0944 i

ε3
−

4.91208 i

ε2
−

30.5699 i

ε
− 40.7068 i + O (ε)

masters with 2-particle cuts are obtained with two independent calculations
→ cross checks will be done soon

what we have:
masters with massless internal lines:
all 2- and 3-particle cuts
all 4-particle cuts but one

masters with b-quark internal lines:
2- and 3-particle cuts are almost there

still to be calculated: masters with 4-particle cuts and internal b-lines

R.Boughezal, Buffalo, 14th May 2008 – p.20/21



Some Results for 2- and 3-particle cuts

Preliminary results at x = 1: sample masters with 2- and 3-particle cuts

b b =
3.10453 i

ε
+ O (1)

=
3.14159 i

ε3
+

20.0142 i

ε2
+

77.1378 i

ε
+ 209.713 i + O (ε)

=
−2.0944 i

ε3
−

12.5778 i

ε2
−

35.6402 i

ε
− 125.153 i + O (ε)

=
−2.0944 i

ε3
−

4.91208 i

ε2
−

30.5699 i

ε
− 40.7068 i + O (ε)

masters with 2-particle cuts are obtained with two independent calculations
→ cross checks will be done soon

what we have:
masters with massless internal lines:
all 2- and 3-particle cuts
all 4-particle cuts but one

masters with b-quark internal lines:
2- and 3-particle cuts are almost there

still to be calculated: masters with 4-particle cuts and internal b-lines

R.Boughezal, Buffalo, 14th May 2008 – p.20/21



Some Results for 2- and 3-particle cuts

Preliminary results at x = 1: sample masters with 2- and 3-particle cuts

b b =
3.10453 i

ε
+ O (1)

=
3.14159 i

ε3
+

20.0142 i

ε2
+

77.1378 i

ε
+ 209.713 i + O (ε)

=
−2.0944 i

ε3
−

12.5778 i

ε2
−

35.6402 i

ε
− 125.153 i + O (ε)

=
−2.0944 i

ε3
−

4.91208 i

ε2
−

30.5699 i

ε
− 40.7068 i + O (ε)

masters with 2-particle cuts are obtained with two independent calculations
→ cross checks will be done soon

what we have:
masters with massless internal lines:
all 2- and 3-particle cuts
all 4-particle cuts but one

masters with b-quark internal lines:
2- and 3-particle cuts are almost there

still to be calculated: masters with 4-particle cuts and internal b-lines

R.Boughezal, Buffalo, 14th May 2008 – p.20/21



Summary

Matching current and future experimental precision for B̄ → Xsγ decay necessitates
NNLO corrections on the theory side
crucial missing piece: O(α2

s) correction to 〈sγ|O1,2|b〉

Reducing the interpolation uncertainty: needs O(α2
s) correction to 〈sγ|O1,2|b〉 at mc = 0

→ 70% of the project is completed

Removing the interpolation uncertainty: needs O(α2
s) correction to 〈sγ|O1,2|b〉 at physical mc

−→ completed the fermionic contribution

→ massless case: calculated in two ways and confirmed the findings of [Bieri, Greub, Steinhauser 03]

→ massive case: impact on the branching ratio +1.1% for µb = 2.5GeV

−→ bosonic contribution: work in progress
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