Towards top-quark pair production predictions at NNLO in QCD

M. Czakon Würzburg University

LoopFest VII, 14th May 2008

Introduction

• 8 million top quark pairs per year in the low luminosity phase

• Major goals

- top mass measurement with a precision below 1 GeV
- production cross section to better than 10%
- production and decay mechanisms to 1-2%
- spin correlations to 3-5%

Measuring the mass

- The top quark mass has a high impact on electroweak physics !
- The top quark mass is measured in the pair production process exclusively
- The method is based on kinematic reconstruction and fitting
- An interesting alternative is the measurement from the cross section normalization
- At the Tevatron the precision from the cross section shape is about 5 Gev
- At the LHC one expects 2-3 GeV

Source of uncertainty	Hadronic top	Kinematic fit	High p_T top sample
	$\delta m_{top}~({ m GeV/c^2})$	$\delta m_{top}~({\rm GeV/c^2})$	$\delta m_{top}~({\rm GeV/c^2})$
Light jet energy scale (1 %)	0.2	0.2	
b-jet energy scale (1 %)	0.7	0.7	
b-quark fragmentation	0.1	0.1	0.3
ISR	0.1	0.1	0.1
FSR	1.	0.5	0.1
Combinatorial background	0.1	0.1	
Mass rescaling			0.9
UE estimate (± 10 %)			1.3
Total	1.3	0.9	1.6
Statistical error	0.05	0.1	0.2

Calibration

 Conclusion from recent CTEQ analysis: 3 – 5 % precision required on the theory and experimental sides !!!

Uncertainties at the LHC

Theoretical framework

Fluxes

Scaling functions

Coulomb singularity is color suppressed, but needs to be resummed for higher orders

$$\hat{\sigma}_{\text{Coulomb}}(\rho) = \hat{\sigma}_{(8)}(\rho) \frac{\pi \alpha_{s}/(6\beta)}{\exp(\pi \alpha_{s}/(6\beta)) - 1} + \hat{\sigma}_{(1)}(\rho) \frac{4\pi \alpha_{s}/(3\beta)}{\exp(-4\pi \alpha_{s}/(3\beta)) - 1}$$

Threshold behaviour

- Soft gluon radiation important because of the vanishing phase space at threshold
- At I-loops the logarithms go up to

$$\left[\frac{\log^{2I-1}(1-z)}{1-z}\right]_{+}$$

zp

• Currently known up to NNLL Moch, Uwer '08

$$\begin{split} \hat{\sigma}_{q\bar{q}\rightarrow t\bar{t}}^{(1)} &= \hat{\sigma}_{q\bar{q}\rightarrow t\bar{t}}^{(0)} \bigg\{ 42.667 \ln^2\beta - 20.610 \ln\beta + 13.910 - 3.2899 \frac{1}{\beta} \bigg\}, \\ \hat{\sigma}_{q\bar{q}\rightarrow t\bar{t}}^{(2)} &= \hat{\sigma}_{q\bar{q}\rightarrow t\bar{t}}^{(0)} \bigg\{ 910.22 \ln^4\beta - 1315.5 \ln^3\beta + \bigg(565.80 - 140.37 \frac{1}{\beta} \bigg) \ln^2\beta \\ &+ \bigg(862.42 + 32.106 \frac{1}{\beta} \bigg) \ln\beta - 28.862 \frac{1}{\beta^2} + 89.431 \frac{1}{\beta} + C_{q\bar{q}}^{(2)} \bigg\} \\ \hat{\sigma}_{gg\rightarrow t\bar{t}}^{(1)} &= \hat{\sigma}_{gg\rightarrow t\bar{t}}^{(0)} \bigg\{ 96 \ln^2\beta - 9.5165 \ln\beta + 35.322 + 5.1698 \frac{1}{\beta} \bigg\}, \\ \hat{\sigma}_{gg\rightarrow t\bar{t}}^{(2)} &= \hat{\sigma}_{gg\rightarrow t\bar{t}}^{(0)} \bigg\{ 4608 \ln^4\beta - 1894.9 \ln^3\beta + \bigg(-3.4811 + 496.30 \frac{1}{\beta} \bigg) \ln^2\beta \\ &+ \bigg(3144.4 + 321.17 \frac{1}{\beta} \bigg) \ln\beta + 45.354 \frac{1}{\beta^2} - 140.53 \frac{1}{\beta} + C_{gg}^{(2)} \bigg\} \end{split}$$

Theory uncertainties

- At the LHC the scale dependence gives an error of about 12% at NLO
- Input parameter sensitivity at NLO

with $m_t = 170.9 \pm 1.1_{stat} \pm 1.5_{syst}$ $\frac{5 \Delta m_t}{m_t} \simeq 5\%$ (CDF & D0) by varying the PDFs in CTEQ $\simeq 5\%$

Excellent prospects at NNLO
3% scale, 2% PDF Moch, Uwer '08

Conservative estimate with NLL resummation

 $\sigma_{t\bar{t}}^{\text{NLO+NLL}}(\text{LHC}, m_t = 171 \text{ GeV}, \text{CTEQ6.5}) = 908 \begin{array}{c} +82(9.0\%) \\ -85(9.3\%) \end{array} (\text{scales}) \begin{array}{c} +30(3.3\%) \\ -29(3.2\%) \end{array} (\text{PDFs}) \text{ pb} \\ \sigma_{t\bar{t}}^{\text{NLO+NLL}}(\text{LHC}, m_t = 171 \text{ GeV}, \text{MSTW2006nnlo}) = 961 \begin{array}{c} +89(9.2\%) \\ -91(9.4\%) \end{array} (\text{scales}) \begin{array}{c} +11(1.1\%) \\ -12(1.2\%) \end{array} (\text{PDFs}) \end{array}$

Cacciari, Frixione, Mangano, Nason & Ridolfi '08

Historical perspective

NLO corrections

Nason, Dawson, Ellis '88

- implemented in MCFM
 Campbell, Ellis
- LL resummation

Laenen, Smith, van Neerven '92

• NLL resummation

Bonciani, Catani, Mangano, Nason '98

• NLL resummation + ...

Kidonakis, Vogt '03

NNLL resummation
 Moch. Uwer '08

• 1-loop squared

Korner, Merebashvili, Rogal '06

• NLO tT + jet

Dittmaier, Uwer, Weinzierl '07

High energy asymptotics of 2-loop amplitudes quark annihilation MC, Mitov, Moch '07 gluon fusion MC, Mitov, Moch '07 Full mass dependence of 2-loop • amplitudes **quark annihilation** MC '08 gluon fusion Baernreuther, MC (in preparation)

Contributions to the cross section

The new inventionbased on some earlier ideas by Czyz, Caffo, Remiddi '02

 Determine the coefficients of the mass expansions using differential equations in m_s obtaining the power corrections

$$\mathbf{m}_{s} \frac{d}{dm_{s}} \mathbf{M}_{i}(\mathbf{m}_{s}, \mathbf{x}, \epsilon) = \sum_{j} \mathbf{C}_{ij}(\mathbf{m}_{s}, \mathbf{x}, \epsilon) \mathbf{M}_{j}(\mathbf{m}_{s}, \mathbf{x}, \epsilon)$$

- Evaluate the expansions for $m_{\!s}\!\ll\!1\,$ to obtain the desired numerical precision of the boundaries
- Evolve the functions from the boundary point with differential equations first in m_e and then in x (**ZVODE**)

The hardest part

invented for Bhabha scattering by MC, Gluza, Riemann '06

• Compute the high energy asymptotics of the master integrals using Mellin-Barnes representations in order to obtain the leading behaviour of the amplitude

- Computational complexity
- 190 diagrams2812 integrals145 master integrals
- Even worse for gluon fusion
- 726 diagrams8676 integrals422 master integrals
- Convergence regions for a small mass expansion

- 1 % accuracy region of the leading asymptotics (MC, Mitov, Moch '07)
 - 1 ‰ accuracy region of the expansion

m^2 = .2 s, t = -0.45 s

	ϵ^{-4}	ϵ^{-3}	ϵ^{-2}	ϵ^{-1}	ϵ^0
A	0.22625	1.391733154	-2.298174307	-4.145752449	17.37136599
B	-0.4525	-1.323646320	8.507455541	6.035611156	-35.12861106
C	0.22625	-0.06808683395	-18.00716652	6.302454931	3.524044913
D_l		-0.22625	0.2605057339	-0.7250180282	-1.935417247
D_h			0.5623350684	0.1045606449	-1.704747998
E_l		0.22625	-0.3323207300	7.904121951	2.848697837
E_h			-0.5623350684	4.528240788	12.73232424
F_l					-1.984228442
F_{lh}					-2.442562819
F_h					-0.07924540546

- Numerical stability requires higher precision
- Global error determined by contour variation
- Due to relatively slow evaluation one needs interpolation based on a grid of values for Monte-Carlo generation (grid available on arXiv)

	leading color			full color		
number of masters	36			145		
number of functions	155			595		
precision	quadruple		double	quadruple		double
evolution in m_s						
requested local error	10^{-20}	10^{-12}	10^{-12}	10^{-20}	10^{-12}	10^{-12}
contour deformation δm_s	0.1	0.1	0.1	0.1	0.1	0.1
number of steps taken	2319	618	534	2932	777	1302
Jacobian evaluation time [ms]	3.4	3.4	0.2	37	37	4.9
evolution in x						
requested local error	10^{-18}	10^{-10}	10^{-10}	10^{-18}	10^{-10}	10^{-10}
contour deformation δx	0.1	0.1	0.1	0.1	0.1	0.1
number of steps taken	545	139	139	739	174	432
Jacobian evaluation time [ms]	8.3	8.3	0.4	150	150	17
total evaluation time [s]	49	13	< 1	957	243	26

• Problems at the singular points of the differential equations

Jacobian singularity	branching	allowed	interpretation			
$m_s = 0$	yes		collinear singularity			
$m_s = 1/4$	yes		s-channel threshold			
$m_s = -1/4$	-					
x = 0	yes		t-channel threshold			
x = 1	yes		u-channel threshold			
x = 1/2	-	yes	perpendicular scattering			
$m_s = x (1 - x)$			forward/backward scattering			
$m_s = x$, , , , , , , , , , , , , , , , , , , ,			
$m_s = 1 - x$				finite nart of the beconic I beaut lenter		
$m_s = -x$						
$m_s = x - 1$				contribution		
$m_s = 1/2 x (1-x)$		yes		Contribution		
$m_s = 1/2 x$		yes				
$m_s = 1/2 (1-x)$		yes				
$m_s = 1/2 \left(1 - x^2\right)$				m = 0.2 $d = 1/10(x = 0.4E)$		
$m_s = -1/2 (1-x)^2$				$III_s = 0.2, U = 1/10(X - 0.45)$		
L , , , , , , , , , , , , , , , , , , ,	•	1				
			/			
l avlor ex	coans	sion	s around arb	itrary points as a possible solution		
$469.555 - 14.5383 d + 17.4298 d^{2} - 0.448744 d^{3} - 0.0600637 d^{4} + $						
$0.0325809 d^5 - 0.00888086 d^6 + 0.00212687 d^7 - 0.000528458 d^8 +$						
$0, 000118944 d^9 = 0, 0000286279 d^{10}, 6, 29261 \times 10^{-6} d^{11} = 1, 51017 \times 10^{-6} d^{12}$						
0.000118944 a = 0.00002862/9 a = + 6.39261×10 a = - 1.51017×10 a = +						

 $\begin{array}{l} 3.37839 \times 10^{-7} \ d^{13} \ - \ 7.88119 \times 10^{-8} \ d^{14} \ + \ 1.76849 \times 10^{-8} \ d^{15} \ - \ 4.09387 \times 10^{-9} \ d^{16} \ + \\ 9.10803 \times 10^{-10} \ d^{17} \ - \ 2.2892 \times 10^{-10} \ d^{18} \ + \ 9.93296 \times 10^{-12} \ d^{19} \ - \ 8.09343 \times 10^{-11} \ d^{20} \end{array}$

• Extremely efficient implement with sparse matrix multiplication and multiple precision (e.g. 128 digits needs 10 seconds for 21 terms)

• Decent precision needed at the edges of the phase space for total cross section contribution in dimensional regularization

$$d\Omega \sim \int_{-1}^{+1} d\cos\theta (1 - \cos^2\theta)^{-\epsilon}$$

$$\approx \int_{-1}^{+1} d\cos\theta \left(1 - \epsilon \log(1 - \cos^2\theta) + \frac{\epsilon^2}{2} \log^2(1 - \cos^2\theta) + ... \right)$$

$$x = \frac{1}{2} (1 - \beta \cos\theta)$$

- Contribution to the total cross section at $m_s = 0.2$, obtained with
 - 2 Taylor expansions around x = 0.45 and x = 0.55 (unrenormalized)

$$\int_{-1}^{+1} \mathrm{d}\cos\theta \left(1 - \cos^2\theta\right)^{-\epsilon} 2\,\Re \left\langle \mathsf{M}^{(0)} | \mathsf{M}^{(2)} \right\rangle \approx$$

with 17 terms

 $\frac{53.0963}{\epsilon^4} - \frac{665.629}{\epsilon^3} + \frac{2524.60}{\epsilon^2} - \frac{21.6349}{\epsilon} + 16206.6$

with 18 terms

$$\frac{53.0963}{\epsilon^4} - \frac{665.630}{\epsilon^3} + \frac{2524.60}{\epsilon^2} - \frac{21.6359}{\epsilon} + 16206.6$$

with 19 terms

$$\frac{53.0963}{\epsilon^4} - \frac{665.630}{\epsilon^3} + \frac{2524.60}{\epsilon^2} - \frac{21.6353}{\epsilon} + 16206.6$$

Conclusions

- The total cross section will be measured to better than 10% at the LHC and can be used for callibration and alternative mass measure
- The error from scale variation at NLO is about 12%
- Soft gluon resummations not sufficient and do not fit into MC
- Known at NNLO are
 - PDFs
 - square of the one-loop matrix element
 - tT + jet cross section
 - leading behaviour at high energy of the 2-loop virtual corrections
 - exact virtual corrections in the quark annihilation channel
- Next: remaining virtuals and real radiation
- Lots of work before a satisfactory Monte-Carlo implementation