NNLO corrections to jet rates and event shapes in e^+e^- annihilation

Thomas Gehrmann

(in collaboration with A. Gehrmann-De Ridder, E.W.N. Glover, G. Heinrich)

Universität Zürich

Loopfest 2008 - Buffalo

$e^+e^- \rightarrow 3$ jets and event shapes

Classical QCD observable

- testing ground for QCD: perturbation theory, power corrections and logarithmic resummation
- ${}$ precision measurement of strong coupling constant $lpha_s$
- Current error on α_s from jet observables dominated by theoretical uncertainty:
 S. Bethke, 2006

 $\alpha_s(M_Z) = 0.121 \pm 0.001 (\text{experiment}) \pm 0.005 (\text{theory})$

- theoretical uncertainty largely from missing higher orders
- previous status: NLO plus NLL resummation

Theoretical description

- easier than at hadron colliders, since coloured partons only in final state: no initial state emission, no parton distributions
- new calculational methods first developed for e^+e^- , then extended to hadronic processes

$$e^+e^- \rightarrow 3$$
 jets and event shapes

Event shape variables

assign a number x to a set of final state momenta: $\{p\}_i \to x$

e.g. Thrust in e^+e^-

$$T = \max_{\vec{n}} \frac{\sum_{i=1}^{n} |\vec{p_i} \cdot \vec{n}|}{\sum_{i=1}^{n} |\vec{p_i}|}$$

limiting values:

- back-to-back (two-jet) limit: T = 1
- spherical limit: T = 1/2

 $e^+e^- \rightarrow 3$ jets and event shapes

Standard Set of LEP

Thrust (E. Farhi)

$$T = \max_{\vec{n}} \left(\sum_{i=1}^{n} |\vec{p_i} \cdot \vec{n}| \right) / \left(\sum_{i=1}^{n} |\vec{p_i}| \right)$$

Heavy jet mass (L. Clavelli, D. Wyler)

$$M_i^2/s = \frac{1}{E_{\text{vis}}^2} \left(\sum_{k \in H_i} |\vec{p_k}|\right)^2$$

C-parameter: eigenvalues of the tensor (G. Parisi)

$$\Theta^{\alpha\beta} = \frac{1}{\sum_{k} |\vec{p_k}|} \, \frac{\sum_{k} p_k^{\alpha} p_k^{\beta}}{\sum_{k} |\vec{p_k}|}$$

Jet broadenings (P.E.L. Rakow, B. Webber)

$$B_i = \left(\sum_{k \in H_i} |\vec{p_k} \times \vec{n_T}|\right) / \left(2\sum_k |\vec{p_k}|\right)$$

 $B_W = \max(B_1, B_2)$ $B_T = B_1 + B_2$

3 $j \rightarrow 2j$ transition parameter in Durham algorithm y_{23}^D S.Catani, Y.L.Dokshitzer, M.Olsson, G.Turnock, B.Webber

$e^+e^- \rightarrow 3$ jets and event shapes

Current status: NLO and NLL

- NLO calculations of event shapes and 3*j* R.K. Ellis, D.A. Ross, A.E. Terrano; Z. Kunszt
 J. Vermaseren, K.F. Gaemers, S.J. Oldham; L. Clavelli, D. Wyler
- NLO parton level event generators for 3j EVENT: Z. Kunszt, P. Nason EERAD: W. Giele, E.W.N. Glover EVENT2: S. Catani, M. Seymour
- NLO parton level event generators for 4j MenloParc: L.D. Dixon, A. Signer EERAD2: J. Campbell, M. Cullen, E.W.N. Glover Debrecen: Z. Nagy, Z. Trocsanyi Mercurito: D. Kosower, S. Weinzierl

NLL resummation

S. Catani, L. Trentadue, G. Turnock, B. Webber; Y.L. Dokshitzer, A. Lucenti, G. Marchesini, G.P. Salam; A. Banfi, G. Zanderighi

Power corrections

G. Korchemsky, G. Sterman; Y. Dokshitzer, B.R. Webber

Ingredients to NNLO $e^+e^- \rightarrow 3$ -jet

Two-loop matrix elements

$|\mathcal{M}|^2_{2}$ -loop,3 partons

explicit infrared poles from loop integrals

L. Garland, N. Glover, A. Koukoutsakis, E. Remiddi, TG; S. Moch, P. Uwer, S. Weinzierl

explicit infrared poles from loop integral and implicit infrared poles due to single unresolved radiation Z. Bern, L. Dixon, D. Kosower, S. Weinzierl; J. Campbell, D.J. Miller, E.W.N. Glover

Tree level matrix elements

implicit infrared poles due to double unresolved radiation

K. Hagiwara, D. Zeppenfeld;F.A. Berends, W.T. Giele, H. Kuijf;N. Falck, D. Graudenz, G. Kramer

Infrared Poles cancel in the sum

NNLO Infrared Subtraction

Structure of NNLO *m*-jet cross section:

$$\begin{split} \mathrm{d}\sigma_{NNLO} &= \int_{\mathrm{d}\Phi_{m+2}} \left(\mathrm{d}\sigma_{NNLO}^R - \mathrm{d}\sigma_{NNLO}^S \right) \\ &+ \int_{\mathrm{d}\Phi_{m+1}} \left(\mathrm{d}\sigma_{NNLO}^{V,1} - \mathrm{d}\sigma_{NNLO}^{VS,1} \right) \\ &+ \int_{\mathrm{d}\Phi_m} \mathrm{d}\sigma_{NNLO}^{V,2} + \int_{\mathrm{d}\Phi_{m+2}} \mathrm{d}\sigma_{NNLO}^S + \int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\sigma_{NNLO}^{VS,1} , \end{split}$$

$$\square$$
 d σ^{S}_{NNLO} : real radiation subtraction term for d σ^{R}_{NNLO}

- $d\sigma^{V,2}_{NNLO}$: two-loop virtual corrections

Each line above is finite numerically and free of infrared ϵ -poles \longrightarrow numerical programme

Numerical Implementation

Structure of $e^+e^- \rightarrow 3$ jets program:

Numerical Implementation

Antenna subtraction

NLO: M. Cullen, J. Campbell, E.W.N. Glover; D. Kosower; A. Daleo, D. Maitre, TG NNLO: A. Gehrmann-De Ridder, E.W.N. Glover, TG

- \frown construct subtraction terms from physical $1 \rightarrow 3$ and $1 \rightarrow 4$ matrix elements
- each antenna function interpolates between all limits associated to one or two unresolved partons
- Integrated subtraction terms cancel infrared pole structure of two-loop matrix element
 - S. Catani; G. Sterman, M.E. Yeomans-Tejeda

Checks

- cancellation of infrared poles in 3-parton and 4-parton channel
- convergence of subtraction terms towards matrix elements along phase space trajectories
- distributions in raw phase space variables
- Independence on phase space cut y_0

Three-jet cross section at NNLO

NNLO corrections: jet rates

Three-jet fraction in Durham jet algorithm

$$y_{i,j,D} = \frac{2\min(E_i^2, E_j^2) (1 - \cos\theta_{ij})}{E_{vis}^2}$$

• vary
$$\mu = [M_Z/2; 2M_Z]$$

determine minimal and maximal values

$$\delta = \frac{\max(\sigma) - \min(\sigma)}{2\sigma(\mu = M_Z)}$$

- NNLO corrections small
- substantial reduction of scale dependence
- better description towards lower jet resolution

Three-jet cross section at NNLO

NNLO corrections: jet rates

substantial improvement towards lower $y_{
m cut}$

two-jet rate now NNNLO

Event shapes at NNLO

NNLO thrust and heavy mass distributions

- theory uncertainty reduced by about 40 %
- Iarge 1 T, $\rho > 0.33$: kinematically forbidden at LO
- Small 1 T, ρ : two-jet region, need matching onto NLL resummation G. Luisoni, H. Stenzel, TG
- need to include hadronization corrections

Event shapes at NLLA+NNLO

Matching onto resummation

G. Luisoni, H. Stenzel, TG

- resummation to NLLA (S. Catani, L. Trentadue, G. Turnock, B. Webber;
 Y.L. Dokshitzer, A. Lucenti, G. Marchesini, G.P. Salam; A. Banfi, G. Zanderighi)
- NLO and NLLA+NLO differ in normalisation throughout the full kinematical range
- difference between NNLO and NLLA+NNLO restricted to the two-jet region
- improved scale-dependence in three-jet region
- Scale-dependence of NLLA dominant → need higher orders in resummation
 T. Becher, M. Schwartz: thrust beyond NLLA
 NNLO corrections to jet rates and event shapes in e^+e^- annihilation p.13

Comparison with data

High precision data from all LEP experiments, compare here to ALEPH

- include quark mass effects to NLO P. Nason, C. Oleari W. Bernreuther, A. Brandenburg, P. Uwer G. Rodrigo, A. Santamaria
- Include hadronization corrections HERWIG: B. Webber et al. ARIADNE: T. Sjostrand et al.
- try new fit of α_s, based on ALEPH analysis
 G. Dissertori, A. Gehrmann-De Ridder,
 G. Heinrich, H. Stenzel, TG

Extraction of α_s

- clear improvement of NNLO over NLO
- good fit quality
- extended range of good description in 3-jet region
- matched NLO+NNLA still yields a better prediction in 2-jet region
- value of α_s lower than at NLO, but still rather high

Extraction of α_s

Uncertainty from renormalisation scale

Extraction of α_s

Result for all ALEPH event shapes of LEP1/LEP2

 $\alpha_s(M_Z) = 0.1240 \pm 0.0008(stat) \pm 0.0010(exp) \pm 0.0011(had) \pm 0.0029(theo)$

Outlook

Next steps:

G.P. Salam

include electroweak corrections
 C. Carloni-Calame, S. Moretti,
 F. Piccinini, D. Ross

resummation and matching at NNLLA

Summary and Outlook

- completed calculation of NNLO corrections to event shapes and $e^+e^- \to 3j$
- improved theory uncertainty
 - **•** by 30% (T, C) to 60% R_{3j}
- new extraction of α_s :
 - improved consistency between different shape variables
 - Iower theory uncertainty
- more phenomenology to come
- Precision calculations for jet observables at LHC in progress