Darren Forde (SLAC & UCLA)

AUTOMATED COMPUTATION OF ONE-LOOP AMPLITUDES

Work in collaboration with C. Berger, Z. Bern, L. Dixon, F. Febres Cordero, H. Ita, D. Kosower, D. Maître. arxiv: 0803.4180 [hep-ph]

OVERVIEW – NLO COMPUTATIONS

Maximising discovery potential of the LHC \Rightarrow require NLO amplitudes,

- Computation of QCD Backgrounds.
- Many process required.
- Typically of high multiplicity.
- Automation needed.

Automate computation of one-loop amplitudes using *BlackHat*

- Generalised Unitarity.
- On-shell recursion.

WHAT DO WE NEED?

× One-loop high multiplicity processes,

Newest Les Houches list, (2007)

Process	Comments	
$(V \in \{Z, W, \gamma\})$		
4. $pp \rightarrow t\bar{t} b\bar{b}$ 5. $pp \rightarrow t\bar{t}+2jets$ 6. $pp \rightarrow VV b\bar{b}$, 7. $pp \rightarrow VV+2jets$ 8. $pp \rightarrow V+3jets$	relevant for $t\bar{t}H$ relevant for $t\bar{t}H$ relevant for $VBF \rightarrow H \rightarrow VV$, $t\bar{t}H$ relevant for $VBF \rightarrow H \rightarrow VV$ VBF contributions calculated by (Bozzi/)Jäger/Oleari/Zeppenfeld. various new physics signatures	
NLO calculations added to list in 2007		
9. $pp \rightarrow b\bar{b}b\bar{b}$	Higgs and new physics signatures	

WHAT'S BEEN DONE?

- × Using analytic and numerical techniques
 - + QCD corrections to vector boson pair production (W^+W^- , W Z & ZZ) via vector boson fusion (VBF). (Jager, Oleari, Zeppenfeld)+(Bozzi)
 - + QCD and EW corrections to Higgs production via VBF. (Ciccolini, Denner, Dittmaier)
 - + $pp \rightarrow WW + j + X$. (Campbell, Ellis, Zanderighi). (Dittmaier, Kallweit, Uwer)
 - + $pp \rightarrow Higgs + 2 \text{ jets.}$ (Campbell, Ellis, Zanderighi), (Ciccolini, Denner, Dittmaier).
 - + $pp \rightarrow$ Higgs+3 jets (leading contribution) (Figy, Hankele, Zeppenfeld).

+ $pp \rightarrow ZZZ, pp \rightarrow t\bar{t}H$, (Lazopoulos, Petriello, Melnikov) $pp \rightarrow t\bar{t}Z$ +(McElmurry)

- + $pp \rightarrow ZZZ$, WZZ, WWZ, ZZZ (Binoth, Ossola, Papadopoulos, Pittau),
- + $pp \rightarrow W/Zbb$ (Febres Cordero, Reina, Wackeroth),
- + $gg \rightarrow gggg$ amplitude. (Ellis, Giele, Zanderighi)
- + 6 photons (Nagy, Soper), (Ossola, Papadopoulos, Pittau), (Binoth, Heinrich, Gehrmann, Mastrolia)

AUTOMATION

- × Large number of processes to calculate (for the LHC),
 - + Automatic procedure highly desirable.
- × We want to go from

× Implement new methods numerically.

TOWARDS AUTOMATION

- Many different one-loop computational approaches,
 - OPP approach solving system of equations numerically, gives integral coefficients (Algorithm implemented in CutTools) (Ossola, Papadopoulos, Pittau), (Mastrolia, Ossola, Papadopoulos, Pittau)
 - + D-dimensional unitarity + alternative implementation of OPP approach (Ellis, Giele, Kunszt), (Giele, Kunszt, Melnikov)
 - + General formula for integral coefficients (Britto, Feng) + (Mastrolia) + (Yang)
 - + Computation using Feynman diagrams (Ellis, Giele, Zanderighi) (GOLEM (Binoth, Guffanti, Guillett, Heinrich, Karg, Kauer, Pilon, Reiter))
- **BlackHat** (Berger, Bern, Dixon, Febres Cordero, DF, Ita, Kosower, Maître)

(Berger, Bern, Dixon, Febres Cordero, DF, Ita, Kosower, Maître)

BlackHat

THE UNITARITY BOOTSTRAP

× Use the most efficient approach for each piece,

A SIMPLE IDEA

Integrate over a

circle at infinity

Branch cuts

Z

 $A_n(0)$

× Function of a complex variable containing only simple poles.

(Britto, Cachazo, Feng, Witten) (Bern, Dixon, Kosower)+(Berger, DF)

$$\frac{1}{2i\pi} \prod_{C} dz \frac{A_n(z)}{z} = 0 \qquad A_n(0) = -\sum_{\text{poles}} \operatorname{Res}_z \frac{A_n(z)}{z}$$

 Factorisation properties of amplitude give on-shell recursion.

Unitarity techniques, gives loop cut pieces, C

ON-SHELL RECURSION RELATIONS

* At one-loop recursion using on-shell tree amplitudes, *T*, and rational pieces of one-loop amplitudes, *R*,

(T) (R) (R)

- × Sum over all factorisations.
- Inf" term from auxiliary recursion.
- Not the complete rational result, missing "Spurious" poles.

SPURIOUS POLES

- × Shifting the amplitude by $z \Rightarrow A(z) = C(z) + R(z)$
 - + Poles in *C* as well as branch cuts e.g.

 $bI_2 = \frac{\tilde{b}}{K_1^2 - K_2^2} \ln(-K_1^2) \to \frac{\tilde{b}}{K_1^2 - K_2^2 - zY} \ln(-K_1^2 - z\tilde{Y})$

- + Not related to factorisation poles $s_{l...m}$, i.e. do not appear in the final result.
- Cancel against poles in the rational part.
- × Use this to compute spurious poles from residues of the cut terms. $-\sum \operatorname{Res}_{z=z} \frac{C(z)}{z=R_{z}} = R_{z}$
- × Location of all spurious poles, z_s , is know
 - Poles located at the vanishing of shifted Gram determinants of boxes and triangles.

ONE-LOOP INTEGRAL BASIS

- × Numerical computation of the "cut terms".
- A one-loop amplitude decomposes into

 $\sum b_i$

Want these coefficients

Rational terms, from recursion.

1-loop scalar integrals (Ellis, Zanderighi) , (Denner, U. Nierste and R. Scharf), (van Oldenborgh, Vermaseren) + many others.

Compute the coefficients from unitarity by taking cuts

$$\frac{1}{(l-K_i)^2+i\varepsilon} \rightarrow (2\pi) \,\delta((l-K_i)^2)$$

 $\left(\right) + \sum c_{ij}$

Glue together tree amplitudes

* Apply multiple cuts, generalised unitarity. (Bern, Dixon, Kosower) (Britto, Cachazo, Feng)

BOX COEFFICIENTS

4 delta functions

 l_2

× Quadruple cuts freeze the integral \Rightarrow coefficient (Britto, Cachazo, Feng) In 4 dimensions 4 integrals

 $\Rightarrow l_1^2 = 0, l_2^2 = 0, l_3^2 = 0, l_4^2 = 0$

 $d_{ijk} = \frac{1}{2} \sum_{a=1}^{\infty} A_1(l_{ijk;a}) A_2(l_{ijk;a}) A_3(l_{ijk;a}) A_4(l_{ijk;a})$ Box Gram determinant appears in the denominator.

 $\Delta_{4} = -2\left\langle 1^{-} \left| \mathcal{K}_{2}\mathcal{K}_{4} \right| 1^{+} \right\rangle \left\langle 1^{+} \left| \mathcal{K}_{2}\mathcal{K}_{4} \right| 1^{-} \right\rangle$

Spurious poles will go as the power of l^{μ} in the integrand.

TWO-PARTICLE AND TRIPLE CUTS

Disentangle these coefficients.

Isolates a single triangle

BUBBLES & TRIANGLES

Compute the coefficients using different numbers of cuts

Depends upon unconstrained components of loop momenta.

Quadruple cuts, gives box coefficients

- Analytically examining the large value behaviour of the integrand in these components gives the coefficients (DF) (extension to massive loops (Kilgore))
- Modify this approach for a numerical implementation.

TRIANGLE COEFFICIENTS

BUBBLE COEFFICIENTS

NUMERICAL SPURIOUS POLE EXTRACTION

- Numerically extract spurious poles, use known pole locations.
- × Expand Integral functions at the location of the poles, $\Delta_j(z)=0$, e.g.

$$\begin{split} I_{3m}^{3}(s_{1},s_{2},s_{3}) &\to \frac{1}{6} \frac{\Delta_{3}}{s_{1}s_{2}s_{3}} - \frac{s_{1} + s_{2} + s_{3}}{120} \left(\frac{\Delta_{3}}{s_{1}s_{2}s_{3}}\right)^{2} + \dots \\ & -\frac{1}{2} \sum_{i=1}^{3} \ln(-s_{1}) \frac{s_{i} - s_{i+1} - s_{i-1}}{s_{i+1}s_{i-1}} \left[1 - \frac{1}{6} \frac{\Delta_{3}}{s_{i+1}s_{i-1}} + \dots\right] \\ \end{split}$$

***** The coefficient multiplying this is also a series in $\Delta_i(z)=0$, e.g.

$$C_0(\Delta_3) \rightarrow \frac{a_3}{\Delta_3^3} + \frac{a_2}{\Delta_3^2} + \frac{a_1}{\Delta_3} + \dots$$

× Numerically extract the $1/\Delta_i$ pole from the combination of the two, this is the spurious pole.

NUMERICAL STABILITY

- × Use double precision for majority of points \Rightarrow good precision.
- For a small number of exceptional points use higher precision (up to ~32 or ~64 digits.)
- Detect exceptional points using three tests,
 - + Bubble coefficients in the cut must satisfy,

$$\left. A_n^{\text{1-loop}} \right|_{1/\varepsilon, \text{ non-log}} = \sum_k b_k = -\left[\left(\frac{11}{3} - \frac{2}{3} \frac{n_f}{N_c} \right) \right] A_n^{\text{tree}}$$

+ For each spurious pole, z_s , the sum of all bubbles must be zero,

$$A_n^{1-\text{loop}}(z_s)\Big|_{1/\varepsilon, \text{ non-log}} = \sum_k b_k(z_s) = 0$$

+ Large cancellation between cut and rational terms.

Box and Triangle terms feed into bubble, so we test all pieces.

MHV RESULTS

× Precision tests using 100,000 phase space points with cuts. + $E_T > 0.01 \sqrt{s}$.

NMHV RESULTS

× Other 6-pt amplitudes are similar

Precision

MORE MHV RESULTS

× Again similar results when increasing the number of legs

Precision

TIMING

× On a 2.33GHz Xenon processor we have

Helicity	Cut part Only	Full double prec.	Full Multi prec.
++++	2.4ms	6.8ms	8.3ms
+++++	4.2ms	10.5ms	14ms
++++++	6.1ms	28ms	43ms
-+-++	3.1ms	17.3ms	24ms
-++-++	3.3ms	60ms	76ms
+++	4.4ms	12ms	16ms
+-++	5.9ms	42ms	48ms
-+-+-+	6.9ms	62ms	80ms

- The effect of the computation of higher precision at exceptional points can be seen.
- Computation of spurious poles is the dominant part.

CONCLUSION

BlackHat

 Uses the unitarity bootstrap to numerically compute one loop amplitudes.

First results

- Multiple gluon amplitudes.
- Good control of numerical instabilities.
- Control of
 exceptional points.
- Reasonable speed.

Future work

- Include fermions and vector bosons.
- Massive particles.
- Combine into full NLO corrections.