NLO QCD corrections to VVV production

Vera Hankele* Institut für Theoretische Physik Universität Karlsruhe (TH)

Bundesministerium für Bildung und Forschung

- Motivation
- Calculation and Checks
- Cross section and distributions for W⁺W⁻Z
- Cross section and distributions for ZZW⁺
- Summary

* in collaboration with D. Zeppenfeld, S. Prestel, C. Oleari and F. Campanario

Motivation

physics motivation:

- SM background for SUSY processes with leptons + $p \!\!\!\!/_T$ in the final state.
- Possibility to obtain information about quartic electroweak couplings.

status of the calculations:

- Calculation of QCD corrections to ZZZ production without Higgs-contribution and leptonic decays. [Lazopoulos, Melnikov, Petriello; hep-ph/0703273]
- Calculation of QCD corrections to W⁺W⁻Z production with leptonic decays. [V.H., Zeppenfeld; arXiv:0712.3544]
- In Progress: ZZW[±] and W[±]W[∓]W[±] production with leptonic decays.
 [In preparation: V.H., Zeppenfeld, Campanario, Prestel, Oleari]
- Calculation of QCD corrections to ZZZ, W⁺W⁻Z, W⁺W⁻W⁺ and ZZW⁺ production without Higgscontribution and leptonic decays.
 [Binoth, Ossola, Papadopoulos, Pittau; arXiv:0804:0350]

loopfest VII: 15th May '08

- All resonant and non-resonant matrix elements as well as spin correlations of final state leptons and Higgs contribution included.
- Interference terms due to identical particles in the final state have been neglected.
- All fermion mass effects neglected. ($H\tau\tau$ -coupling = 0)

Matrix element calculation

- In total 180 Feynman-Graphs ⇒ helicity amplitude method. [Hagiwara and Zeppenfeld; Nucl.Phys.B274:1,1986.]
- Additional increase in speed: Same building blocks appear in different Feynman-Graphs. They are calculated only once per phase space point.

 \Rightarrow Hand written code for LO process is more than 4 \times faster than MadGraph generated code.

$$\sigma^{NLO} = \int d\sigma^{NLO} = \int_{m+1} d\sigma^R + \int_m d\sigma^V + \int_m d\sigma^C$$

- $\int_{m+1} d\sigma^R$ and $\int_m d\sigma^V$ are separately IR divergent in 4 dimensions.
- Introduce local counter-term $d\sigma^A$ with the same singular behavior as $d\sigma^R$.

$$\sigma^{NLO} = \underbrace{\int_{m+1} \left[\left(d\sigma^R \right)_{\epsilon=0} - \left(d\sigma^A \right)_{\epsilon=0} \right]}_{\epsilon=0} + \underbrace{\int_m \left[d\sigma^V + \int_1 d\sigma^A \right]_{\epsilon=0}}_{\epsilon=0} + \underbrace{\int_m d\sigma^C}_{m}$$

Can be integrated numerically in 4 dimensions.

Cancel poles analytically.

Additional finite collinear term.

Real emission: matrix element

- In total 416 Feynman diagrams.
- Leptonic tensors can be calculated once per phase space point, stored and reused for different Feynman diagrams.
 - \Rightarrow Hand written code for LO process is more than 12 \times faster than MADGRAPH generated code.

Real emission: $\int_{m+1} \left[\left(d\sigma^R \right)_{\epsilon=0} - \left(d\sigma^A \right)_{\epsilon=0} \right]$

• Subtraction term for emission of a gluon from parton a:

$$d\sigma^{A} = \frac{1}{2 \ x \ p_{a} \cdot p_{g}} \ 8\pi \alpha_{S} \ C_{F} \ \left[\frac{2}{1-x} - (1+x)\right] \left|M_{B}(\tilde{k}_{1}, ..., \tilde{k}_{6}; \tilde{p}_{a}, p_{b})\right|^{2}$$

with

$$x = 1 - \frac{p_g \cdot (p_a + p_b)}{p_a \cdot p_b}$$

• And similar for gluons in the initial state.

• Three different types of virtual contributions:

 Boxline- and Pentline-contributions have same structure as in V + 2 Jet- and V V + 2 Jet-production. In dimensional regularization:

$$M_V = \tilde{M}_V + \frac{\alpha_S}{4\pi} C_F \left(\frac{4\pi\mu^2}{s}\right)^{\epsilon} \Gamma(1+\epsilon) \left[-\frac{2}{\epsilon^2} - \frac{3}{\epsilon} - 8 + \frac{4\pi^2}{3}\right] M_B.$$

- Calculation of finite contribution \tilde{M}_V :
 - Box-routine from [Oleari, Zeppenfeld: hep-ph/0310156].
 - Pentagon-routine from [Jäger, Oleari, Zeppenfeld: hep-ph/0603177],

[Jäger, Oleari, Zeppenfeld, Bozzi: hep-ph/0701105].

• Actually needed: LO + virtual contribution:

$$\begin{split} |M_B + M_V|^2 &= (M_B + M_V) \cdot (M_B^* + M_V^*) = |M_B|^2 + M_V M_B^* + M_B M_V^* + \mathcal{O}(\alpha_S^2) \\ &= |M_B|^2 + 2 \ Re[M_V M_B^*] + \mathcal{O}(\alpha_S^2) \end{split}$$

• virtual contribution:

$$2 Re[M_V M_B^*] = 2 Re[\tilde{M}_V M_B^*] + \frac{\alpha_S}{2\pi} C_F \left(\frac{4\pi\mu^2}{s}\right)^{\epsilon} \Gamma(1+\epsilon) \left[-\frac{2}{\epsilon^2} - \frac{3}{\epsilon} - 8 + \frac{4\pi^2}{3}\right] |M_B|^2$$

• integrated dipole:

$$\langle p_a, p_b \mid \mathbf{I} \mid p_a, p_b \rangle = \frac{\alpha_S}{2\pi} C_F \left(\frac{4\pi\mu^2}{s}\right)^{\epsilon} \Gamma(1+\epsilon) \left[\frac{2}{\epsilon^2} + \frac{3}{\epsilon} + 10 - \frac{4\pi^2}{3}\right] \left|M_B\right|^2$$

 \Rightarrow virtual contribution + integrated dipole:

$$\langle \dots | \mathbf{I} | \dots \rangle + 2 \operatorname{Re} \left[M_V \cdot M_B^* \right] = \frac{\alpha_S}{2\pi} C_F \left[2 \left| M_B \right|^2 + 2 \operatorname{Re} \left[\tilde{M}_V \cdot M_B^* \right] \right]$$

loopfest VII: 15th May '08

- Pentagon routine is quite time consuming.
- \Rightarrow shift polarization vectors in order to reduce magnitude of pentagon contribution:

$$\epsilon_V^\mu = x_V q_V^\mu + \tilde{\epsilon}_V^\mu.$$

• pentagons contracted with momenta instead of pol. vectors can be expressed in terms of boxes.

• Reduction of Pentagon contribution to the cross section by more than a factor of 8.

• For hadrons (partons) in the initial state: additional finite terms:

$$egin{aligned} &\sigma^{coll}(qar{q} o
u_e e^+ \mu^- ar{
u}_\mu) = \int_0^1 dx_a \int_0^1 dx_b \; d\Phi_6(k_1, \dots k_6; p_a + p_b) \; rac{1}{2\hat{s}} \mid M_{Born} \mid^2 \ & * \left[f^c_{q/p}(x_a, \mu_F) \; f_{ar{q}/p}(x_b, \mu_F) + f_{q/p}(x_a, \mu_F) \; f^c_{ar{q}/p}(x_b, \mu_F)
ight] \end{aligned}$$

with the modified Parton Distribution Function

$$\begin{split} f_{q/p}^{c}(x_{a},\mu_{F}) &= \frac{\alpha_{S}}{2\pi} \int_{x_{a}}^{1} \frac{dx}{x} \Big\{ f_{g/p}\left(\frac{x_{a}}{x},\mu_{F}\right) \ A(x) \\ &+ \left[f_{q/p}\left(\frac{x_{a}}{x},\mu_{F}\right) - x f_{q/p}\left(x_{a},\mu_{F}\right) \right] \ B(x) + f_{q/p}\left(\frac{x_{a}}{x},\mu_{F}\right) \ C(x) \Big\} \\ &+ \frac{\alpha_{s}}{2\pi} f_{q/p}(x_{a},\mu_{F}) \ D(x_{a}) \end{split}$$

where
$$A(x) = T_R \left[2 \ x(1-x) + (x^2 + (1-x)^2) \ \ln\left(\frac{(1-x)^2 Q^2}{x \mu_F^2}\right) \right]$$

loopfest VII: 15th May '08

- Matrix elements checked against MadGraph.
- LO cross sections checked against MadEvent and HELAC.
- Finite collinear terms are the same for W⁺W⁻ production: We have implemented this process and compared against MCFM.
- Ward identity tests for boxes and pentagons.
- Comparison of ZZZ in narrow width approximation and without Higgs contribution with [Lazopoulos, Melnikov, Petriello; hep-ph/0703273]:
 Agreement at the level of the accuracy of the Monte Carlo runs.
- Comparison of W⁺W⁻Z and ZZW⁺ in narrow width approximation and without Higgs contribution with [Binoth, Ossola, Papadopoulos, Pittau; arXiv:0804:0350]: Agreement for ZZW⁺; Slight discrepancy of 2.5 % for W⁺W⁻Z (in progress)

- PDFs: CTEQ6L1 at LO and CTEQ6M, $\alpha_S(m_Z) = 0.118$ at NLO.
- Cuts and Masses:

 $p_{T_{\ell}} > 10 \text{ GeV}, \qquad |\eta_{\ell}| < 2.5, \qquad m_{\ell\ell} > 15 \text{ GeV}, \qquad m_H = 120 \text{ GeV}.$

• Reference scale for μ_F and μ_R :

$$\mu = m_{WWZ} = \sqrt{(p_{\ell_1} + p_{\ell_2} + p_{\ell_3} + p_{\ell_4} + p_{\nu_1} + p_{\nu_2})^2}.$$

• Generated process: $pp \rightarrow \nu_e e^+ \mu^- \bar{\nu}_\mu \tau^- \tau^+$.

Phenomenologically more interesting: final states with four electrons and/or muons \Rightarrow we have multiplied the results by a combinatorial factor of 8 in all figures.

Higgs mass dependence:

- K-factor is reduced by Higgs contribution.
- K-factor for $pp \rightarrow ZH$ production is about K = 1.3 [Han and Willenbrock, Phys. Lett. B **273** (1991) 167.]

Scale dependence for m_{WWZ} as reference scale:

• Variation of $0.5 < \xi < 2$:

LO: variation of 1.7% (-1% and +0.7%) NLO: variation of 7.7% (+4.4% and -3.3%).

• K-factor is almost constant for $m_{\rm WWZ} > 400~{\rm GeV}$

• K-factor increases with p_T

 \Rightarrow simple multiplication of a constant overall K-factor would seriously change the shape.

- All resonant and non-resonant matrix elements as well as spin correlations of final state leptons included.
- Interference terms due to identical particles in the final state and all fermion mass effects neglected.
- Calculation, cuts and PDFs completely analogous to W⁺W⁻Z case.
- Renormalization and factorization scale: $\mu_F = \mu_R = m_Z$.
- Checks against MadGraph, MadEvent, Ward identity tests, ...

 Comparison of ZZW⁺ in narrow width approximation and without Higgs contribution with [Binoth, Ossola, Papadopoulos, Pittau; arXiv:0804:0350]: Agreement at the level of the accuracy of the Monte Carlo runs.

 Generated process: pp → e⁻ e⁺ μ⁻ μ⁺ ν_τ τ⁺. Phenomenologically more interesting: final states with four electrons and/or muons ⇒ we have multiplied the results by a combinatorial factor of 8 in all figures.

• Variation of $1.5 < \xi < 6$:

LO: variation of 1.0% (-1.3% and -0.3%) NLO: variation of 13.2% (+7.3% and -5.9%).

5-lepton invariant mass distribution:

• The variation of the K-factor is larger as in the W^+W^-Z case.

Transverse momentum distribution for the highest- p_T lepton:

• The K-factor increases with p_T by almost a factor of 3.

Summary

- NLO QCD corrections to W^+W^-Z and ZZW^+ production with leptonic decays have been evaluated.
- All off-shell diagrams as well as the Higgs-contributions have been considered.
- The K-factor is sizeable and NLO corrections lead to substantial shape changes of lepton distributions.
- Scale dependence of the NLO cross section is larger than the variation at LO, which is anomalously small.
- The NLO QCD corrections for W⁺W⁻Z, ZZW⁺, ZZW⁻, W⁺W⁻W⁺ and W⁻W⁺W⁻ production will soon be available in form of a fully flexible parton level Monte Carlo program in the KITCup collection, which is structured like VBFNLO.

http://www-itp.particle.uni-karlsruhe.de/ vbfnloweb.

Backup Slides:

loopfest VII: 15 $^{
m th}$ May '08 $_$

Dependence of the W⁺W⁻Z production cross section on μ_R and μ_F :

• Variation of μ_R : Cross section varies with $\alpha_S(\mu_R)$. • Variation of μ_F : Additional collinear terms and PDFs depend on factorization scale.

• K-factors varies between 2.2 and 1.6

Comparison for ZZW⁺ production with Binoth et al.:

Scale	program	σ^{LO} [fb]	$\sigma^{NLO}[fb]$	K-factor
$0.5 \cdot (3 m_Z)$	KITCup	20.42 ± 0.03	43.02 ± 0.08	2.11
	Paper	20.2 ± 0.1	43.0 ± 0.2	2.12
$(3 m_Z)$	KITCup	20.24 ± 0.03	39.86 ± 0.07	1.98
	Paper	20.0 ± 0.1	39.7 ± 0.2	1.99
$2\cdot(3\ m_Z)$	KITCup	20.03 ± 0.03	37.39 ± 0.07	1.87
	Paper	19.7 ± 0.1	37.8 ± 0.2	1.91

Comparison of cross sections between Binoth et al. and KITCup for ZZW⁺ production.

Scale	program	process	σ^{LO} [fb]	$\sigma^{NLO}[fb]$
$2 m_W + m_Z$	KITCup	W^+W^-Z	97.5 ± 0.1	186.5 ± 0.3
	Paper		96.8 ± 0.6	181.7 ± 0.8
$2 m_Z + m_W$	KITCup	ZZW^+	20.30 ± 0.03	39.87 ± 0.08
	Paper		20.2 ± 0.1	40.4 ± 0.2

Comparison of cross sections between Binoth et al. and KITCup for W^+W^-Z and ZZW^+ production.

Contraction of a pentagon with external momenta:

$$\mathcal{P}_{\mu_{1}\mu_{2}\mu_{3}} = \int \frac{d^{D}l}{(2\pi)^{D}} \frac{\gamma^{\rho}(\not l + \not k_{1} - \not q_{123})\gamma_{\mu_{3}}(\not l + \not k_{1} - \not q_{12})\gamma_{\mu_{2}}(\not l + \not k_{1} - \not q_{1})\gamma_{\mu_{1}}(\not l + \not k_{1})\gamma_{\mu_{1}}(\not l + \not k_{1$$

with $q_{12} = q_1 + q_2$ and $q_{123} = q_1 + q_2 + q_3$

Contraction with $q_2^{\mu_2}$ gives a difference of two boxes

$$q_{2}^{\mu_{2}} \mathcal{P}_{\mu_{1}\mu_{2}\mu_{3}} = \int \frac{d^{D}l}{(2\pi)^{D}} \frac{\gamma^{\rho} \left(\not{l} + \not{k}_{1} - \not{q}_{123}\right) \gamma_{\mu_{3}} \left(\not{l} + \not{k}_{1} - \not{q}_{1}\right) \gamma_{\mu_{1}} \left(\not{l} + \not{k}_{1}\right) \gamma_{\rho}}{l^{2} \left(l + k_{1}\right)^{2} \left(l + k_{1} - q_{1}\right)^{2} \left(l + k_{1} - q_{123}\right)^{2}} - \int \frac{d^{D}l}{(2\pi)^{D}} \frac{\gamma^{\rho} \left(\not{l} + \not{k}_{1} - \not{q}_{123}\right) \gamma_{\mu_{3}} \left(\not{l} + \not{k}_{1} - \not{q}_{12}\right) \gamma_{\mu_{1}} \left(\not{l} + \not{k}_{1}\right) \gamma_{\rho}}{l^{2} \left(l + k_{1}\right)^{2} \left(l + k_{1} - q_{12}\right)^{2} \left(l + k_{1} - q_{123}\right)^{2}}.$$

• Same relation for complete pentline and boxline contribution.

Pentagons contracted with an external momentum can be expressed in terms of boxes. Pentline contributions are discarded when the two ways of calculating these terms differ by more than δ .