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Introduction
• Lesson from the TEVATRON: 

shower matched fixed order calculations a must!

• This makes one-loop corrections with high number of 
external particles relevant

• The showers will provide the “phase space integrations”, 
combine virtual and real, etc..

One vertical integrated modular

Is an one-loop 2 15 gluon 
amplitude useful? 
Within this framework: Yes!• One vertical integrated modular

framework can be constructed:
Within this framework: Yes! 
(not necessarily  associated 
with 15 jets at NLO, but with 
15th branching!
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Tree amplitudes;
One-loop 

Dipole shower = re-summed dipole 
subtraction; expansion in a_S 

Deals with non-
perturbative modeling & 

Experimentalists 
want this; the final 

amplitudes 
(Laurent series in 
(D-4))

gives standard dipole subtracted 
NLO parton generator.

with interface to 
experimentalists

interface is stable.



From Showers to Matrix Elements

• Matching is important:g p

Varying finite 

αs(MZ)=0.137, 

y g
terms only

with
s( Z) ,

μR=pT, 

pThad = 0.5 GeV



From Showers to Matrix Elements

Still with αs(MZ)=0.137…



Dimensional dependence of master 
integral basis

• Calculating ordered one-loop amplitude is equivalent to g p p q
calculating the coefficients of the master integrals

• Dimensional regularization makes the dimensionalDimensional regularization makes the dimensional 
dependence of the coefficients a crucial consideration.



• Dimensional regularization tells us to calculate the one-
loop amplitude in (integer) higher dimensions:loop amplitude in (integer) higher dimensions:
• The Feynman diagram calculation is done in Ds dimensions
• After the calculation we continue the parametric dimension Ds to 

a non-integer dimension Ds 4-2e
• The external, “observable” particles have only components in the 

4-dimensional embedded physical space 

• We have the freedom to choose the loop momentum in D   Ds

( )0,,0,,,, 3210 Kppppp =μ

≤
dimensions  

Thi ll th i l t ti f diff t “ h ”

( )0,,0,,,, 10 KK Dllll =μ

This allows the implementation of different “schemes”

• Note, continuing the dimensionality to non-integer values 
makes no sense except at the end of the calculationp



• By extending the master integral basis we can make the 
loop momentum dimensionality explicitloop momentum dimensionality explicit 

• The Ds dependence of the coefficients is straightforwards p g

• Once we determined the dimensionless coefficients we

( ) ( ) 21 4 CDCC s
Ds ×−+=

• Once we determined the dimensionless coefficients we 
can make the dimensional continuation.



• The dimensional continuation can be performed is 
several schemesseveral schemes
• The ‘t Hooft-Veltman scheme:

SS DDDD ≤−→−→ ;24;24 εε

• The Four Dimensional Helicity (FDH) scheme:

SS DDDD ≤→→ ;24;24 εε

SS DDDD ≤−→→ ;24;4 ε

Bern, De Freitas, Dixon & Wong

• Schemes are related by a simple “renormalization”-shift (i.e. can 
be absorbed in the coupling constant renormalization.

SS →→ ;; ε

• After we have determined the dimensionless coefficients we can 
take the FDH dimensional continuation:



Determination of the master integral 

Ossolla, 
Papadopoulos, 

coefficients
• We now have to determine the coefficients by applying 

Pittau(integer) Ds-dimensional cuts.
• To do this we adapt the OPP method to higher dimensions
• The OPP method is basically a parametric integration method:y p g

the integrand is parameterized
• Generalized unitarity/on-shell methods is transformed on the 

integrand level to an algebraic partional fractioning procedure of the g g p g p
rational integrand:



• For example the triple denominator term.
T d t i th t i ti l f ti i• To determine the numerator using partional fractioning 
we simply demand d2=d3=d4=0.

• Note the “form” of the propagator is irrelevant (canNote the form  of the propagator is irrelevant (can 
contain masses, imaginary masses or even more 
complicated forms).

• The solution to the partial fraction 
constraint is

• The amplitude now factorizes into tree 
amplitudes with 2 integer Ds-dimensionalamplitudes with 2 integer Ds dimensional 
particles with (possible) complex 
momenta:



• The tree matrix amplitudes are still perfectly defined asThe tree matrix amplitudes  are still perfectly defined as 
far as Feynman rules goes 

Use recursion relations to generate the tree 
lit d ( ith l t d iamplitudes (with complex momenta and in any 

dimension) for arbitrary number of external particles.

• The parametric form of the triple pole residue is simply a decomposition in the y
projective basis of the unconstraint part of the loop momentum

• By choosing several values of (Ds,D) and choosing the appropriate set of solutions 
to the partial fractioning constraint we can determine all coefficients 

• Note we have an infinite set of equations with a fixed number of unknowns; this 
easily solvable in a numerical stable manner.



• Once we determined the all master integral coefficients 
i t t th t i fwe can integrate the parametric form.

• The integration over the projective components of the 
loop momentum is straightforward

ddd
sldc

ddd
ldc

ddd
lc

ld
kji

eD
ijk

kji

D
ijk

kji

ijkD ×+×= ∫∫∫
2

)9()0( 1)(

( )eOcIcIcDIc ijk
e

ijkijk
D

ijkijk
D

ijkijk +−×=×⎟
⎠
⎞

⎜
⎝
⎛ −−×= −+ )9(24)0()2()9()()0(

9
1

2
4

The other extra-dimensional integrals

Note that for NLO calculations we only 
need to keep the UV divergent integrals 
and pick up the UV pole through the (D-
4) term



Th di i lit i li it i th l f th• The dimensionality is now explicit, i.e. the value of the 
individual coefficients are independent of the 
dimensionality.y

• We now know the one-loop amplitude for arbitrary 
integer dimension for the phase space point under 
consideration we can continue the dimension to 4 2e:consideration we can continue the dimension to 4-2e:

W h k d i ll i t th l ti k 4 5 d 6 l• We checked numerically against the analytic known 4,5 and 6 gluon 
ordered one-loop helicity amplitudes and found full agreement.



Outlook
• The algebraic method developed here reduces the 

calculation of one-loop amplitudes to calculating tree 
amplitudes (in higher dimensions)

• The calculation of the tree amplitudes can easily be 
handled by existing well-developed formalisms such as 
recursion relationsrecursion relations

• This will lead very quickly to the development of one-
loop generators for multi-parton one-loop amplitudes p g p p p
(including external vector bosons & higgs particles).

• Furthermore parton level shower monte carlo’s which 
can integrate these one loop amplit des thro ghcan integrate these one-loop amplitudes through 
matching are in full development

• This will lead to modular integrated tools forThis will lead to modular integrated tools for 
experimentalists:
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