Constructing Loop Amplitudes from Tree

"A Numerical Unitarity Formalism for Evaluating One-Loop Amplitudes" R.K. Ellis, W.T.G. and Z. Kunszt MEP 0803:003,2008; arXiv:0708.2398 [hep-ph]

> "Full one-loop amplitudes from tree amplitudes" W.T.G., Z. Kunszt and K. Melnikov JHEP 0804:049,2008 arXiv:0801.2237 [hep-ph] "On the numerical evaluation of one-loop amplitudes" W.T.G. and G. Zanderighi

Introduction

arXiv:0805.2152 [hep-ph]

- The master integral basis and dimensionality
- Determining the master integral coefficients
- Outlook
- (See afternoon talk of Giulia Zanderighi)

Introduction

- Lesson from the TEVATRON: shower matched fixed order calculations a must!
- This makes one-loop corrections with high number of external particles relevant
- The showers will provide the "phase space integrations", combine virtual and real, etc..
- One vertical integrated modular framework can be constructed:

Is an one-loop 2→15 gluon amplitude useful? Within this framework: Yes! (not necessarily associated with 15 jets at NLO, but with 15th branching!

Fixed order ME \rightarrow Vincia parton shower \rightarrow Pythia 8 \rightarrow experimental frame work

Tree amplitudes; One-loop amplitudes (Laurent series in (D-4))

Dipole shower = re-summed dipole subtraction; expansion in a_S gives standard dipole subtracted NLO parton generator. Deals with nonperturbative modeling & with interface to experimentalists Experimentalists want this; the final interface is stable.

From Showers to Matrix Elements

• Matching is important:

Still with $\alpha_s(M_Z)=0.137...$

Dimensional dependence of master integral basis

 Calculating ordered one-loop amplitude is equivalent to calculating the coefficients of the master integrals

$$\mathcal{A}_{(D)} = \sum_{[i_1|i_5]} e_{i_1i_2i_3i_4i_5} I_{i_1i_2i_3i_4i_5}^{(D)} + \sum_{[i_1|i_4]} d_{i_1i_2i_3i_4} I_{i_1i_2i_3i_4}^{(D)} + \sum_{[i_1|i_3]} c_{i_1i_2i_3} I_{i_1i_2i_3}^{(D)} + \sum_{[i_1|i_2]} b_{i_1i_2} I_{i_1i_2}^{(D)} + \sum_{[i_1|i_1]} a_{i_1} I_{i_1}^{(D)},$$
(3)

where we introduced the short-hand notation $[i_1|i_n] = 1 \leq i_1 < i_2 < \cdots < i_n \leq N$. The master integrals on the r.h.s. of Eq. (3) are defined as

$$I_{i_1\cdots i_M}^{(D)} = \int \frac{d^D l}{i(\pi)^{D/2}} \frac{1}{d_{i_1}\cdots d_{i_M}} .$$
(4)

• Dimensional regularization makes the dimensional dependence of the coefficients a crucial consideration.

- Dimensional regularization tells us to calculate the oneloop amplitude in (integer) higher dimensions:
 - The Feynman diagram calculation is done in D_s dimensions
 - After the calculation we continue the parametric dimension D_s to a non-integer dimension $D_s \rightarrow 4-2e$
 - The external, "observable" particles have only components in the 4-dimensional embedded physical space

$$p_{\mu} = (p_0, p_1, p_2, p_3, 0, \dots, 0)$$

• We have the freedom to choose the loop momentum in $\mathsf{D}{\leq}\mathsf{D}_{\mathsf{s}}$ dimensions

$$l_{\mu} = (l_0, l_1, \dots, l_D, 0, \dots, 0)$$

This allows the implementation of different "schemes"

 Note, continuing the dimensionality to non-integer values makes no sense except at the end of the calculation By extending the master integral basis we can make the loop momentum dimensionality explicit

$$\begin{aligned} \mathcal{A}_{(D)} &= \sum_{[i_{1}|i_{5}]} e_{i_{1}i_{2}i_{3}i_{4}i_{5}}^{(0)} I_{i_{1}i_{2}i_{3}i_{4}i_{5}}^{(D)} \\ &+ \sum_{[i_{1}|i_{4}]} \left(d_{i_{1}i_{2}i_{3}i_{4}}^{(0)} I_{i_{1}i_{2}i_{3}i_{4}}^{(D)} - \frac{D-4}{2} d_{i_{1}i_{2}i_{3}i_{4}}^{(2)} I_{i_{1}i_{2}i_{3}i_{4}}^{(D+2)} + \frac{(D-4)(D-2)}{4} d_{i_{1}i_{2}i_{3}i_{4}}^{(4)} I_{i_{1}i_{2}i_{3}i_{4}}^{(D+4)} \right) \\ &+ \sum_{[i_{1}|i_{3}]} \left(c_{i_{1}i_{2}i_{3}}^{(0)} I_{i_{1}i_{2}i_{3}}^{(D)} - \frac{D-4}{2} c_{i_{1}i_{2}i_{3}}^{(9)} I_{i_{1}i_{2}i_{3}}^{(D+2)} \right) \\ &+ \sum_{[i_{1}|i_{2}]} \left(b_{i_{1}i_{2}}^{(0)} I_{i_{1}i_{2}}^{(D)} - \frac{D-4}{2} b_{i_{1}i_{2}}^{(9)} I_{i_{1}i_{2}}^{(D+2)} \right) + \sum_{i_{1}=1}^{N} a_{i_{1}}^{(0)} I_{i_{1}}^{(D)} . \end{aligned}$$

- The D_s dependence of the coefficients is straightforward $C^{(D_s)} = C_1 + (D_s - 4) \times C_2$
- Once we determined the dimensionless coefficients we can make the dimensional continuation.

- The dimensional continuation can be performed is several schemes
 - The 't Hooft-Veltman scheme:

 $D_s \rightarrow 4 - 2\varepsilon; D \rightarrow 4 - 2\varepsilon; D \leq D_s$

• The Four Dimensional Helicity (FDH) scheme: Bern, De Freitas, Dixon & Wong

$$D_s \to 4; D \to 4 - 2\varepsilon; D \le D_s$$

- Schemes are related by a simple "renormalization"-shift (i.e. can be absorbed in the coupling constant renormalization.
- After we have determined the dimensionless coefficients we can take the FDH dimensional continuation:

$$\begin{aligned} \mathcal{A}_N &= \mathcal{A}_N^{CC} + R_N \\ \mathcal{A}_N^{CC} &= \sum_{[i_1|i_4]} \tilde{d}_{i_1 i_2 i_3 i_4}^{(0)} I_{i_1 i_2 i_3 i_4}^{(4-2\epsilon)} + \sum_{[i_1|i_3]} c_{i_1 i_2 i_3}^{(0)} I_{i_1 i_2 i_3}^{(4-2\epsilon)} + \sum_{[i_1|i_2]} b_{i_1 i_2}^{(0)} I_{i_1 i_2}^{(4-2\epsilon)} + \sum_{i_1=1}^N a_{i_1}^{(0)} I_{i_1}^{(4-2\epsilon)} \\ R_N &= -\sum_{[i_1|i_4]} \frac{d_{i_1 i_2 i_3 i_4}^{(4)}}{3} - \sum_{[i_1|i_3]} \frac{c_{i_1 i_2 i_3}^{(9)}}{2} - \sum_{[i_1|i_2]} \left(\frac{(q_{i_1} - q_{i_2})^2}{6} - \frac{m_{i_1}^2 + m_{i_2}^2}{2} \right) b_{i_1 i_2}^{(9)} \end{aligned}$$

Determination of the master integral coefficients

 We now have to determine the coefficients by applying (integer) D_s-dimensional cuts. Ossolla, Papadopoulos, Pittau

- To do this we adapt the OPP method to higher dimensions
- The OPP method is basically a parametric integration method: the integrand is parameterized
- Generalized unitarity/on-shell methods is transformed on the integrand level to an algebraic partional fractioning procedure of the rational integrand:

$$\frac{\mathcal{N}^{(D_s)}(l)}{d_1 d_2 \cdots d_N} = \sum_{[i_1|i_5]} \frac{\overline{e}_{i_1 i_2 i_3 i_4 i_5}^{(D_s)}(l)}{d_{i_1} d_{i_2} d_{i_3} d_{i_4} d_{i_5}} + \sum_{[i_1|i_4]} \frac{\overline{d}_{i_1 i_2 i_3 i_4}^{(D_s)}(l)}{d_{i_1} d_{i_2} d_{i_3} d_{i_4}} + \sum_{[i_1|i_2]} \frac{\overline{c}_{i_1 i_2 i_3}^{(D_s)}(l)}{d_{i_1} d_{i_2} d_{i_3}} + \sum_{[i_1|i_2]} \frac{\overline{b}_{i_1 i_2}^{(D_s)}(l)}{d_{i_1} d_{i_2}} + \sum_{[i_1|i_1]} \frac{\overline{a}_{i_1}^{(D_s)}(l)}{d_{i_1}}$$

- For example the triple denominator term.
- To determine the numerator using partional fractioning we simply demand d₂=d₃=d₄=0.
- Note the "form" of the propagator is irrelevant (can contain masses, imaginary masses or even more complicated forms).

• The solution to the partial fraction constraint is

$$l_{ijk}^{\mu} = V_3^{\mu} + \sqrt{\frac{-V_3^2 + m_k^2}{\alpha_1^2 + \alpha_2^2 + \alpha_5^2 + \dots + \alpha_D^2}} \left(\alpha_1 n_1^{\mu} + \alpha_2 n_2^{\mu} + \sum_{h=5}^D \alpha_h n_h^{\mu}\right)$$

• The amplitude now factorizes into tree amplitudes with 2 integer D_s-dimensional particles with (possible) complex

$$\sum_{i=1}^{D_s-2} e_{\mu}^{(i)}(l)e_{\nu}^{(i)}(l) = -g_{\mu\nu}^{(D_s)} + \frac{l_{\mu}b_{\nu} + b_{\mu}l_{\nu}}{l \cdot b}$$

 $2^{(D_s-2)/2}$

$$\sum_{i=1}^{D} u^{(i)}(l)\overline{u}^{(i)}(l) = l + m = \sum_{\mu=1}^{D} l_{\mu}\gamma^{\mu} + m$$

 The tree matrix amplitudes are still perfectly defined as far as Feynman rules goes

 \rightarrow Use recursion relations to generate the tree amplitudes (with complex momenta and in any dimension) for arbitrary number of external particles.

$$\overline{c}_{ijk}(l) = \operatorname{Res}_{ijk} \left(\mathcal{A}_N(l) - \sum_{l \neq i, j, k} \frac{\overline{d}_{ijkl}(l)}{d_i d_j d_k d_l} \right)$$

$$\overline{c}_{ijk}^{\text{FDH}}(l) = c_{ijk}^{(0)} + c_{ijk}^{(1)} s_1 + c_{ijk}^{(2)} s_2 + c_{ijk}^{(3)} (s_1^2 - s_2^2) + s_1 s_2 (c_{ijk}^{(4)} + c_{ijk}^{(5)} s_1 + c_{ijk}^{(6)} s_2) s_1 = l \cdot n_1 s_2 = l \cdot n_2$$

$$+ c_{ijk}^{(7)} s_1 s_e^2 + c_{ijk}^{(8)} s_2 s_e^2 + c_{ijk}^{(9)} s_e^2, \qquad s_e^2 = -\sum_{i=5}^D (l \cdot n_i)^2 = -\sum_{i=5}^D (l \cdot n_i)^2$$

• The parametric form of the triple pole residue is simply a decomposition in the projective basis of the unconstraint part of the loop momentum

• By choosing several values of (D_s, D) and choosing the appropriate set of solutions to the partial fractioning constraint we can determine all coefficients

• Note we have an infinite set of equations with a fixed number of unknowns; this easily solvable in a numerical stable manner.

• Once we determined the all master integral coefficients we can integrate the parametric form.

• The integration over the projective components of the loop momentum is straightforward

$$\int d^{D}l \frac{\overline{c}_{ijk}(l)}{d_{i}d_{j}d_{k}} = c_{ijk}^{(0)} \times \int d^{D}l \frac{1}{d_{i}d_{j}d_{k}} + c_{ijk}^{(9)} \times \int d^{D}l \frac{s_{e}^{2}}{d_{i}d_{j}d_{k}}$$
$$= c_{ijk}^{(0)} \times I_{ijk}^{(D)} - \left(\frac{D-4}{2}\right) c_{ijk}^{(9)} \times I_{ijk}^{(D+2)} = c_{ijk}^{(0)} \times I_{ijk}^{4-2e} - \frac{1}{9}c_{ijk}^{(9)} + O(e)$$

$$\int \frac{\mathrm{d}^{D}l}{(i\pi)^{D/2}} \frac{s_{e}^{2}}{d_{i_{1}}d_{i_{2}}d_{i_{3}}d_{i_{4}}} = -\frac{D-4}{2}I_{i_{1}i_{2}i_{3}i_{4}}^{D+2},$$

$$\int \frac{\mathrm{d}^{D}l}{(i\pi)^{D/2}} \frac{s_{e}^{4}}{d_{i_{1}}d_{i_{2}}d_{i_{3}}d_{i_{4}}} = \frac{(D-2)(D-4)}{4}I_{i_{1}i_{2}i_{3}i_{4}}^{D+4},$$

$$\int \frac{\mathrm{d}^{D}l}{(i\pi)^{D/2}} \frac{s_{e}^{2}}{d_{i_{1}}d_{i_{2}}d_{i_{3}}} = -\frac{(D-4)}{2}I_{i_{1}i_{2}i_{3}}^{D+2},$$

$$\int \frac{\mathrm{d}^{D}l}{(i\pi)^{D/2}} \frac{s_{e}^{2}}{d_{i_{1}}d_{i_{2}}} = -\frac{(D-4)}{2}I_{i_{1}i_{2}}^{D+2}.$$

The other extra-dimensional integrals

Note that for NLO calculations we only need to keep the UV divergent integrals and pick up the UV pole through the (D-4) term

- The dimensionality is now explicit, i.e. the value of the individual coefficients are independent of the dimensionality.
- We now know the one-loop amplitude for arbitrary integer dimension for the phase space point under consideration we can continue the dimension to 4-2e:

$$\mathcal{A}_{N} = \mathcal{A}_{N}^{CC} + R_{N}$$

$$\mathcal{A}_{N}^{CC} = \sum_{[i_{1}|i_{4}]} \tilde{d}_{i_{1}i_{2}i_{3}i_{4}}^{(0)} I_{i_{1}i_{2}i_{3}i_{4}}^{(4-2\epsilon)} + \sum_{[i_{1}|i_{3}]} c_{i_{1}i_{2}i_{3}}^{(0)} I_{i_{1}i_{2}i_{3}}^{(4-2\epsilon)} + \sum_{[i_{1}|i_{2}]} b_{i_{1}i_{2}}^{(0)} I_{i_{1}i_{2}}^{(4-2\epsilon)} + \sum_{i_{1}=1}^{N} a_{i_{1}}^{(0)} I_{i_{1}}^{(4-2\epsilon)}$$

$$R_{N} = -\sum_{[i_{1}|i_{4}]} \frac{d_{i_{1}i_{2}i_{3}i_{4}}^{(4)}}{3} - \sum_{[i_{1}|i_{3}]} \frac{c_{i_{1}i_{2}i_{3}}^{(0)}}{2} - \sum_{[i_{1}|i_{2}]} \left(\frac{(q_{i_{1}} - q_{i_{2}})^{2}}{6} - \frac{m_{i_{1}}^{2} + m_{i_{2}}^{2}}{2}\right) b_{i_{1}i_{2}}^{(9)}$$

• We checked numerically against the analytic known 4,5 and 6 gluon ordered one-loop helicity amplitudes and found full agreement.

Outlook

- The algebraic method developed here reduces the calculation of one-loop amplitudes to calculating tree amplitudes (in higher dimensions)
- The calculation of the tree amplitudes can easily be handled by existing well-developed formalisms such as recursion relations
- This will lead very quickly to the development of oneloop generators for multi-parton one-loop amplitudes (including external vector bosons & higgs particles).
- Furthermore parton level shower monte carlo's which can integrate these one-loop amplitudes through matching are in full development
- This will lead to modular integrated tools for experimentalists:

Fixed order ME \rightarrow Vincia parton shower \rightarrow Pythia 8 \rightarrow experimental frame work