Complete electroweak corrections to $e^+e^- \rightarrow 3$ jets

F. Piccinini

INFN Pavia

LoopFest 2008 May 14-16, 2008

in collaboration with C. Carloni Calame, S. Moretti and D. Ross arXiv:0804.3771[hep-ph]

- ⋆ Motivations for ILC & LHC
- ★ Existing literature
- ★ The complete EW one-loop calculation
 - calculation details
 - results (technical checks & physics)
- Conclusions

< 17 ▶

- \star at e^+e^- colliders ($e^+e^- \rightarrow \gamma^*/Z \rightarrow 3$ jets)
 - $e^+e^- \rightarrow 3$ jets was the "golden" process for QCD measurements and tests at LEP
 - precise measurement of α_s ($\mathcal{O}(1\%)$ at LEP/SLC, $\mathcal{O}(0.1\%)$ at GigaZ)
 - EW effects can induce asymmetries in 3 jets observables
 - *O*(α) EW RC roughly expected as large as NNLO QCD at high energies (Sudakov double-logs)
- \star at hadron colliders ($pp \rightarrow \gamma^*/Z \rightarrow \ell^+ \ell^- + \text{ jet}$)
 - measurement of PDFs via $p_{\perp}^{\gamma/Z}$ spectrum, in particular the gluon PDF
 - large effects of EW Sudakov logs in $Z+{\rm jet}$ observables, e.g. at high p_{\perp}^Z where BSM physics can show up
 - detector calibration for jets measurements
- SM effects must be well under control to match the experimental accuracy and to disentangle SM from BSM physics

Restricting to EW corrections

- * Maina, Moretti, Ross, JHEP 0304:056 (2003)
 - factorizable weak corrections to $e^+e^- \rightarrow 3$ jets (no real & virtual QED, no RC connecting initial and final state), effects studied at $\sqrt{s} = M_Z$
- ★ Maina, Moretti, Ross, PLB 593 (2004), Erratum PLB 614 (2005)
 - purely weak corrections to $pp \to Z$ or $\gamma+$ jet at high $p_T^{\gamma/Z}.~\gamma$ and Z on-shell
- ★ Kuhn, Kulesza, Pozzorini, Schulze, PLB 609 (2005)
 - logarithmic weak corrections to $pp\to Z+$ jet (high $p_{\perp}^Z)$ at one and two loop order with LL and NLL accuracy
- ★ Kuhn, Kulesza, Pozzorini, Schulze, NPB 727 (2005) 368
 - Exact one loop corrections to $pp \rightarrow Z+$ jet

- we calculated the full 1-loop EW corrections to $e^+e^- \rightarrow 3$ jets
 - QED can give a sizeable effect if realistic event selection criteria are considered
 - non-factorizable RC can be not negligible far from M_Z
 - non-factorizable RC can have a not trivial impact on asymmetries
- by crossing symmetry, EW RC to $pp \rightarrow \ell^+ \ell^- +$ jet are straighfordwardly obtained
- the precise control of SM effects is mandatory for precision physics and new physics searches

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Diagrams

The 1-loop diagrams to be evaluated are:

• e^+e^- vertices

< 47 ▶

Diagrams

• $q\bar{q}$ and gluon vertices and fermion self-energies

EW RC to $e^+e^- \rightarrow 3$ jets

Diagrams

• box diagrams (factorizable and not factorizable)

EW RC to $e^+e^- \rightarrow 3$ jets

(g)

(f)

< ∃⇒

æ

· pentagons and gauge-bosons self-energies

EW RC to $e^+e^- \rightarrow 3$ jets

크

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Calculation details

- the calculation has been performed in the limit $m_{ext}^2/s
 ightarrow 0$
- collinear singularities cured with a small fermion & quark mass
- infrared divergencies regularized with a finite photon mass λ
- virtual corrections
 - * amplitudes evaluated with helicity techniques and manipulated with **FORM**
 - ⋆ two independend calculations
 - up to 4-point functions: reduction of tensor integrals with Passarino-Veltman reduction
 - 5-point functions, reduction according to PV or to Denner-Dittmaier (as coded in a our own library or in LoopTools)
 - * good agreement among different implementations
- the squared amplitude for the real emission process $e^+e^- \to q\bar{q}g\gamma$ has been calculated
 - * with ALPHA (Moretti & Caravaglios)
 - ★ with мардкарн (Maltoni, Stelzer et al.)

イロト イポト イヨト イヨト

Gauge invariance and Γ_Z

- In the real part of the calculation we have the *Z* propagator with fixed width switched on, in order to avoid the *Z* pole in the phase space integration
- The same propagator should be retained in the virtual corrections (complex mass scheme) in order to ensure the cancellation of IR singularities between virtual and real corrections
- Actually the five point function routines in LoopTools don't implement yet complex masses
- But: non factorizable corrections are very small around the Z pole
- We switch off the non-fact corrections in a window of few widths around the pole and keep the propagator with *Z* width in the factorizable ones
- the mismatch in the IR cancellation between virtual and real part away from the *Z* pole is numerically small, checked to be beyond the numerical uncertainty

Cross section calculation

As usual, the cross section is split into two parts

• $e^+e^- \rightarrow q\bar{q}g$

$$\sigma_{2\to3} = \int d\Phi_3 \left(\left| \mathcal{M}_0 \right|^2 + 2\Re[\mathcal{M}_0^* \mathcal{M}_\alpha^{virt}(\lambda)] \right)$$

• $e^+e^- \rightarrow q\bar{q}g\gamma$

$$\sigma_{2\to 4} = \int_{\lambda < \omega} d\Phi_4 |\mathcal{M}_{\alpha}^{real}|^2 =$$

 $\int_{\lambda < \omega < k_0} d\Phi_4 |\mathcal{M}_{\alpha}^{real}|^2 + \int_{k_0 < \omega} d\Phi_4 |\mathcal{M}_{\alpha}^{real}|^2 = \delta_s(\lambda, k_0)\sigma_0 + \sigma_{2 \to 4}^{hard}(k_0)$

- $\sigma_{2\to3} + \sigma_{2\to4} \equiv \sigma^{SV}(k_0) + \sigma^{hard}(k_0)$ has to be independent from the unphysical parameters λ and k_0
- the integral over $2 \to 3$ and $2 \to 4$ phase space is performed with a Monte Carlo generator

< 回 > < 三 > < 三 >

Initial state higher order effects

- Large collinear logs $\ln(s/m_e^2)$ associated with ISR
- for reliable predictions they need to be resummed
- we use the SF formalism avoiding double counting

G. Montagna, O. Nicrosini and F.P., Phys. Lett. B385 (1996) 348

$$d\sigma = d\sigma_{\rm LL} - d\sigma_{\rm LL}^{\alpha} + d\sigma_{\rm exact}^{\alpha}$$

$$d\sigma_{\rm LL} = \int dx_1 \, dx_2 \, D(x_1, s) D(x_2, s) d\sigma_0(x_1 x_2 s)$$

$$d\sigma_{\rm LL}^{\alpha} = \int dx_1 \, dx_2 \, [D(x_1, s) D(x_2, s)]_{\alpha} d\sigma_0(x_1 x_2 s)$$

Results

- numerical results for $\sqrt{s} = M_Z$, 350 GeV and 1 TeV
- cuts & parameters:
 - $\star\,$ momenta clustered into jets according to the Durham algorithm, i.e. if $y_{ij} < y_{min},$ where

$$y_{ij} = 2 \frac{\min(E_i^2, E_j^2)(1 - \cos \theta_{ij})}{s}$$

- \star photon (in 2 \rightarrow 4) recombined according to the same algorithm
- * at least 3 "hadronic" jets requested
- * $y_{min} = 0.001$, $30^{\circ} < \theta_{\text{jets}} < 150^{\circ}$, $M_{3 \text{ jets}} > 0.75 \sqrt{s}$
- * $\alpha_s = 0.118$, $\alpha_{em} = 1/128$, $M_Z = 91.18 \text{ GeV}$, $M_W = 80.4 \text{ GeV}$
- summed over final state quarks ($q\bar{q} = u\bar{u}, d\bar{d}, c\bar{c}, s\bar{s}, b\bar{b}$)
- the final state $b\bar{b}$ has been treated retaining the full m_t dependence

・ロト ・ 四ト ・ ヨト ・ ヨト …

Only $\alpha_{\rm EM}$ contributions included

• independence of $\sigma_V + \sigma_S$ from the photon mass (λ)

λ^2 (GeV ²)	$5 \cdot 10^{-10}$	$5 \cdot 10^{-14}$
$\sigma_V + \sigma_S$ (pb)	-0.002492(5)	-0.002490(7)

$$\sqrt{s} = 300 \; {
m GeV}, \, k_0 = 0.15 \; {
m GeV},$$

• independence of $\sigma_{\rm real}$ from the soft-hard separator (k_0)

$2k_0/\sqrt{s}$	10^{-3}	10^{-5}
$\sigma_{ m real}$ (pb)	1.8632(5)	1.8622(7)

$$\lambda^2 = 5 \cdot 10^{-10} \text{ GeV}^2$$
, $\sqrt{s} = 300 \text{ GeV}^2$

æ

イロト イヨト イヨト イヨト

Leading jet angle at Z peak

2

イロト イヨト イヨト イヨト

Leading jet angle at $\sqrt{s} = 1$ TeV

크

イロト イ団ト イヨト イヨト

Leading jet energy at Z peak

æ

Leading jet energy at $\sqrt{s} = 1$ TeV

æ

Thrust at Z peak

크

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

Э.

<ロ> <問> <問> < 回> < 回> 、

Э.

<ロ> <問> <問> < 回> < 回> 、

- $\star\,$ the complete one-loop EW corrections to $e^+e^- \to 3$ jets have been calculated
 - each contribution calculated independently twice
 - good agreement between different implementations
 - the calculation is implemented in a Monte Carlo event generator
- * the effects of EW RC are important for future precision studies at ILC (e.g. α_s determination) and BSM searches
- EW RC are expected to be even more relevant in presence of polarized beams, unlike QCD RC
- ★ work in progress:
 - · study of the effects in presence of polarized beams
 - crossing the process to study EW RC to Z+jet at hadron colliders

イロト イヨト イヨト イヨト