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WHIZARD Multi-Particle Simulations

Multi-Particle Simulations

Physics processes:

pp → qq/qg/gg → partons (+leptons, photons)| {z }
Parton-level simulation

→ jets → hadrons

| {z }
Physics simulation

→ tracks → . . .

Many (most) interesting LHC processes have 4+ partons in final state:
SUSY, strongly interacting Ws, Higgs processes, . . .

Often, dominant pieces come from 2→ 2 processes and cascade decays
⇒ well done by on-shell process libraries (e.g. PYTHIA) . . . but not always.

And: Need off-shell effects (why?)

1 ISR: PDF approach to initial state misses high-pT radiation that may spoil signal ID
2 Signal: few to few 10 percent: comparable to NLO corrections and PDF

uncertainties
3 Background: much more, since kinematics is typically forced off-shell! On-shell or

Breit-Wigner approximation underestimate background by 100% or more.
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WHIZARD Multi-Particle Simulations

The Multi-Particle Generator WHIZARD Kilian/Ohl/Reuter, 07

Very high level of Complexity:

e+e− → tt̄H → bb̄bb̄jj`ν (110,000 diagrams)

e+e− → ZHH → ZWWWW → bb+ 8j (12,000,000 diagrams)

pp→ ``+ nj, n = 0, 1, 2, 3, 4, . . . (2,100,000 diagrams with 4 jets + flavors)

pp→ χ̃0
1χ̃

0
1bbbb (32,000 diagrams, 22 color flows, ∼ 10, 000 PS channels)

pp→ V V jj → jj``νν incl. anomalous TGC/QGC

Test case gg → 9g (224,000,000 diagrams)

Current versions:

WHiZard 1.51 / O’Mega 000.011beta → joint version: WHIZARD 1.92
release date: April 2008

one grand unified package (incl. VAMP, Circe, Circe 2, WHiZard, O’Mega)

New web address: http://whizard.event-generator.org

Standard Reference for new versions: Kilian/Ohl/Reuter, 0708.4233

Major upgrade this summer: WHIZARD 2.0.0
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WHIZARD Structure

WHIZARD: Matrix Element Generation

Full matrix-element calculation:
3 Complete (no missing background) for given final state

3 Gauge invariance, Breit-Wigner distributions, polarization can be implemented

7 Full matrix element is CPU costly (thousands of Feynman diagrams)

7 Need good (adaptive) phase space parameterization: otherwise, no result at all

7 Current implementations may not suit experimental needs (inclusive event
generation?)

Take a process definition and a set of Feynman rules to produce a (Fortran/C) function:

The (squared) amplitude as a function of given momenta and helicities.

call O’Mega T. Ohl

⇒ Complete helicity amplitudes computed numerically and recursively

⇒ All redundancies eliminated by organizing the calculation (DAG = Directed
Acyclical Graph)

⇒ Computation cost ∝ nk instead of n!!
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WHIZARD Structure

WHIZARD: Phase Space Integration

Matrix elements are complicated and vary over orders of magnitude
⇒ Uniform phase space sampling yields no result
⇒ No single parameterization allows for mapping the function into a constant

Solution: Multi-channel parameterization with mappings and parameterizations
adapted to Feynman diagram structure
∗WHIZARD: Improve by VEGAS adaptation within each channel

What does this mean in practice?
WHIZARD has to find the important channels: The
Feynman diagrams which have the strongest peaks⇒
correspond to good parameterizations
WHIZARD has many degrees of freedom to adapt:

The optimal binning of each integration dimension (10 – 50)
This is needed for each integration dimension (10 – 20)
The optimal relative weight of each channel (10 – 1000)

⇒ 103 – 106 degrees of freedom have to self-optimize

∗ Apparently, this works – and at least as good as other methods
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WHIZARD Structure

Implemented Physics Content
Structured beams:

For Tevatron/LHC: PDFs from LHAPDF (or PDFLIB)
For ILC physics:

ISR (implemented: Skrzypek/Jadach, Kuraev/Fadin)
arbitrarily polarized beams
beamstrahlung, photon collider spectra (CIRCE/CIRCE 2)

external (user-defined) beam spectra can be read in
+ Parton Shower (final state)

Supported Physics Models:

Test models: QED, QCD

SM

Littlest/Simplest Little Higgs, Little Higgs Models with T parity

Moose models: 3-site model

MSSM, NMSSM, extended SUSY models, incl. gravitinos (SLHA/SLHA2)

Graviton resonances, Universal extra dimensions, Randall-Sundrum

Noncommutative Standard Model

Higher-dimensional operators, SM effective field theory extensions

Anomalous triple and quartic gauge couplings

K-matrix/Padé unitarization, unitarized resonances Alboteanu/Kilian/Reuter
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WHIZARD Results and Comparisons

MSSM
MSSM implementation: cross-check (over 500 processes) with Madgraph and Sherpa

hep-ph/0512260

e+e− → X (I)
Final status Madgraph/Helas Whizard/O’Mega Sherpa/A’Megic
state 0.5 TeV 2 TeV 0.5 TeV 2 TeV 0.5 TeV 2 TeV

ẽLẽ
∗
L

54.687(2) 78.864(6) 54.687(3) 78.866(4) 54.6890(7) 78.8670(8)
ẽRẽ
∗
R

274.69(2) 91.776(8) 274.682(1) 91.776(5) 274.695(3) 91.778(1)
ẽLẽ
∗
R

75.168(5) 7.237(1) 75.167(3) 7.2372(4) 75.1693(7) 7.23744(7)
µ̃Lµ̃

∗
L

22.5471(7) 6.8263(2) 22.5478(9) 6.8265(3) 22.5482(2) 6.82638(7)
µ̃Rµ̃

∗
R

51.839(2) 5.8107(2) 51.837(2) 5.8105(2) 51.8401(5) 5.81085(6)
τ̃1τ̃
∗
1 55.582(2) 5.7139(2) 55.580(2) 5.7141(2) 55.5835(6) 5.71399(6)

τ̃2τ̃
∗
2 19.0161(6) 6.5047(2) 19.0174(7) 6.5045(3) 19.0163(2) 6.50473(7)

τ̃1τ̃
∗
2 1.4118(4) 0.21406(1) 1.41191(5) 0.214058(8) 1.41187(1) 0.214067(2)

ν̃eν̃
∗
e 493.35(2) 272.15(2) 493.38(2) 272.15(1) 493.358(5) 272.155(3)

ν̃µν̃
∗
µ 14.8632(4) 2.9231(1) 14.8638(6) 2.9232(1) 14.8633(1) 2.92309(3)

ν̃τ ν̃
∗
τ 15.1399(5) 2.9246(1) 15.1394(8) 2.9245(1) 15.1403(2) 2.92465(3)

ũLũ
∗
L

— 7.6185(2) — 7.6188(3) — 7.61859(8)
ũRũ

∗
R

— 4.6933(1) — 4.6935(2) — 4.69342(5)
c̃Lc̃
∗
L

— 7.6185(2) — 7.6182(3) — 7.61859(8)
c̃Rc̃
∗
R

— 4.6933(1) — 4.6933(2) — 4.69342(5)
t̃1 t̃
∗
1 — 5.9845(4) — 5.9847(2) — 5.98459(6)

t̃2 t̃
∗
2 — 5.3794(3) — 5.3792(2) — 5.37951(6)

t̃1 t̃
∗
2 — 1.2427(1) — 1.24264(5) — 1.24270(1)

d̃Ld̃
∗
L

— 5.2055(1) — 5.2059(2) — 5.20563(2)
d̃Rd̃
∗
R

— 1.17588(2) — 1.17595(5) — 1.17591(1)
s̃Ls̃
∗
L

— 5.2055(1) — 5.2058(2) — 5.20563(2)
s̃Rs̃
∗
R

— 1.17588(2) — 1.17585(5) — 1.17591(1)
b̃1 b̃
∗
1 — 4.9388(3) — 4.9387(2) — 4.93883(5)

b̃2 b̃
∗
2 — 1.1295(1) — 1.12946(4) — 1.12953(1)

b̃1 b̃
∗
2 — 0.51644(3) — 0.516432(9) — 0.516447(6)
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WHIZARD Status

Upcoming Features

WHIZARD version 2.0.0 coming out this summer

New syntax for defining cuts, scales and analyses: allows for arbitrary functions of
kinematical variables

fancier (and faster) color structures from O’Mega

WHIZARD uses O’Mega info for better/faster phase space generation

Cascade decays (apply with great care!!!)
WHIZARD calls itself recursively, breaks double decay chains down into
subprocesses

Leading order (QCD) parton shower
(so only fragmentation/hadronization and PDFs by external routines)

Dark matter relic density calculator

Support for ROOT data format

TAUOLA interface
All points close to finalization;
Major restructuring of the code

Interface to FeynArts: all MSSM 2→ 2 processes for ILC available T. Robens
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Cutting Loops Feynman Tree Theorem

Derivation of the Feynman Tree Theorem (FTT)
Integrand I(k) of a one-loop graph with loop momentum k: I(k) = N(k)

Q
i
Fi

with Feynman Green Functions Fi (t’Hooft-Feynman gauge): Fi ≡ i
(k+pi)2−m2

i
+iε

Partial fraction decomposition yields (also: advanced Green functions Ai)

Fi =
i

2Ei

„
1

k0 − (−p0
i + Ei−iε)

−
1

k0 − (−p0
i − Ei+iε)

«
,

Ai =
i

2Ei

„
1

k0 − (−p0
i + Ei+iε)

−
1

k0 − (−p0
i − Ei+iε)

«
, Ei =

q
(~k + ~pi)2 +m2

i

∆l
i ≡ Fi −Ai

ε→0
=

2π

2Ei
δ(k0 − (−p0

i + Ei)).

⇒ ∆l
i sets momentum k + pi on-shell with positive energy component Ei.

Idea: Start with 0=
R
N(k)

nQ
i
Ai, and replace Ai → Fi −∆l

i:

Feynman Tree Theorem (FTT)

0 ==

Z
N(k)

h
F · · ·F −

X
∆lF · · ·+

X
∆l∆lF · · · − . . .+ (−1)n

X
∆l · · ·∆l

i
Acta. Phys. Polon. 24 (1963) 697

Possible drawback: FTT still includes iε terms. Not used in numerical calculations.
Role of higher order terms in FTT?
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Cutting Loops FTT: Improved Version

FTT: Improved Version

Make use of identity:
1

x− a± iε
= P

1

x− a
∓ iπδ(x− a)

Rewrite Feynman Green function Fi:

Fi = Pi +
1

2
∆l
i +

1

2
∆u
i

Pi = P i
(k+pi)2−m2

i

∆u
i = 2π

2Ei
δ(k0 − (−p0

i−Ei))

Replace any Fi in subleading terms of FTT:

Feynman Tree Theorem - Improved VersionZ
I(k) =

Z
N(k)

ˆ
∆l

1P2 · · ·Pn + P1∆l
2P3 · · ·Pn + . . .+ P1 · · ·Pn−1∆l

n

˜
+

Z
N(k)

X
perm.

U + L ≥ 2

CLUP ∆lL∆uUPP ,

CLUP =
1

2L+U

“
1− (−1)L

”
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Cutting Loops FTT: Improved Version

Leading terms:
Z
N(k)

ˆ
∆l

1P2 · · ·Pn + P1∆l
2P3 · · ·Pn + . . .+ P1 · · ·Pn−1∆l

n

˜

Performing k0 integration, ∆l
i act as opening or cutting the loop:

Momentum k + pi is set on-shell

Numerator of cut propagator is product of
wave functions, summed over all internal
states

Loop integral is replaced by phase space
integral

(k/+ p/i +m) =
X
λ

uλ(k + pi)ūλ(k + pi);

−gµν →
X
σ

ε
∗
µ(k + pi;σ)εν(k + pi;σ)

Z
d4k

(2π)4
=

Z
d3k

(2π)32Ei
.

→ + + +

Loop corrections for a 2→ n process can be computed by considering all possible
2 + 1→ n+ 1 tree graphs with an additional incoming and outgoing on-shell particle.
A phase space integration over the additional particles’ momenta has to be performed.
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A phase space integration over the additional particles’ momenta has to be performed.
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Cutting Loops FTT: Improved Version
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Cutting Loops FTT: Improved Version

Advantages

Tree graphs simple to generate automatically (è O’Mega [Ohl et.al.,’01])

Phase space integrations under control for up to 8 final state particles.

Phase space integration over additional particles can be performed
simultaneously with integrations over external particle momenta.

Make method ideally suited for implementation in existing matrix element and event
generator frameworks.

In the following:
1 Renormalization and regularization scheme
2 Treatment of infrared divergences
3 Treatment of threshold singularities
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Cutting Loops Renormalization and Regularization

1. Renormalization and Regularization

Use on-shell renormalization scheme [Ross and Taylor, ’73]:

Re iΓ(2)
αβ(−p, p)Φβ(p)

˛̨̨
p2=m2

= 0 Γ(3)(pi, λ)
˛̨
p2
i
=m2 = λ3

0

Res
`
−Γ(2)(p)

´−1

p/=m,p2=m2 = 1 Γ(4)(pi, λ)
˛̨
p2
i
=m2 = λ4

0

For fully numerical computations: do not introduce artificial regulators like ε in
dimensional regularization.

Separate calculation of loop graphs and counterterms: Assign finite value to regulator
Subtract large values from each other: Numerical instabilities

Idea: Define subtraction graphs which can be evaluated under same integral as
loop integral/phase space integral and renormalization conditions are fulfilled.
Use variation of BPHZ regularization prescription:
[Bogoliubov, Parasiuk, Hepp, Zimmermann, ’57,’70]

Γ̂n(p1, . . . , pn) = Γn(p1, . . . , pn)− T ◦ Γn(p1, . . . , pn)

T ◦ Γn(p1, . . . , pn) = Γn(p̄1, . . . , p̄n) +

n−1X
i

(pi − p̄i)µ
∂Γn

∂pµi

˛̨̨̨
pj=p̄j

+ . . .

. . .+
1

d!

n−1X
i1,...,id

(pi1 − p̄i1 )µ1 . . . (pid − p̄id )µd
∂dΓn

∂pµ1
i1
. . . ∂p

µd
id

˛̨̨̨
˛
pj=p̄j
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Cutting Loops Renormalization and Regularization

Example: Electron Self-Energy

= − −

Virtual one loop cross section:

σ
(1)
v = Φ

Z
dΠn 2 Re(MBorn(Mloop

n +Mloop
n,CT)∗)

= Φ

Z
dΠn

Z
d3k

(2π)3
2Re(MBorn

n (MTree
n+1 +MTree

n+1,CT)∗)

3-dim integral UV convergent. X

2 Infrared divergent terms inMTree
n+1 andMTree

n+1,CT. Compensated by addition of real
emission graphs [Kinoshita, ’63; Lee, Nauenberg, ’64]

σ
(1)
re = Φ

Z
dΠn

Z
d3k

(2π)32Ek
|MBorn

n+γ |2

Contains implicit δ-function conserving overall momentum.
⇒ Need approximation for soft real emission diagrams.
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Cutting Loops Infrared Divergences

2. Infrared Divergences

p1

p2

p1

p2

p1

p2

p1

p2

k→0
←→

Virtual IR-divergence arises solely from cut of massless particle.

In limit k → 0, expressions for cut loop and real emission compensate each other.
Two equivalent approaches:

Project n+ γ amplitude on n-particle phase space.
Modify tree graph of cut massless propagator.

→ In the following (2nd approach):

MTree
n,γ-cut →M

Tree
n,γ-cutθ(|~k| − Es), Es: soft cut

Infrared convergent
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Cutting Loops Threshold Singularities

3. Threshold Singularities

Propagators of tree graphs can become singular in parts of integration region.

Pj =
i

(k + pj)2 −m2
j

=
i“

k0 − (−p0
j+Ej)

”“
k0 − (−p0

j−Ej)
”

After cutting propagator Pi, one of the two factors in Pj can get zero:

(p0
j − p0

i ) + (Ei
_
+Ej) = 0

Vanishing of first factor corresponds to coincidence of original poles in lower half plane.
⇒ Singularities cancel in the sum of tree graphs

Vanishing of second factor corresponds to coincidence of poles in lower and upper half
plane.
⇒ Singularity not canceled in the sum of tree graphs.

Terms in FTT with higher number of ∆ function get support at these singularities.
⇒ For each singular peak in sum of tree graphs, these terms give further
imaginary or real contribution to final result.
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Cutting Loops Threshold Singularities

Construction of Fix Functions

In rest frame of pji, peak of threshold
singularity is spherical:

I(k′) ∝
1

k′ − ks
, ks =

λ
1
2 (p0

ji
2
,m2

i ,m
2
j )

2|p0
ji|

Problematic for integration algorithms.
Idea: Subtract zero from integrand:

Res(k′s)

k′ − ks

More precise, in rest frame:

Fix(k′, k′s) ≡
ksR(Λ−1k′s − pi)

4p0
ji

„
1

k′ − ks
− 2

k′ − ks

c2
+

(k′ − ks)3

c4

«
θ(k′, k′s, c)

Add to cross section in integration system:

σFix = Φ

Z
dΠn

Z ‖Λ‖d3k
−−−−−→
Λ(k + p)

2
Fix(|
−−−−−→
Λ(k + p)|, k′s(

−−−−−→
Λ(k + p)))

Simple for numerical algorithms X
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Application to Bhabha Scattering Cross Section Integration
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Application to Bhabha Scattering Cross Section Integration

Bhabha Scattering: Cross Section Integration

Application of FTT to QED Bhabha Scattering at NLO as Proof of Principle

Includes 10 loop graphs, 2pt, 3pt and 4pt functions.

Test subtration scheme for UV/IR divergences and internal singularities

⇒ Compare with automated packages; FeynArts/FormCalc [Hahn ea, ’98]

e−

e+

e−

e+

e−

e+

e−

e+

e−

e+

e−

e+

γ

e−

e+

e−

e+

γ

e−

e+

e−

e+

γ

e−

e+

e−

e+

γ

e−

e+

e−

e+

e−

e+

e−

e+

e−

e+

e−

e+

e−

e+

e−

e+

Recipe - 1st Approach

Create loop graphs with FeynArts/FormCalc. Compute interference with Born
graphs. Blocked tensor reduction. Obtain expressions in terms of scalar products.
In Mathematica: Create subtraction graphs, cut loops, add fix functions, write out
to Fortran
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Create loop graphs with FeynArts/FormCalc. Compute interference with Born
graphs. Blocked tensor reduction. Obtain expressions in terms of scalar products.
In Mathematica: Create subtraction graphs, cut loops, add fix functions, write out
to Fortran
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Application to Bhabha Scattering Cross Section Integration

Results
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Application to Bhabha Scattering Cross Section Integration

Future Approach

Before:

Started with loops, calculated interference with born terms, cut loops

Manipulation of integrand to enhance efficiency of single channel integration
routine

Now and Future:

Create tree amplitudes with O’Mega[Moretti, Ohl, Reuter, ’01]

Add fix functions and subtraction terms

Remaining peak structure: Use multi channel routine VAMP[Ohl, ’98]

Use this setup to generate events, WHIZARD[Kilian ea, ’01]

First Result

One polarized box contribution
to e−Le

+
R → e−Le

+
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Conclusions Summary & Outlook

Summary and Outlook - Part I

New version WHIZARD 1.92 → 2.0.0
http://whizard.event-generator.org

Reference: arXiv:0708.4233

Functional cut/analysis syntax, more models, recursive cascades, improved phase
space, parton shower, . . .
Extended WHIZARD: 1st NLO SUSY MC Event Generator for the ILC

Matching of resummed soft-coll. γ/virtual NLO avoids negative weights
Interface to FeynArts: all MSSM 2→ 2 processes for ILC available

Important future developments:
ME + PS matching
Graphical and/or web interfaces

as usual: we’re open to users wish list!
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Conclusions Summary & Outlook

Summary and Outlook - Part II

Summary
Presented Method for computation of loop diagrams from tree graphs.
⇒ allows fully numerical evaluation in matrix element/event generator framework

Simple prescription for cancellation of UV-, IR-, internal singularities

Proof of principle: Application to Bhabha scattering

No further manipulations necessary
⇒ Level of complexity rises solely due to increasing number of terms
⇒ Expect method to become efficient tool for mulit-leg processes

Outlook

Theoretical side: Extension to full Standard Model.

Implementation in WHIZARD

Far future: Extension to two loops
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Bonus Slides Overlapping Peaks

Overlapping Peaks

Starting at 6-point functions with on-shell external
particles or 3-point functions with unstable/off-shell
external particles.
Addition of fix function gives schematically:

f(r, θ, φ)− f(r, θ, φ)|r′=b
(r′(r, θ, φ)− b)

Equals derivative with respect to r′ in the limit r′ → b.
1st term corresponds to original integrand; 2nd
resembles fix function.

Operate again on upper expression:

f(r, θ, φ)

(r − a)(r′(r, θ, φ)− b)
−

f(r, θ, φ)|r′=b
(r − a)(r′(r, θ, φ)− b)

−
f(a, θ, φ)

(r − a)(r′(a, θ, φ)− b)
+

f(a, θ, φ)|r′=b
(r − a)(r′(a, θ, φ)− b)

However: Terms on right side are non-zero!
⇒ Trade-off between accuracy and efficiency!
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Bonus Slides UV-Plot

Results - Vertex Correction to S-Channel Bhabha Scattering
Multi-Channel Sampling
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Bonus Slides Event Generation

Event Generation

Include NLO by using FTT

Additional 3 inclusive variables ki from phase space integral over additional
particles in tree graphs

Define event by xi and ki. For each set of external momenta an internal
momentum is chosen simultaneously.
⇒ Expect gain in computation speed compared to (semi-)analytical methods.

Negative Weights

Integrand not positive definite
Need to incorporate events with negative weights

Accept event if:

r ≤
|wi|
w±max

w±max = max(|wmax|, |wmin|)

Assign additional flag (±1) to event, dependent on sign of wi

increase in relative error, drop in efficiency
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Bonus Slides Event Generation

Results

S-Channel
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