Higgs Physics – Lecture 4

Future Directions in Higgs Physics at the LHC

Ricardo Gonçalo – LIP

Course on Physics at the LHC – LIP, 26 May 2014

UNIÃO EUROPEIA Fundo Social Europeu

Introduction Where do we stand Answers and questions at the end of run-I **Future LHC Higgs Physics:** LHC Machine scenarios **Precision Higgs Measurements Higgs sector Searches Higgs physics at future accellerators**

Introduction

Higgs lectures so far...

- Lecture 1 overview of theory and history
- Lecture 2 some search channels in detail
- Lecture 3 channel combination and properties of observed Higgs
- This lecture try to get overview and look ahead

Electroweak Lagrangian before $\mathcal{L}_{EW} = \mathcal{L}_g + \mathcal{L}_f + \mathcal{L}_h + \mathcal{L}_y.$ spontaneous symmetry breaking $\mathcal{L}_g = -\frac{1}{4} W^{a\mu\nu} W^a_{\mu\nu} - \frac{1}{4} B^{\mu\nu} B_{\mu\nu} \qquad \text{Electroweak gauge bosons: B}^0 \, \mathrm{W}^0 \, \mathrm{W}^\pm$ $\mathcal{L}_{h} = |D_{\mu}h|^{2} - \lambda \left(|h|^{2} - \frac{v^{2}}{2}\right)^{2}$ Higgs term (note: vacuum expectation value zero before symmetry breaking) $\mathcal{L}_y = -y_{uij} \epsilon^{ab} h_b^{\dagger} \overline{Q}_{ia} u_j^c - y_{dij} h \overline{Q}_i d_j^c - y_{eij} h \overline{L}_i e_j^c + h.c. \text{ Yukawa interaction}$ term between Higgs field and fermions Massive Higgs boson: transverse oscillation mode Spontaneous symmetry breaking: $= \begin{pmatrix} \cos\theta_W & \sin\theta_W \\ -\sin\theta_W & \cos\theta_W \end{pmatrix} \begin{pmatrix} B^0 \\ W^0 \end{pmatrix}_{r}$ $\frac{\gamma}{Z^0}$ New bosons γ and Z^0 from W^0 and B^0 LHC Physics Cours 5/22/14

$$\begin{split} \mathcal{L}_{EW} &= \mathcal{L}_{K} + \mathcal{L}_{N} + \mathcal{L}_{C} + \mathcal{L}_{H} + \mathcal{L}_{HV} + \mathcal{L}_{WWV} + \mathcal{L}_{WWVV} + \mathcal{L}_{Y} \text{ After sym. breaking} \\ \hline \mathcal{L}_{K} &= \sum_{f} \overline{f}(i \partial - m_{f}) f - \frac{1}{4} A_{\mu\nu} A^{\mu\nu} - \frac{1}{2} W_{\mu\nu}^{+} W^{-\mu\nu} + \frac{m_{W}^{2} W_{\mu}^{+} W^{-\mu}}{m_{W}^{2} W_{\mu}^{+} W^{-\mu}} \\ &\quad Kinetic terms: \\ &\quad notice boson \\ &\quad masses (Z,W,H)! \\ \hline \mathcal{L}_{N} &= eJ_{\mu}^{em} A^{\mu} + \frac{g}{\cos \theta_{W}} (J_{\mu}^{3} - \sin^{2} \theta_{W} J_{\mu}^{em}) Z^{\mu} \\ \hline \mathcal{L}_{N} &= eJ_{\mu}^{em} A^{\mu} + \frac{g}{\cos \theta_{W}} (J_{\mu}^{3} - \sin^{2} \theta_{W} J_{\mu}^{em}) Z^{\mu} \\ \hline \mathcal{L}_{C} &= -\frac{g}{\sqrt{2}} \left[\overline{u}_{i} \gamma^{\mu} \frac{1 - \gamma^{5}}{2} M_{ij}^{CKM} d_{j} + \overline{\nu}_{i} \gamma^{\mu} \frac{1 - \gamma^{5}}{2} e_{i} \right] W_{\mu}^{+} + h.c. \text{ fermions and gauge boson interactions \\ \hline \mathcal{L}_{H} &= -\frac{gm_{H}^{2}}{4m_{W}} H^{3} - \frac{g^{2}m_{H}^{2}}{32m_{W}^{2}} H^{4} \\ \hline Higgs boson 3- and 4-point self-interaction \\ - - \left\langle \begin{array}{c} & & \\ & &$$

note fermition miassesse - LIP

ein neues Teilchen gefunden haben. Unklar ist, ob es las Higgs-Boson ist, der letzte Baustein im Weltbild der Physik.

GODDAMN TIME

News Sport Comment Culture Business Money London 2 Comment is free

eguard

The Higgs boson discovery is another giant leap for humankind

The Cern discovery of the Higgs particle is up there with putting man on the moon - something all humanity can be proud of

Why does it matter?

- Because it's real!
 - Data shows Higgs mechanism (or something like it) needed in the theory
- Because it may lead us to new discoveries and a new understanding of Nature!
 - "There is nothing so practical as a good theory" (Kurt Lewin)

Where do we stand?

Questions and answers at the end of Run I

- Most modes available with current lumi explored
- Precision: obvious signal in bosonic decays
 - Mass around 125GeV some questions
 - Signal strength consistent with SM some questions
 - Main alternatives to $J^P = 0^+$ discarded questions remain
- Fermion couplings probably seen in $H \rightarrow \tau \tau$ (4 σ)
- Evidence for VBF production (3σ)
- Mainly indirect sensitivity to ttH coupling through loops
- Many direct searches for other Higgses turned out nothing (yet)

		Н→үү	H→WW	H→ZZ	H→bb	Η→ττ	Н→Ζγ	Η→μμ	Н→сс	н→нн	H→inv
	ggF	v	~	v		v	~	~			
	VBF	✓	~	✓		~	✓	✓			~
-	VH	✓	~	v	v	~					~
	ttH	v	~	v	v	~					

" A Higgs boson mass

• Mass: around 125GeV

− Used to be the only unknown
 SM-Higgs parameter, remember? ☺

- ATLAS: arXiv:1307.1427
 - m_H^{H->4I} = 124.3 ±0.6(stat) ±0.5(sys)
 - m_H^{H->\gamma\gamma} = 126.8 ±0.2(stat) ±0.7(sys)
 - Assuming single resonance: $m_{H} = 125.5 \pm 0.2(stat)^{+0.5}$ -0.6(sys)
- Tension between channels!
 - Compatibility P=1.5% (2.4 σ)
 - Rises to 8% with square syst.prior

BUT:

- CMS: arXiv:1312.5353
 - $m_{H}^{H->4I} = 125.6 \pm 0.4(stat) \pm 0.6(sys)$
- CMS: CMS-PAS-HIG-13-005
 - $m_{H}^{H \to \gamma\gamma} = 125.4 \pm 0.5(\text{stat}) \pm 0.6(\text{sys})$
- Doesn't look like two different resonances!...

Spin and Parity

- Pure J^P = 0⁻, 1⁺, 1⁻, and 2⁺ excluded with 97.8, 99.97, 99.7, and 99.9% Confidence Level (ATLAS arXiv 1307.1432)
- But note: Higgs could have CP-violating component!

Direct Evidence of Fermion Couplings

A O A

- Challenging channels at the LHC!
 - Huge backgrounds (H->bb,H->ττ)
 - Or low rate: H->μμ
- ATLAS:

4.1 σ evidence of H-> $\tau\tau$ decay 3.2 σ exp. $\mu = \sigma_{obs.} / \sigma_{SM} = 1.4 \pm 0.3 (stat) \pm 0.4 (sys)$

• CMS:

Combination of H->bb and H->ττ:
3.8σ evidence (obs.) 4.4σ (expected)

	CIVIS 1401.0527					
Channel	Signific	Best-fit				
$(m_{\rm H} = 125 {\rm GeV})$	Expected	Observed	μ			
$VH \rightarrow b\overline{b}$	2.3	2.1	1.0 ± 0.5			
$\mathrm{H} \to \tau\tau$	3.7	3.2	0.78 ± 0.27			
Combined	4.4	3.8	0.83 ± 0.24			
5/22/14		LHC P	hvsics Course - LIP			

Higgs Width

- Total width not measurable at the LHC
 - Hadronic decays invisible in huge jet background
- Sensitivity can be achieved through "interferometric" measurement
 - Use $gg \rightarrow H \rightarrow ZZ$ with Z on- or off-shell
- Proof of principle done, although still very far from theoretically expected value (4MeV)
 - Γ_H < 22 MeV at 95% CL

Signal strength

Combining Higgs Channels

A bit more technically

• Assumptions:

- Single resonance (at m_H = 125.5GeV)
- No modification of tensor structure of SM Lagrangian:
 - i.e. H has J^P = 0⁺
- Narrow width approximation holds
 - i.e. rate for process i → H → f is:

$$S \times BR = \frac{S_{i \to H} \times G_{H \to f}}{G_{II}}$$

 $S_i = k_i^2 \times S_i^{SM}; G_f = k_f^2 \times G_f^{SM}; G_H = k_H^2 \times G_H^{SM}$

Free parameters in framework:

- Coupling scale factors: κ_i^2
- Total Higgs width: κ_{H}^{2}
- Or ratios of coupling scale factors: $\lambda_{ij} = \kappa_i / \kappa_j$
- Tree-level motivated framework
 - Useful for studying deviations in data with respect to expectations
 - E.g. extract coupling scale factor to weak bosons κ_V by setting $\kappa_W = \kappa_Z = \kappa_V$
 - Not same thing as fitting a new model to the data

Fermion and Boson couplings from fit

- Set one scale factor for all fermions ($\kappa_F = \kappa_t = \kappa_b = \kappa_\tau = ...$) and one for all vector bosons ($\kappa_V = \kappa_z = \kappa_W$)
- Assume no new physics
- Strongest constraint to κ_F comes form gg->H loop
- ATLAS and CMS fits within 1-2σ of SM expectation (compatibility P=12%)
- Note ATLAS and CMS κ_v different see signal strength below

Production Modes

- Combination of channels allows consistency checks
- Evidence for VBF production (3σ)
- Sensitivity to top Yukawa coupling only through loops so far

5/22/14

New Physics in the Loops?

- Dominant gluon-fusion through a (mostly) top loop production for H->ZZ, H->WW and H->γγ
- H->γγ decay through top and W loops (and interference)
- Assume no change in Higgs width and SM couplings to known particles
- Introduce effective coupling scale factors:
 - κ_g and κ_γ for ggH and Hγγ loops

- Best fit values: $\kappa_g = 1.04 \pm 0.14$, $\kappa_{\gamma} = 1.20 \pm 0.15$
- Fit within 2σ of SM (compatibility P=14%)

A bit of fun...

- What if...
 - At higher orders, Higgs potential doesn't have to be stable
 - − Depending on m_t and m_H second minimum can be lower than EW minimum \Rightarrow tunneling between EW vacuum and true vacuum?!
- "For a narrow band of values of the top quark and Higgs boson masses, the Standard Model Higgs potential develops a shallow local minimum at energies of about 10¹⁶ GeV, where primordial inflation could have started in a cold metastable state", I. Masina, arXiv:1403.5244 [astro-ph.CO]
- See also: V. Brachina, Moriond 2014 (Phys.Rev.Lett.111, 241801 (2013)), G.
 Degrassi et al, arXiv:1205.6497v2HC Physics Course LIP

Peering through the crystal ball

So, where do we stand?

- We have found the **missing piece** of the Standard Model puzzle
- The current data show us a SM-like Higgs boson
 - Each channel not so well measured
 - But combination fits well with expectations
- Is this the end of the story?

Discovery → Precision! (& a few more channels)

Many questions...

- Higgs mechanism says how to give mass to fundamental particles
- It doesn't say why fermion masses and Yukawa couplings are so different:
 - $10^{-10} \text{GeV} (v) 10^2 \text{GeV} (t)$
- Top mass at the EW scale. Does it play a special role in breaking it?
- (And by the way... why 3 families of leptons and quarks?)

Eh! Eh! Eh!

Been there.

done that!

C Physics Course - LIP

What is the underlying theory?

1) és 12 (1)

THE PERIODIC TABLE OF THE ELEMENTS

Future LHC Running

Not only more luminosity

- Higher centre of mass energy gives access to higher masses
- Hugely improves potential for discovery of heavy particles
- Increases cross sections limited by phase space
 - E.g. ttH increases faster than background (factor 4)
- But may make life harder for light states
 - E.g. only factor 2 increase for WH/ZH, H→bb and more pileup
 - Could be compensated by use of boosted jet techniques (jet substructure)

Run II/High-Lumi LHC Programme

Precision AND searches!

- Precision:
 - Continue to look for deviations wrt Standard Model
- Differential cross sections:
 - New physics in loops could modify event kinematics
- Complete measurement of properties:
 - E.g. CP quantum numbers:
 - − Sensitivity in $H \rightarrow ZZ$ and VBF
 - Search for CP violatin in Higgs sector
- Search for rare decay modes:
 - H \rightarrow HH to access self coupling (long term!)
- Search for additional Higgs bosons:
 - E.g. 2-Higgs Doublet Model is a natural extension and predicted in SUSY

Direct BSM Higgs Searches (ATLAS)

- FCNC in t→cH, H→γγ upper limit on BR: Obs.(Exp.): 0.83%(0.53%) x SM for 125 GeV at 95% CL [ATLAS-CONF-2013-081]
- H→ZZ→llvv: Excl. 320 560 GeV [ATLAS-CONF-2012-016]
- H→ZZ→llqq: Excl. 300 310, 360 400 GeV. at 145 GeV 3.5 x SM [ATLAS-CONF-2012-017]
- H→WW→lvjj: at 400 GeV Obs.(Exp.) 2.3(1.6) x SM [ATLAS-CONF-2012-018]
- Higgs in SM with 4th fermion generation: model ruled out [ATLAS-CONF-2011-135]
- Fermiophobic H to diphoton Model ruled out [ATLAS-CONF-2012-013]
- MSSM neutral H [JHEP: JHEP02(2013)095]
- NMSSM a1 to μμ [ATLAS-CONF-2011-020]
- NMSSM H to a0a0 to 4γ [ATLAS-CONF-2012-079]
- $H \pm \rightarrow cs$ [EPJC73 (2013) 2465]
- 2HDM WW(lvlv) [ATLAS-CONF-2013-027]

'It is an old maxim of mine that when you have excluded the impossible, whatever remains, however improbable, must be the truth.'

Sherlock Holmes -The Beryl Coronet

An example: ttH

- Indirect constraints on top-Higgs Yukawa coupling from loops in ggH and ttH vertices
 - Assumes no new particles contribute to loops
- Top-Higgs Yukawa coupling can be measured directly
 - Allows probing for New Physics contributions in the ggH and yyH vertices
- Top Yukawa coupling $Y_t = \sqrt{2}M_t/vev = 0.996 \pm 0.005$

Does this mean top plays a special role in EWSB?

Dilepton |

Lepton+jets |

Combination

0

Sensitivity to New Physics

Degrande et al. arXiv:1205.1065

- Effective top-Higgs Yukawa coupling may deviate from SM due to new higher-dimension operators
 - Change event kinematics go differential!
- ttH sensitive new physics: little Higgs, composite Higgs, Extra Dimensions,...
- In the presence of CP violation, Higgstop coupling have scalar (κ_t)and pseudoscalar (~κ_t)components
 - Strong dependence on ttH cross section
 - Note: Indirect constraints from electron electric dipole moment not taken into account (give | ~κ_t | < 0.01)

Future experimental programme

High-Luminosity LHC plus Linear Collider are "dream team" for Higgs properties!

- LHC (Vs=14TeV and L=3000fb⁻¹) systematics limited
- Total width only at Linear Collider (√s=250GeV, L=250fb⁻¹: ≈10% accuracy)
- 2^{nd} generation couplings (Δ_c , Δ_μ) challenging at LHC but possible at LC
- Δ_{top} opens up for LC500 ($\sqrt{s}=500$ GeV, L=500 fb⁻¹): $\approx 3-7\%$ from HL-LHC + LC500
- Precision of HL-LHC + LC limited by LC statistical uncertainty, not systematics!
- NOTE: Not yet clear what machine will follow the LHC... but Higgs physics is a big part of it's physics motivation!

Summary

- Recapitulation:
 - Electroweak symmetry breaking
 - Higgs boson in Electroweak Lagrangian
 - Practical implications
 - Higgs boson production and decay at the LHC
- The landscape at the end of LHC run I
 - Higgs properties: mass, spin, couplings
 - Review of statistical combination of Higgs channels
 - The power of combining different channels examples
 - Implications of Higgs measurements beyond Higgs sector
- Future Higgs measurements at LHC and beyond
 - Fundamental questions at the end of run I
 - Future LHC running luminosity, energy, and physics reach
 - Higgs physics in future LHC analyses Precision and Searches
 - An example: associated production with top-quark pair SM and BSM
 - Precision of Higgs properties at future colliders