Emission Channeling Lattice Location Experiments with Short-Lived Isotopes Status report and 2nd addendum U. Wahl¹, L.M. Amorim², J.P. Araújo³, V. Augustyns², K. Bharuth-Ram⁵, E. David-Bosne¹, J.G. Correia¹, A. Costa¹, P. Miranda⁶, L.M.C. Pereira², D.J. Silva³, M.R. da Silva⁴, K. Temst², and A. Vantomme² spokesperson: U. Wahl contact person: J.G. Correia

 ¹ Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Sacavém, Portugal
² Instituut voor Kern- en Stralingsfysica (IKS), KU Leuven, Belgium
³ Departamento de Física, Universidade do Porto, Portugal
⁴ Centro de Física Nuclear da Universidade de Lisboa (CFNUL), Portugal
⁵ University of KwaZulu Natal, Durban, South Africa
⁶ Departamento de Física, Universidad de Chile, Santiago, Chile

Major physics cases of the previous (2010) addendum to IS453

• lattice location of transition metals in semiconductors (contaminants in Si, dilute magnetic semiconductors, oxides)

... is the only subject of our new experiment IS580 approved by INTC in Oct. 2013.

• lattice location of ²⁷Mg in nitride semiconductors

INTC decided not to incorporate this topic in IS580. Since IS453 still has 4.5 shifts of ²⁷Mg left and no new experiments can be applied for before June 2014, we opt for asking for a 2nd addendum to IS453.

Lattice location of ²⁷Mg and ¹¹Be in nitrides is hence the only physics case of this addendum.

Physics case: Lattice location of Mg and Be in nitride semiconductors

- Nitrides are base material e.g. for white LEDs, blue lasers, power devices, voltage transformers
- Mg is the only technologically relevant *p*-type dopant in GaN
- Mg and Be candidates for acceptors in AlN
- Mg+Be acceptors (group II) should occupy substitutional Al, Ga (group III) sites
- Are there any other lattice sites for Mg and Be?
- ⇒ Lattice location of (implanted) Mg will help to answer this question

No other experimental technique than emission channeling can characterize structural properties of Mg and Be in nitrides!

Mg+Be in GaN: 20 years of rich theory playground with little experimental data...

Brandt et al, PRB (1994)

Wright et al, JAP (2003)

Latham et al, PRB (2003)

Limpijungjong et al, PRB (2003)

Myers et al, JAP (2006)

Mg

Lany et al, APL (2010)

(a) Polaronic arceptor Muga Ga N Mg

Lyons *et al*, *PRL* (2012), JAP (2014)

Yan *et al*, *APL* (2012)

Some of the predicted structures involve significant relaxation of Mg/Be

Emission channeling: basic principle

single crystal or epitaxial film

ISOLDE CERN

> 3×3 cm² Si pad detector 22×22 pixels of 1.3×1.3 mm² currently: max. ~5 kHz

> > 2-dimensional position- and energysensitive detector

radioactive ions

decay particles: conversion electrons, β^{T} , β^{+} , α

2D emission patterns characterize specific lattice sites of the emitting atoms

Problems with mass 27 beams: ²⁷Al + ²⁷Na contaminations

- Considerable contaminations of ²⁷Al (SiC) or ²⁷Na (UC₂) make experiments from SiC or UC₂ targets impossible or very inefficient.
- Following the approval of our ²⁷Mg experiments in 2006, it took 5 years for ISOLDE target development to solve these problems:
- Only the use of a Ti target avoids the contaminations.
- However, only 1 run with a Ti target could be scheduled so far in 2011.
- The Ti target still exists and can be re-used.

Use of EC-SLI on-line @ GHM for ²⁷Mg

- Sept. 2006: IS453 approved by INTC
- June 2007: First use of on-line setup during a ⁵⁶Mn beam time at LA1 and LA2
- Aug. 2009: Setup moved to GHM
- Sept. 2009: First ²⁷Mg beam time (SiC target), reduced to ~2.5 shifts only, Booster vacuum problems
- 2010: ²⁷Mg beam time (SiC target, ²⁷Al contamination)
- 2011: ²⁷Mg beam time with Ti target, problems with ²⁷Al contamination finally solved
- 2012: Only 3.5 of 10 requested ²⁷Mg shifts could be scheduled, from UC₂ target with ²⁷Na contamination.

First results on ²⁷Mg in AlN are published:

APPLIED PHYSICS LETTERS 103, 262102 (2013)

Precise lattice location of substitutional and interstitial Mg in AIN

L. M. Amorim,¹ U. Wahl,² L. M. C. Pereira,¹ S. Decoster,¹ D. J. Silva,³ M. R. da Silva,⁴ A. Gottberg,⁵ J. G. Correia,² K. Temst,¹ and A. Vantomme¹ ¹Instituut voor Kern- en Stralingsfysica, KU Leuven, 3001 Leuven, Belgium ²Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2686-953 Sacavém, Portugal ³IFIMUP and IN-Institute of Nanoscience and Nanotechnology, Universidade do Porto, 4169-007 Porto, Portugal ⁴Centro de Física Nuclear, Universidade de Lisboa, Libsoa 1649-003, Portugal ⁵CERN-ISOLDE, 1211 Geneva 23, Switzerland

(Received 4 November 2013; accepted 6 December 2013; published online 23 December 2013)

β^- emission channeling patterns from ^{27}Mg in AlN

fit results:

RT: ~70% ²⁷Mg on substitutional Al sites, ~30% on interstitial O sites 600°C: ~100% ²⁷Mg on substitutional Al sites

Lattice location precision of ²⁷Mg in AlN

High-symmetric sites in wurtzite structure

SA, SB: substitutional BC-c: bond-centered c-axis ABA-c, ABB-c: anti-bonding c-axis T, O: wide open interstitial HA, HB, HAB: "hexagonal"

 χ^2 of fit: Majority of ²⁷Mg located less than 0.1 Å from S_{Al} Location of interstitial Mg between O and HA site (determined with ~0.3 Å precision)

Thermally activated site change of ²⁷Mg in AlN

Site change of ²⁷Mg from interstitial O to substitutional Al sites as function of implantation temperature allows to estimate activation energy for migration of Mg_i as 1.1–1.7 eV

Beam request

isotope	shifts	target	ion source	yield [at/s/µA]
²⁷ Mg (9.5 min)	12	Ti-W	RILIS Mg	1×10 ⁷
¹¹ Be (838 ms)	3	UC_2 -W or Ta-W	RILIS Be	6×10 ⁶

Total requested shifts: 15 (4.5 still existing, 10.5 new)

Foreseen experimental program

- Study of lattice sites of ²⁷Mg in GaN and AlN from RT to 50 K
- Lattice sites of ²⁷Mg in *p*-GaN (doped with stable Mg during growth)
- Lattice sites of ²⁷Mg in hydrogenated GaN
- Compared to previous ²⁷Mg data, the angular resolution will be doubled by moving the detector further away from the sample.
- Lattice location of ¹¹Be in GaN and AlN from RT to 800°C