Collinear laser spectroscopy with the COLLAPS setup

IS508: Mn
IS519: Zn
IS529: Ca

M. L. Bissell on behalf of the COLLAPS collaboraion

BUNCHED BEAM COLLINEAR LASER SPECTROSCOPY

IS519: Shell structure and level migrations in zinc studied using collinear laser spectroscopy

Shifts:
Physics Case:

$\underline{21}$ awarded in 2011, 21 remaining.
${ }^{60-81} \mathrm{Zn}$: Spins, moments and charge radii.

$\pi 2 p_{3 / 2}$ and $\pi 1 f_{5 / 2}$ level inversions in $\mathrm{Cu}(N=44 \rightarrow 46)$ and $\mathrm{Ga}(\mathrm{N}=46 \rightarrow 50)$
Phys. Rev. Lett. 103142501 (2009), Phys. Rev. Lett. 104252502 (2010):
But what is happening with the neutrons?
Feasibility: \quad UC $_{x}$ with RILIS + quartz line + n -converter.
Yield predictions remain unchanged.
Shift estimates not strongly correlated with yield.

IS508: Collinear laser spectroscopy of manganese isotopes using optical pumping in ISCOOL

Shifts: $\quad \underline{18}$ awarded, $\underline{7}$ remaining.
Performed Studies: Initial offline testing of optical pumping in ISCOOL (December 2011) unsuccessful. :

Realignment of ISCOOL scheduled for LS1 so started on-line studies with less efficient atomic transition.

November 2012 took 11 shifts to measure ${ }^{51-64} \mathrm{Mn}$.

IS508: Collinear laser spectroscopy of manganese isotopes using optical pumping in ISCOOL

$\mathrm{J}=5 / 2-3 / 2$ atomic transition with high spins and isomers
= Difficult
But all spins, magnetic moments and charger radii obtained.-:

Transition rather insensitive to Q .
-A few cases (58,60,62 I=1 states) would benefit from further study in the ionic system.

HFS components linked to $t_{1 / 2}$ of state by accepting counts for different time periods after proton impact.

IS508: Collinear laser spectroscopy of manganese isotopes using optical pumping in ISCOOL

Future Plans with remaining shifts:

1) Repeat offline testing after reinstallation of ISCOOL.
2) Use optical pumping in the cooler with the 294.92 nm ionic transition.

- Cross N=40 (${ }^{65,66} \mathrm{Mn}$)
- Improve Q's of difficult cases.

IS529: Spins, Moments and Charge Radii Beyond ${ }^{48} \mathrm{Ca}$

Shifts:
Physics Case:

18 awarded in 2011, $\underline{0}$ remaining. ${ }^{49-54} \mathrm{Ca}$: Spins, moments and charge radii.
Shifts awarded for measurements up to ${ }^{52} \mathrm{Ca}$ used successfully.

${ }^{52} \mathrm{Ca}$ measured with ≈ 300 ions $/ \mathrm{s}$ in 4 hours. New sensitivity record for BBCLS at COLLAPS

Addendum to IS529: Spins, Moments and Charge Radii Beyond ${ }^{48} \mathrm{Ca}$

The ROC Technique

Radioactive detection of Optically pumped ions after state selective Charge exchange (ROC)

${ }^{53} \mathrm{Ca}$ Multi-step optical pumping

> Shifts required for ${ }^{53} \mathrm{Ca}$ similar to ${ }^{54} \mathrm{Ca}$.
> Smaller components enhanced from $\approx 1 / 20^{\text {th }}$. of $\mathrm{I}=0$ intensity to $\approx 1 / 5^{\text {th }}$.

${ }^{53} \mathrm{Ca}$ Multi-step optical pumping

Shifts required for ${ }^{53} \mathrm{Ca}$ similar to ${ }^{54} \mathrm{Ca}$.
Smaller components enhanced from $\approx 1 / 20^{\text {th }}$. of $\mathrm{I}=0$ intensity to $\approx 1 / 5^{\text {th }}$.

Ion optical design

Full SIMION validation completed

1)Simultaneous focusing at atom and ion detectors.
2)Acceptance $\approx 30 \pi \mathrm{~mm}$ mrad.
3)Consistent with standard COLLAPS beam input parameters.

Detector design

No protons on target	Lasers off	
${ }^{54} \mathrm{Cr} \quad{ }^{54} \mathrm{Ti}$	${ }^{54} \mathrm{Ca}$	
	\square	$\sqrt{4} \begin{aligned} & 4 \\ & 4 \end{aligned}$
Contamination ratio	${ }^{54} \mathrm{Ca}$	${ }^{53} \mathrm{Ca}$
54Cr (Stable)	928	
54Ti(1.5s)	3	
54 Stable (Molecule?)	2	
53 Cr (Stable)		300
53Ti(33s)		~ 0
$53 \mathrm{~K}(30 \mathrm{~ms})$		>0.3

Shift requirements

Shift requirements highly sensitive to both ${ }^{54} \mathrm{Ca}$ yield and contamination. Estimated based on 2 scenarios-

1) ${ }^{54} \mathrm{Ca}$ yield $1 / 20^{\text {th }}$ of that observed by ISOLTRAP and contamination equal.
2) ${ }^{54} \mathrm{Ca}$ yield equal to ISOLTRAP and contamination close to saturating the detectors.

- Based on 5 scans of 5σ

	Shifts
${ }^{54} \mathrm{Ca}$	5
${ }^{53} \mathrm{Ca}$	9
Calibration scans	2
Scintillator setup/ optimisation	1
	$\mathbf{1 7}$

The Collaborations

IS529

M. L. Bissell, ${ }^{1}$ K. Blaum, ${ }^{2}$ I. Budincevic, ${ }^{1}$ C. Gorges, ${ }^{3}$ R. P. de Groote, ${ }^{1}$ R. F. Garcia Ruiz, ${ }^{1}$ Ch. Geppert, ${ }^{3}$ M. Hammen, ${ }^{4}$ H.Heylen, ${ }^{1}$ S. Kaufmann, ${ }^{3}$ M. Kowalska, ${ }^{5}$ P. Lievens, ${ }^{6}$ K. M. Lynch, ${ }^{1}$ R. Neugart, ${ }^{2}$ G. Neyens, ${ }^{1}$ W. Nörtershäuser, ${ }^{3}$ J. Papuga, ${ }^{1}$ R. Sanchez ${ }^{7}$ and D. T. Yordanov ${ }^{8}$

With: IS519

B. Cheal, ${ }^{9}$ C.Babcock, ${ }^{9}$ J. Billowes, ${ }^{10}$ P. Campbell, ${ }^{10}$ T.E. Cocolios ${ }^{10}$, D.H. Forest, ${ }^{11}$ I.D. Moore ${ }^{12}$ and H. H. Stroke ${ }^{13}$

With: IS508

B.Cheal, ${ }^{9}$ C.Babcock, ${ }^{9}$ J. Billowes, ${ }^{10}$ P. Campbell, ${ }^{10}$ V.N. Fedoseyev, ${ }^{5}$ D.H. Forest, ${ }^{11}$ B. Marsh, ${ }^{5}$ I.D. Moore, ${ }^{12}$ M. Reponen ${ }^{12}$ and S. Rothe ${ }^{5}$
${ }^{1}$ Instituut voor Kern- en Stralingsfysika, KU Leuven, B-3001 Leuven, Belgium ${ }^{2}$ Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
${ }^{3}$ Institut für Kernphysik, TU Darmstadt, D-64289 Darmstadt, Germany
${ }^{4}$ Institut für Kernchemie, Universität Mainz, D-55128 Mainz, Germany
${ }^{5}$ CERN, CH-1211 Geneva 23, Switzerland
${ }^{6}$ Afd. Vaste-Stoffysica en Magnetisme, KU Leuven, B-3001 Leuven, Belgium ${ }^{7}$ GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
${ }^{8}$ CSNSM-IN2P3-CNRS, Université de Paris Sud, F-91405 Orsay, France
${ }^{9}$ Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, UK ${ }^{10}$ Schuster Building, University of Manchester, Brunswick Street, Manchester, M13 9PL, UK ${ }^{11}$ School of Physics and Astronomy, The University of Birmingham, Birmingham, B15 2TT, UK
${ }^{12}$ Department of Physics, University of Jyväskylä, PB 35 (YFL) FIN-40014 of Jyväskylä, Finland
${ }^{13}$ Department of Physics, New York University, 4 Washington Place, New York, NY 10003, USA

