IS528-ADD1

Novel diagnostic and therapeutic radionuclides for the development of innovative radiopharmaceuticals

Katharina Domnanich¹, Catherine Ghezzi², Ferid Haddad³, Mikael Jensen⁴, Christian Kesenheimer⁶, <u>Ulli Köster⁵</u>, Cristina Müller¹, Bernd Pichler⁶, Jean-Pierre Pouget⁷, Anna-Maria Rolle⁶, Roger Schibli¹, Gregory Severin⁴, Andreas Türler¹, Stefan Wiehr⁶, Nick van der Meulen¹

Local contact: Karl Johnston

¹ Paul Scherrer Institut, Villigen – Universität Bern – ETH Zürich, Switzerland
² CHU – INSERM – Université Grenoble, France
³ ARRONAX – INSERM – CRCNA – Subatech Nantes, France
⁴ Risø National Laboratory, Roskilde, Denmark
⁵ Institut Laue Langevin, Grenoble, France
⁶ Universitätsklinik Tübingen, Germany
⁷Institut de Recherche en Cancérologie de Montpellier, France

Radiometals for diagnostic imaging and therapy

Photon or positron emitters ^{99m}Tc, ⁶⁸Ga, ... for imaging Particle emitters ⁹⁰Y, ¹⁷⁷Lu, ... for radionuclide therapy

applicable only with high specific activity and chemical purity

The Nuclear Medicine Alphabet

Production of n.c.a. [^{149/152/155}Tb]-Terbium ISOLDE CERN and PSI

Spallation of tantalum targets followed by resonant laser ionization of Dy precursor and mass separation

 \Rightarrow ^{149,152,155}Tb with some oxide sidebands

Separation by means of cation exchange chromatography

Tumor Tageting Agent for Tb-Coordination Chemical Structure with 3 Functionalities

prolonged blood circulation time

Terbium: the Swiss Army knife of Nuclear Medicine

Müller et al. 2012, J Nucl Med 53:1951.

How arboreta can protect

the UK's forests

PHARMACOLOGY

RADIOACTIVE REMEDIES Fighting cancer with rare radioisotopes

INTERVIEW **BRUCE HOOD** Psychology, neuroscience and our sense of self

society of **Biology**

Vol 60 No 3 / THE BIOLOGIST / 21

Terbium-149: alpha-Emitter

Folate Receptor Targeted α -Radionuclide Therapy

Müller et al. 2013, Pharmaceuticals, submitted

¹⁵⁵Tb: low-dose SPECT prior to therapy

Müller et al. 2013, Nucl Med Biol, in press: doi:10.1016/j.nucmedbio.2013.11.002

in vivo validation with peptides, mAbs and vitamins

Peptidesmonoclonal antibodyfolateMDDOTATATEchCE7chCE7cm09cm09

Müller et al. 2013, Nucl Med Biol, in press: doi:10.1016/j.nucmedbio.2013.11.002

Efficient parallel operation

¹⁴⁰Nd/¹⁴⁰Pr: an *in vivo* PET generator

Köster et al. 2014, Nucl Med Biol, submitted.

Understanding the Auger release from chelators

Understanding the Auger release from chelators

Understanding the Auger release from chelators

Theranostic of Invasive Aspergillosis and Echinococcus Multilocularis

New Molecular-Functional Imaging Technologies and Therapeutic

Strategies for Theranostic of Invasive Aspergillosis

The MATHIAS project is funded by the European Union in the 7th Framework Programme under the theme: HEALTH.2013.12-1 - Development of imaging technologies for therapeutic interventions in rare diseases.

HOME

CONSORTIUM

WORKPACKAGES

MANAGEMENT

NEWS

PUBLICATIONS

MEETINGS

LINKS

The development of novel technologies to diagnose and clinically treat invasive Aspergillus fumigatus infections is the scope of this research consortium.

A. fumigatus is a ubiquitous mould whose spores are airborne and thus frequently inhaled. Humans with impaired immunity, e.g. those with haematological malignancies or bone marrow transplant recipients, are at a dramatically increased risk of severe, invasive A. fumigatus infection known as invasive aspergillosis (IA). IA is a rare disease in Europe but causes tremendous costs to the public health sector.

Welcome to the MATHIAS project

Scope of the project

The project started on 1st October 2013, the project duration is five years.

Currently definitive diagnosis of IA is only obtained at autopsy or relies on invasive biopsy, an extremely unpleasant procedure which is not always applicable in suffering patients. Thus, a convenient, fast and specific diagnosis of IA is not available forcing clinicians to administer antifungal drugs, if a standard antibiotic treatment failed to reduce fever in risk patients. It would be of high financial benefit for clinics and has the potential to increase the survival rates of immuno-compromised patients, if a definitive diagnosis of IA could be obtained early and its response to treatment be monitored. This would allow applying the correct therapy at a dose and duration exactly tailored to patient needs. Equally important is the development of new treatment

¹⁶⁹Er (beta⁻) vs. ¹⁶⁵Er (Auger) radiobiology

Beam request

	Shifts	
A) ¹⁴⁹ Tb-cm09 dose escalation study	8	
B) ¹⁴⁹ Tb-PRRT pilot study	3	
C) ¹⁵² Tb/ ¹⁵⁵ Tb companion diagnostics	incl.	
D) ¹⁴⁰ Nd/ ¹³⁴ Ce chelator optimization	6	
¹⁴⁰ Nd/ ¹³⁴ Ce immuno-PET	6	
E) exploratory experiments (Pb, Bi,)	3	
F) mass separation of ¹⁶⁹ Er/ ¹⁶⁸ Er		6 (offline)
Total	26 +	6
Available	-10	
New request	16 +	6 (offline)

Off-line separation of ¹⁶⁹Er

- Therapy study with 6 mice, 70 MBq ¹⁶⁹Er-DOTATOC per mouse
- factor 2 for decay losses and labeling yield
- 850 MBq needed (1E15 atoms collected)
- LA[¹⁶⁹Er]=5 MBq ⇒ up to 500 MBq can be handled in "class C" bat. 170 ⇒ collect and ship two separate samples of 425 MBq each ⇒ ship as UN2910 ("excepted package")
- implantation current ~1 nA of ¹⁶⁹Er for 24 h (3 shifts per sample)
- total current ~1 μ A Er (¹⁶⁸Er + ¹⁶⁹Er) [cf. ⁷Be collections]
- ionization potential 6.11 eV > \sim 0.5% thermal ionization efficiency
- RILIS efficiency >5%? (to be tested!)
- ship ~20 GBq from ILL (2% of A2 limit > "type A" transport)
- Note: ¹⁶⁹Er is a low-energy beta emitter, with very low emission of γ rays: 0.16% 8 keV, 0.01% 110 keV

 \Rightarrow very low dose rate: <1 μ Gy/h at 1 m from unshielded 1 GBq sample.

Indirect production of ²⁰³Pb, ²⁰⁵Bi

	Fr 206 0.7 s 15.9 s 15.9 s	Fr 207 14.8 s	Fr 208 58.6 s α 6.636	Fr 209 50.0 s	Fr 210 3.18 m	Fr 211 3.10 m α 6.535	Fr 212 20.0 m	Fr 213 34.6 s
	$\begin{array}{cccc} & \mu_{7} 531 & \epsilon & \alpha \ 6.792 \\ m_{1} & \gamma \ 575 & \epsilon \\ \alpha \ 6.930 & 559 & \gamma \ 629 \\ \alpha \rightarrow m_{2} & \alpha \rightarrow m_{1} & \alpha \rightarrow g \end{array}$	α 6.767 ε	γ 636, 779 325	α 6.648 ε	α 6.543 ε γ 644, 817	ε γ 540, 918 281	ε α 6.262, 6.384 6.408, 6.340 γ 1274, 227, 1185	α 6.775 ε
And a second second second second	Rn 205 >10 s 2.83 m ^ε α.6.263 γ 265, 465 620	Rn 206 5.67 m α 6.260 ^ε γ 498, 325	Rn 207 9.3 m ε, α 6.133 β ⁺ γ 345, 747	Rn 208 24.4 m α 6.138 ^ε γ 427, 251, 350	$\frac{\text{Rn 209}}{28.5 \text{ m}} \\ \frac{28.5 \text{ m}}{\epsilon, \alpha 6.039} \\ \beta^{+} 2.2, 2.6 \\ \gamma 408, 746, 338 \\ \alpha = 0.000000000000000000000000000000000$	Rn 210 2.4 h α 6.040 ^ε <u>γ</u> 458, (571, 649	Rn 211 14.6 h ^ε 5.783, 5.851 γ 674, 1363	Rn 212 24 m α 6.264
and the second s	γ ο 5/ 9 At 204 9.2 m ε, β ⁺ α 5.951 γ 684, 516 426	At 205 26.2 m ε, α 5.902 β ⁺ γ 719, 669 629, g	9 At 206 29.4 m ε, β ⁺ 3.1, 3.5 α 5.703 γ 701, 477 396	At 207 1.8 h ε, β ⁺ α 5.759 γ 815, 588 301, g	At 208 1.63 h ^ε α 5.640 γ 686, 660 177	At 209 5.4 h ε α 5.647 γ 545, 782 790	At 210 8.3 h ε, α 5.524 5.442, 5.361 γ 1181, 245 1483	At 211 7.22 h ^ε α 5.867 γ (687) g
And the second se	Po 203 45 s 36 m ε, β ⁺ α 5.384 γ909 1091, 894 1γ 641 215	Po 204 3.53 h ε α 5.377 γ 884, 270 1016	Po 205 1.66 h ε, β ⁺ α 5.22, α → g γ 872, 1001 850, 837	Po 206 8.8 d ε, α 5.2233 γ 1032, 511 286, 807 ε ⁻ , g	Po 207 2.8 s 5.34 h ε, β ⁺ α 5.116 γ 992, 743 912 9	Po 208 2.898 a α 5.1152 ^ε γ (292, 571) g	Po 209 102 a α 4.881 ε γ (895, 261 263)	Po 210 138.38 d ^{α 5.30438} γ (803) σ < 0.0005 + < 0.030 σ _{nα} 0.002 σ _{r<} 0.1
and the second se	Bi 202 1.72 h ε, β ⁺ γ 961, 422 657 g	Bi 203 11.76 h ε, β ⁺ 1.4 γ 820, 825, 897 1848 g, m	Bi 204 11.22 h ε γ 899, 375 984 g, m	Bi 205 14.91 d ε, β ⁺ γ 1764, 703 988	Bi 206 6.24 d ε, β ⁺ γ 803, 881, 516 1719, 537	Bi 207 31.55 a ε, β ⁺ γ 570, 1064 1770	Bi 208 3.68·10 ⁵ a ^ε γ 2615	Bi 209 100 1.9 ·10 ¹⁹ a ^{a 3.077} ^{c 0.011 + 0.023} _{ona} < 3E-7
	Pb 201 61 s 9.4 h β ⁺ γ 331, 361 946	Pb 202 3.62 h ¹ / ₂ 961, 422 787 ⁶ / ₂ 490, 460 390 ⁶ ε ηο γ	Pb 203 6.2 s 51.9 h ^b 229 820 ^c 279 401	Pb 204 67.2 m 1.4 ^{hγ 899, 912} 375 σ 0.68	Pb 205 1.5·10 ⁷ a ε no γ σ~5	Рb 206 24.1 σ 0.027	Рb 207 22.1 σ 0.61	Pb 208 52.4 σ 0.00023 σ _{n,α} < 8E-6
	TI 200	TI 201	TI 202	TI 203	TI 204	TI 205	TI 206	TI 207

Imaging Studies Using PET and SPECTKB Tumor-Bearing Nude MiceSPECTSPECTSPECT

¹⁵²Tb-folate: 9 MBqScan Start: 24 h p.i.Scan Time: 4 h

¹⁵⁵Tb-folate: 4 MBqScan Start: 24 h p.i.Scan Time: 1 h

¹⁶¹Tb-folate: 30 MBqScan Start: 24 h p.i.Scan Time: 20 min

Müller et al. 2012, J Nucl Med 53:1951.

Arsenic: another theranostic multiplet

⁷²As: generator-produced β⁺ emitter for PET

Excellent resolution with Derenzo phantom

Köster et al. 2014, Nucl Med Biol, submitted.