

ISOLDE Technical Report

46th Meeting of the INTC 12th – 13th February 2014 Richard Catherall, EN-STI

Outline

- Targets
 - Boron diffusion characterisation
 - Actilab activities
 - LIEBE Developments
- RILIS
- REX
- Tape station
- RFQ Cooler
- Target Area
 - Hot cell, Robots, PAD/MAD, FE Modifications,
 - MEDICIS
- Start up schedule

Diffusion characteristics of Boron

- Phd project Christoph Seiffert
- Diffusion studies of Boron in possible target materials [1]
- High neutron capture cross section allows efficient detection via alpha particle
- Implantation of 10-BF2+ at offline separator with 30kV-80kV into target material samples (Al2O3, CNT, MgF,...)
- In collaboration with SARAF Soreq Applied Research Accelerator Facility, Israel
 - $> σ_{[10-B(n,α)7-Li]}=3840$ barn

10-B+1n

94%: 7Li (0.840MeV + α (1.470MeV) +γ(0.478MeV)

Christoph Seiffert

[1] J. Vacik et al, On Boron diffusion in MgF2, CP1099, Application of Accelerators in Research and Industry: 20th international Conference

Diffusion characteristics of Boron

- Irradiation with thermal neutrons : measure distribution
 - Pu-Be Source 1.1*10⁸ n/s @4π
- Heating of sample <-> diffusion

Diffusion characteristics of Boron

Christoph Seiffert

Kinetic stabilization by sub-microscopic $UC - UC_2$ phase competition

Characterization of conventional UC_x using synchrotron-based micro-beam analysis:

Microscopic morphology – buried porosity & chemistry

- Grain size of material is smaller than previously estimated; global phase transition observed at 2100°C
- Phase competition between UC and α -UC₂ as yet missing explanation of performance and durability of this material

Alexander Gottberg

ENSAR – JRA: ActILab

Online tests and synthesis of de-novo designed uranium carbide matrixes:

Different microstructures, densities, grain sizes, crystal structures tested \rightarrow tailor-made matrix:

- Suspension grinding of UO₂ powder to 160nm average particle size
- Wet-mixing with multi-walled carbon nanotubes
- Ultrasound drying of mixture and pressing to 1.6 g/cm³ pellets
- Fast reactive sintering to mixed uranium carbide in carbon nanotube matrix

Release fractions from RaBIT irradiations, ALTO 2013

IS540:

Despites major technical difficulties (RFQ, tape station, separator):

- record yield of ¹¹Be: 6.0x10⁷ 1/µC, database: 7x10⁶ 1/µC (confirmed)
- Structure appears to be widely conserved over time and temperature (see ³⁰Na evolution)

Repeat tests at ISOLDE and at ALTO within ActILab in 2014

Alexander Gottberg

ENSAR – JRA: ActILab

Post-irradiation analysis:

• First analysis of an irradiated UC_X target in the history of ISOLDE

(important to understand ageing processes and for upcoming waste campaign)

• Opening target unit #466 (8.8·10¹⁸ protons in 2011) in inert-gas hot-cell at PSI, 19 mSv/h on contact with Ta beam window

before irradiation

after irradiation

Pellets appear macroscopically
unchanged

- Microscopic evolution of pore distribution and grain size under irradiation observable
- 500 µSv/h on contact with single pellet
- Results of synchrotron investigations under analysis
- Ceramography and electron microprobe analysis scheduled for April

Alexander Gottberg

Liquid Eutectic Pb/Bi loop for EURISOL LIEBE project

Courtesy of V. Barozier and M. Delonca

LIEBE project: Institutes and Timeline

Q2-12	Kick-off meeting		
Q3-12			
Q4-12	RaBIT irradiations		
Q1-13			
Q2-13	Risk analysis		
Q3-13	Comparison MC code	W/P Dofinition	WP Holdor
Q4-13	Instrumentation definition	WP1: Coordination	CERN
Q1-14	Offline tests: shower	WP2: Conceptual Design and Simulation	SCK-CEN
	feasibility	WP3: Construction, Assembly	CERN
Q2-14	Pump construction	WP4: Instrumentation	CERN
	Offline tests: loop	WP5: Safety and Licensing	CEA
	Final design	WP6: Target characterization and analysis	PSI
	Modification target area	WP7: Radiochemistry	SINP
02.14	Construction	WP8: Offline Commissioning	IPUL
Q3-14	Construction	WP9: Online Operation	CERN
Q4-14	Confissioning		
Q1-15	would all of target area		
Q2-15	1 week online		
	Report		

Final report

2018

Needed for improvement of work safety

New SAS for RILIS laser room is built in December 2013

V. Fedosseev

199191

HRS laser window

New features add safety and usability

- ease of access for inspection
- use of a standard CF mounted viewport (stocked item)
- no special tools required for exchange
- preserve thread in HRS Al vacuum tank
- adding port aligner makes window useful as additional reference point for RILIS

Process and Status

- lack of drawings of the current window required intervention to get dimensions
- drawings are now with the ISOLDE workshop and the manufacturer
- port-aligner and viewport are currently tested at ISOLDE-OFFLINE
- required torque will be measured prior to installation at HRS

People involved: RILIS, Erwin, Stefano, Alexandre D., Giovanna, Ermanno

V. Fedosseev

Barium Scheme Development

- From a first step of 350.1 nm, scans of the second step were made offline at the LARIS lab
- 3 potential auto-ionizing schemes were identified
- These will be compared @ ISOLDE with efficiency measurements being taken

REXEBIS

Last INTC: Repair of REXEBIS magnet cryostat initialized

LHe holding time 6 days and could fall abruptly (nominal 14 days). Last repaired 2005 by external firm Ice Oxford; this time in-house repair. Major and risky job; complete EBIS needs to be dismantled. Goal: EBIS re-assembled by March 2014.

Nov and Dec: Moderate modifications and reassembly Holding time only ~ 7 days Further discussion with magnet team in ATLAS

Jan - ??: ATLAS magnet team involved Magnet disassembled again No clear loss cause identified Discussing more complex improvements

* Timeline unsure as the magnet team has other higher priorities.

* Worries: still no cathode tests started lack of results for PhD student

F. Wenander

HEC² prototype tests at BNL

Prototype gun design by BNL, built by CERN being tested at BNL by joint team at BNL TEBIS First beam time – 08.11.2013-15.11.2013

Scenario	E _e , keV	I _e , A	J _e , kA/cm²
HEC ² ultimate spec	150	5	10-20
Test stand limit <i>as is</i>	40	2.2	5
Achieved in 1-st run	30	1.54	tba
REXEBIS today	5	0.2	0.01

These activities supported by HIE-ISOLDE design study will continue in 2014

F. Wenander & A. Shornikov

Tapestation

Type 40011-25

0.5 cm

- Investigations show that the solenoid brake is sticking
- Repair and test as soon as beam is available
- Construction of new tape station throughout 2014
- EN-STI/PH-SME collaboration

RFQ cooler

ALIGNMENA

RFQ cooler Electronics

Arcing and insulator breakdown

Over-stressed insulators can take years or months before breakdown occurs

Diagnosis and repair are difficult and time-consuming RFQ cooler is critical for 50% of ISOLDE's output

The Target Dismantling Hot Cell

- Factory acceptance tests successfully completed.
- Delivery and start of assembly 18th March
- 4 weeks to assemble

Target Handling Robots

Installation progressing, cabling under way. Shelf and door modifications planned for Feb 2014

21

Collective Dose Summary for Robot Installation

Duy-Duc Phan

PAD/MAD Access to Target Area

- Tests 18th February, 10-16 March, 1-6 April
- No access to target and separator areas

Front End Modifications

- New coupling tables compatible with new robots
- Pneumatic pistons for faraday cage door
- Repair of GPS extraction electrode

FE Modifications: Proposition

Install a radha switch for targ

ic piston diam.80

cam for table dback

S. Marzari

Ground-breaking ceremony 4th September 2013

December 2013

Earth works November 2013

January

February

ISOLDE Start-up: Some Key dates

• Only 21 weeks before protons to ISOLDE!

• Thank you for your attention.