

γ -ray Energy Spectra and Multiplicities from the Neutron-induced Fission of ²³⁵U using STEFF.

A.G. Smith, T. Wright, J. Billowes, J.Ryan, S.Warren, C. Gurrrero^{$\triangleright q$}, L. Tassan-Got^{\otimes}, A. Pollitt^{*}, O.Serot[†], I. Tsekhanovich[‡]

The University of Manchester, Manchester, M13 9PL, U.K. [▷]CERN Physics Department, CH-1211 Genève 23, Switzerland. ^{¬Universidad de Sevilla, Sevilla, Spain [⊗]IPN, Université Paris-Sud, 91406 ORSAY Cedex, France [‡]Université de Bordeaux 1, Talence Cedex 33405, France [†]CEA-Cadarache, DEN/DER/SPRC/LEPh, France ^{*}Institut Laue-Langevin, 6 rue Jules Horowitz, 38042 Grenoble Cedex, France.}

STEFF (with upgrade for EAR2)

Fragment mass measurement

• Time-of-flight -> velocity

- Bragg Ionisation chamber->energy
- Mass resolution 4 amu

Digital Bragg Pulse Processing

- Integration
- Low-pass filter: noise reduction
- Currently Noise ~0.2 percent

- Digital Pulse Processing:
- High-pass filter
- Ballistic Def. Correction

Nuclear charge distribution for light mass group

Gamma-ray Energy and Multiplicity

- Response to NEA High Priority Request of more accurate knowledge of heating caused by gamma emission in the next generation of nuclear reactors
- Coincidence with emission of prompt gamma rays as a function of the fragment mass and energy
- 12 Nal detectors around the uranium target provide a 6.8% photo peak detection efficiency

Gamma decay of fission fragment

²³⁵U Single γ Energy distribution (ILL)

• Deconvolution (Compton/Backscatter, etc. removal) using GEANT4 response functions.

Using GEANT4 simulations of response functions of Nal detectors

Fragment Angular Distributions

Fig. 10. Dependence of the anisotropy parameter on the neutron energy in the 232 Th(n,f) reaction. Present data are indicated by the black squares for comparison with previous results [15,19–22].

D. Tarrío et al. / Nuclear Instruments and Methods in Physics Research A 743 (2014) 79-85

Constrains calculations of fission barrier. STEFF: Anisotropy with A,Z,E*?

Rate Calculation for STEFF@EAR2

- Target 25cm² ²³⁵U at $100 \,\mu g \,\mathrm{cm}^{-2}$
- Beam flux $7.54 \times 10^{6} \, \mathrm{n \, cm^{-2}} \times 0.4 \, \mathrm{s^{-1}}$
- Neutron energy range 1eV 10 MeV
- 3×10¹⁸ protons (~30 days running time)
- Intrinsic Fragment detection efficiency 0.5*
- 5×10^5 Fragment-gamma events with A,Z,E
- 5.6 fissions per pulse in 3ms⁺; Δt_{v}^{2} 15ns

*For both fragments. Limited by efficiency of STOP : to be improved. S.Warren PhD project. † charge collection in anodes in ~3us.

MANCE

STEFF Proposal Objectives

- To move STEFF to a EAR2 to study neutron-induced fission.
- Measurement of E,A,Z and directions of fragments.
- Use gamma multiplicities and angular distributions to look at spin effects.
- Meet NEA high-priority request for gamma-ray data.
- Study fragment angular distributions vs. A,Z and E (E_x).

Monte Carlo simulation (decay)

Probability of spin state is generated based statistical model:

$$P(J_i) \propto (2J+1)exp\left\{\frac{(J_i + \frac{1}{2})^2}{B^2}\right\}$$

- Number of yrast gamma rays linked to mean spin ~ B.
- Geometric distributions give statistical gamma rays for each fragment.
- Interaction with array: ε, scattering

Characteristics of bragg pulse

- Installed in pf1b Institut Laue-Langevin, Grenoble for 2x 25 days
- ²³⁵U target 100µgcm⁻² on a Nickel backing
- Thermal neutron flux 1.8x10¹⁰ neutrons cm⁻²s⁻¹
- Measured mass resolution 4 amu

