

Neutron capture at the *s*-process branching points ¹⁷¹Tm and ²⁰⁴Tl

Spokespersons: <u>C. Guerrero</u> (U.Sevilla/CERN) and C. Domingo-Pardo (CSIC-IFIC) Close Collaborators: U. Koester (ILL), D. Schumann (PSI) and S. Heinitz (PSI) (The n_TOF Collaboration)

Co-Financed by EC-FP7 project "NEUTANDALUS"

CERN INTC meeting (February 12th 2014)

Nucleosynthesis through the s-process

Chemical elements beyond Iron are synthesized via neutron capture reactions in stars:

- ~ $\frac{1}{2}$ by the s-process (red giants)
- ~ ½ by the r-process (explosive)

Nucleosynthesis & s-process: branching points

Suff. long $\tau_{\rm 1/2}$ || Suff. High $\Phi_{\rm n}$

C. Guerrero and C. Domingo-Pardo @CERN/INTC February 2014

"Neutron capture at the s-process branching points ¹⁷¹Tm and ²⁰⁴Tl"

Most relevant *s*-process branching points

REVIEW OF MODERN PHYSICS, VOLUME 83, JANUARY-MARCH 2011					
Sample	Half-life (yr)	Q value (MeV)	n_TOF→ PRL 93, 161103 (2004)		
⁶³ Ni	100.1	$\beta^{-}, 0.066$	TOF work in progress (Couture, 2009), sample with low enrichment		
⁷⁹ Se	2.95×10^{5}	$\beta^{-}, 0.159$	Important branching, constrains s-process temperature in massive stars		
⁸¹ Kr	2.29×10^{5}	EC, 0.322	Part of ⁷⁹ Se branching		
⁸⁵ Kr	10.73	$\beta^{-}, 0.687$	Important branching, constrains neutron density in massive stars		
⁹⁵ Zr	64.02 d	β^{-} , 1.125	Not feasible in near future, but important for neutron density low-mass AGB stars		
¹³⁴ Cs	2.0652	β^{-} , 2.059	Important branching at $A = 134, 135$, sensitive to <i>s</i> -process temperature in low-mass AGB stars, measurement not feasible in near future		
¹³⁵ Cs	2.3×10^{6}	$\beta^{-}, 0.269$	So far only activation measurement at $kT = 25$ keV by Patronis <i>et al.</i> (2004)		
¹⁴⁷ Nd	10.981 d	$\beta^{-}, 0.896$	Important branching at $A = 147/148$, constrains neutron density in low-mass		
¹⁴⁷ Pm	2 6234	B^{-} 0.225	Part of branching at $A = \frac{147}{148}$		
¹⁴⁸ Pm	5 368 d	$\beta^{-}, 2.464$	Not feasible in the near future		
¹⁵¹ Sm	90	$\beta^{-}, 0.076$	Existing TOF measurements, full set of MACS data available (Abbondanno <i>et al.</i> , 2004a; Wisshak <i>et al.</i> , 2006c)		
¹⁵⁴ Eu	8.593	$\beta^{-}, 1.978$	Complex branching at $A = n_{TOF} \rightarrow PRL 110, 022501 (2013)$		
¹⁵⁵ Eu	4.753	$\beta^{-}, 0.246$	So far only activation measurement at $kT = 25$ keV by Jaag and Kappeler (1995)		
¹⁵³ Gd	0.658	EC, 0.244	Part of branching at $A = 154, 155$		
¹⁶⁰ Tb	0.198	β^{-} , 1.833	Weak temperature-sensitive branching, very challenging experiment		
¹⁶³ Ho	4570	EC, 0.0026	Branching at $A = 163$ sensitive to mass density during s process, so far only		
			activation measurement at $kT = 25$ keV by Jaag and Käppeler (1996b)		
170	0.332	ρ , 0.900	important oranening, constrains neuron density in low-mass AOD stars		
¹⁷¹ Tm	1.921	$\beta^{-}, 0.098$	Part of branching at $A = 170, 171$		
185 W	1.82	B_{-}^{-} 0.432	Ender to reprocess contribution to ¹⁰ Ta, nature's farest stable isotope Important branching, sensitive to neutron density and s-process temperature in		
	0.200	p , 0.152	www.mass. awip stats		
²⁰⁴ Tl	3.78	$\beta^{-}, 0.763$	Determines ²⁰⁵ Pb/ ²⁰⁵ Tl clock for dating of early Solar System		

¹⁷¹Tm as part of branching at A=170/171

The A=170/171 branching point is one of the branchings that is independent of stellar temperature, therefore suited for constraining the s-process neutron density in low-mass AGB stars (i.e. main s-process component).

F. Kaeppeler et al., ApJ 354 (1990) 630-643

 $n_n = 0.7^{+4.9}_{-0.5} \cdot 10^8 \ cm^{-3}$

In view of the difficulties related to production of ¹⁷⁰Tm, experimental information on ¹⁷¹Tm becomes important as part of the branching, but also as the more important for improved HF predictions of the ¹⁷⁰Tm cross section.

Status of ¹⁷¹Tm Maxwellian averaged $\sigma(n,\gamma)$ (MACS) calculations

... such astrophysical studies require a reliable MACS for ¹⁷¹Tm(n,g), however:

- No experimental information available at all.
- Present MACS based on theoretical HF-calculations.

YEAR At least a factor of 2 uncertainty in the ¹⁷¹Tm(n,g) MACS is currently hindering a reliable and detailed analysis of the s-branching at ^{170/171}Tm

²⁰⁴Tl determines the ²⁰⁵Pb/²⁰⁵Tl clock for dating of early Solar System

²⁰⁵Pb ($t_{1/2} = 1.5 \times 10^7$ a) is produced only by the s-process:

The ratio ²⁰⁵Pb/²⁰⁵Tl provides highly interesting **chronometric information** about the time span between the last nucleosynthetic events that were able to modify the composition of the solar nebula and the formation of solar system solid bodies.

(At present, there is an upper limit for the 205 Pb/ 205 Tl abundance ratio of 9x10⁻⁵ from meteorites)

K. Yokoi et al., Astronomy and Astrophysics 145, 339-346 (1985)

Anders & Stevens, J. Geoph. Res., 1961 Huey & Kohman, Earth Plan. Sci. Lett., 1972 Blake et al., Nature, 1973 Blake and Schramm, ApJ, 1975

Status of ²⁰⁴Tl(n,g) MACS calculations

... such astrophysical studies require a reliable MACS for ²⁰⁴Tl(n,g), however:

- No experimental information available at all.
- Present MACS based on theoretical HF-calculations.

YEAR At least a factor of 2 uncertainty in the ²⁰⁴Tl(n,g) MACS is currently hindering a reliable and detailed analysis of the s-branching at ²⁰⁴Tl

Samples production in three steps: step 1

Branching points are radioactive!

Production via (n,γ) or (n, γ)β⁻ **in the ILL research reactor** [Contact: Ulli Koester] Neutron flux: 1.5×10^{15} n/cm²/s (highest F_{n,th} worldwide) Irradiation time: 60 days (1.3 cycles) [March –June 2012]

Step 1: purchase of the stable isotopes and production of pellets to be irradiated.

Samples transformed into pellets at PSI [Contact: J. Neuhausen, D. Shumann]

- Pressed 5 mm diameter pellets
- Sintered at 1150°C

Successfully completed in Spring 2013!

Samples production in two: step 2

Branching points are radioactive!

Production via (n,γ) or (n, γ)β⁻ **in the ILL research reactor** [Contact: Ulli Koester] Neutron flux: 1.5×10^{15} n/cm²/s (highest F_{n,th} worldwide) Irradiation time: 60 days (1.3 cycles) [March –June 2012]

Step 2: irradiation during 60 days at ILL

¹⁷¹**Tm:** ¹⁷⁰Er(n,g)¹⁷¹Er (b⁻, 7.5h)¹⁷¹Tm (enrichment 1.8%) 3.63 mg of ¹⁷¹Tm (1.9 y) [1.3e19 atoms]

²⁰⁴Tm: ²⁰³Tl(n,g)²⁰⁴Tl (enrichment 5.3%) 11 mg of ²⁰⁴Tm (3.78 y) [3.25e19 atoms]

¹⁴⁷Pm: ¹⁴⁶Nd(n,g)¹⁴⁷Nd (b⁻, 10d)¹⁴⁷Pm (enrichment 0.35%) 0.29 mg of ¹⁴⁷Pm (2.6 y) [1.2e18 atoms] (→EAR-2!)

A new source of radioactive samples for n_TOF

Successfully completed in Summer 2013!

Samples production in three steps: step 3 and 4

Branching points are radioactive!

Production via (n,γ) or (n, γ)β⁻ in the ILL research reactor [Contact: Ulli Koester] Neutron flux: 1.5×10^{15} n/cm²/s (highest F_{n,th} worldwide)

Irradiation time: 60 days (1.3 cycles) [March –June 2012]

Step 3: chemical purification at PSI

We have now:

¹⁷¹Tm: 1.80% in a ¹⁷⁰Er pellet of 5 mm in diameter

Step 4: shaping of the samples for use at n_TOF

Work Ongoing

Experimental set-up

C6D6 vs. TAC:

- TAC: higher neutron sensitivity, but powerful background rejection capabilities (²⁰⁴Tl)
- C6D6: lower neutron sensitivity, but less background discrimination (¹⁷¹Tm)

Beam Time request: ¹⁷¹Tm(n,γ)

Beam time request based on the only evaluation available: TENDL-2012 (TALYS)

CERN CERN CONTRACTOR

C. Guerrero and C. Domingo-Pardo @CERN/INTC February 2014

"Neutron capture at the s-process branching points ¹⁷¹Tm and ²⁰⁴Tl"

Beam Time request: ²⁰⁴Tl(n,γ)

Beam time request based on the only evaluation available: TENDL-2012 (TALYS)

"Neutron capture at the s-process branching points ¹⁷¹Tm and ²⁰⁴TI"

Summary of beam request

In addition to the beam time allocated to the ¹⁷¹Tm and ²⁰⁴Tl measurements, background and normalization measurements will be carried out. The overall beam time request is summarized in Table 1.

Sample / Set-Up	Objective	Protons
¹⁷¹ Tm/C ₆ D ₆	Capture Cross section of 171 Tm with C_6D_6	2x10 ¹⁸
²⁰⁴ TI / TAC	Capture Cross section of ²⁰⁴ Tl with TAC	2.5x10 ¹⁸
²⁰³ TI / TAC	Background from ²⁰³ Tl on the ²⁰⁴ Tl sample with TAC	1x10 ¹⁸
Empty / C ₆ D ₆	Overall beam-on background	0.6x10 ¹⁸
Dummy / C ₆ D ₆ &TAC	Sample backing related background	0.8x10 ¹⁸
¹⁹⁷ Au / C ₆ D ₆ &TAC	Normalization and validation	0.6x10 ¹⁸
Total		7.5x10 ¹⁸

If approved by the INTC, the measurements should be scheduled within 2014 for avoiding decay leading to smaller amounts of ¹⁷¹Tm (1.9 y) and ²⁰⁴Tl (3.8 y)

