Windmill Collaboration Status Report on Studies in the Lead Region Addenda IS456/IS534

Andrei Andreyev University of York, UK and JAEA, Tokai, Japan on behalf of the Windmill Collaboration

- HFS measurements in long chains of Au, TI, Pb, Po, At (~70 isotopes)
- Shape coexistence (E0's, new states...)
- Beta-delayed fission (TI, At, Fr)
- Atomic spectroscopy (IP, configuration...)

Windmill Collaboration '2014

Highly collaborative
15 institutions, >40 atomic and nuclear physicists
Many PhD students, both atomic and nuclear physics

Windmill Collaboration '2014

Comenius University, Bratislava, Slovakia GANIL, Caen, France Helmholtz Institut Jena, Germany **ILL, Grenoble, France** Institut für Physik, Johannes Gutenberg-Universität Mainz, Germany **IPN Orsay, France** JAEA, Tokai, Japan KU Leuven, IKS, Belgium **PNPI, Gatchina, Russian Federation** A. Barzakh E. Rapisarda, B. Marsh **RILIS and ISOLDE, CERN, Switzerland** SCK-CEN, Mol, Belgium **F.E. Cocolios** The University of Manchester, United Kingdom The University of York, United Kingdom **University of Liverpool, United Kingdom** University of the West of Scotland, United Kingdom Extra thanks to the MR-TOF@ISOLTRAP team and the GSI Target Laboratory

Pre-2003: Charge Radii in the Lead Region

- Shape coexistence around N~104
- Sphericity around N=126, kink in radii, high-spin isomers
- Octupole effects around N~132, inverse odd-even radii staggering

Pre-2003: Charge Radii in the Lead Region

- Shape coexistence around N~104
- Sphericity around N=126, kink in radii, high-spin isomers
- Octupole effects around N~132, inverse odd-even radii staggering

2002 – Birth of the "Windmill Collaboration" Proof-of-principles: isomer separation in ¹⁸⁵Pb

Eur. Phys. J. A 14, 63–75 (2002) DOI 10.1140/epja/iepja1387

Nuclear spins, magnetic moments and α -decay spectroscopy of long-lived isomeric states in $^{185}{\rm Pb}$

THE EUROPEAN PHYSICAL JOURNAL A

© Società Italiana di Fisica Springer-Verlag 2002

A.N. Andreyev^{1,a}, K. Van de Vel², A. Barzakh³, A. De Smet², H. De Witte², D.V. Fedorov³, V.N. Fedoseyev^{4,b}, S. Franchoo^{5,6}, M. Górska^{2,c}, M. Huyse^{2,5}, Z. Janas⁷, U. Köster⁵, W. Kurcewicz⁷, J. Kurpeta⁷, V.I. Mishin⁴, K. Partes⁵, A. Plochocki⁷, P. Van Duppen², and L. Weissman^{5,d}

¹ Department of Physics, Oliver Lodge Laboratory, University of Liverpool, PO Box 147, Liverpool, L69 7ZE, United Kingdom

- ² Instituut voor Kern- en Stralingsfysica, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
- ³ Petersburg Nuclear Physics Institute, 188300, Gatchina, Russia
- ⁴ Institute of Spectroscopy, Russian Academy of Sciences, 142190, Troitsk, Russia
- ⁵ ISOLDE CERN, CH-1211 Genève 23, Switzerland
- ⁶ University of Mainz, D-55099, Mainz, Germany

Measurement Tools '2014: WM, FC, MR-TOF MS

~2006-2011: HFS for TI, Pb and Po

- 3 PhD theses: Pb H. De Witte (KU Leuven); Bi: B.A. Marsh (Manchester); Po: T.E. Cocolios (KU Leuven)
- 2 PRL's, 1 PLB, + 5 papers

IS466 (2008): Beta-delayed fission of ^{178,180}Tl (first ever fission studies at ISOLDE?)

IS466/534: Mapping 'Terra Incognita' in Low-Energy Fission Beta-delayed fission of ^{178,180}Tl, ^{194,196}At, ^{200,202}Fr

A.N. Andreyev, M. Huyse, P. Van Duppen, "Beta-delayed Fission", Reviews of Modern Physics, 85, 1541 (2013)

- 1 PhD thesis completed (UWS, 2014), Rev. Mod. Phys., PRL, 3 PRC's
- PRL+2 PRC's in preparation, 2 PhD theses underway, L. Ghys (KU Leuven), V. Truesdale (York)

ISOLDE β-decays 1 Shape coexistence and unusually Systematics of even Hg isotopes via Tl β decay (courtesy E. Rapisarda)

- Decay properties of low-lying states well characterized by β -decay link to Coulex studies
- More information are expected from the laser spectroscopy of $^{179-184}TI \rightarrow$ analysis on going
- more information are expected from the α -decay of ¹⁸²⁻¹⁸⁴Tl \rightarrow analysis on going

From 2010 on: IO86/IS534 Astatine's HFS and βDF

2010: Letter of Intent 1086

Development of astatine ion beams with RILIS

Spokespersons: A. Andreyev and V. Fedosseev

- Measurements of HFS, μ , Q for At's
- Shape coexistence in daughter Bi, Po and Rn
- β-delayed fission ^{194,196}At
- Octupole region (N~132-136)
- Atomic spectroscopy (spins of excited states)

COMMUNICATIONS Sebastian Rothe, PhD thesis (2012)

Atomic calculations by two theory groups from GSI

Received 21 Aug 2012 | Accepted 27 Mar 2013 | Published 14 May 2013

DOI: 10.1038/ncomms2819 OP

Measurement of the first ionization potential of astatine by laser ionization spectroscopy

S. Rothe^{1,2}, A.N. Andreyev^{3,4,5,6}, S. Antalic⁷, A. Borschevsky^{8,9}, L. Capponi^{4,5}, T.E. Cocolios¹, H. De Witte¹⁰,
E. Eliav¹¹, D.V. Fedorov¹², V.N. Fedosseev¹, D.A. Fink^{1,13}, S. Fritzsche^{14,15,†}, L. Ghys^{10,16}, M. Huyse¹⁰, N. Imai^{1,17},
U. Kaldor¹¹, Yuri Kudryavtsev¹⁰, U. Köster¹⁸, J.F.W. Lane^{4,5}, J. Lassen¹⁹, V. Liberati^{4,5}, K.M. Lynch^{1,20}, B.A. Marsh¹,
K. Nishio⁶, D. Pauwels¹⁶, V. Pershina¹⁴, L. Popescu¹⁶, T.J. Procter²⁰, D. Radulov¹⁰, S. Raeder^{2,19}, M.M. Rajabali¹⁰,
E. Rapisarda¹⁰, R.E. Rossel², K. Sandhu^{4,5}, M.D. Seliverstov^{1,4,5,12,10}, A.M. Sjödin¹, P. Van den Bergh¹⁰,
P. Van Duppen¹⁰, M. Venhart²¹, Y. Wakabayashi⁶ & K.D.A. Wendt²

0 cm

b)

mm

532

a)

nm

6 nm

224 nm

c)

uuu

32

d)

nnn

795

 75151 cm^{-1}

_58805 cm⁻¹ 57277 cm⁻¹

 57269 cm^{-1}

57157 cm⁻¹

 46234 cm^{-1}

 44550 cm^{-1}

Recent technical improvements of the in-source spectroscopy method (2012 onwards)

Dual etalon, narrow-band Ti:Sa

slide courtesy Bruce Marsh

LIST for francium isobar suppression

CURRENT quality factors: Selectivity improvement = 10⁴-10⁵ Efficiency loss = 20x

B. A. Marsh et al., 20013 EMIS conference, NIM B317, p.550 (2013)

Reference cell for RILIS

Reference measurements

of stable isotopes

Available in 2014

2011-2012 IS534: HFS in Au and At chains

- "Back to sphericity" in the lightest Au isotopes: ^{177-182,185,191}Au IS534
- First measurement for At isotopes: ^{197,198,203,205,207,209,211,217}At IS534
- First experiment with the LIST: ²¹⁷Po –IS456

2014: IS534 Addendum to complete HFS studies for $^{193-196,199,201,202,204,206,218,219}$ At isotopes (+ β DF of 194 At)

- 2013-2014- analysis underway, good understanding of further needs, e.g. better precision needed (in several cases only 1 scan was available)
- New Addendum: 2nd step; broader HFS; better precision; (use King's plot '2012)
- IS/HFS for ^{193-196,199,201,202,204,206,218,219}At: 17 shifts, narrowband HFS scans
- β DF of isomerically-pure beams of ^{194m1,m2}At: 3 shifts, narrowband
- In total, 16.5 shifts requested (+3.5 remaining from 2012)

IS456 Addendum: ^{211,212,219,220}Po, goals and shift request (T.E. Cocolios, S. Raeder et al.)

- Odd-even staggering reversal in charge radii associated with octupole deformation (N~136)
- High-spin isomers and the role of the vi_{11/2} orbital for the kink at N=126 (^{211m,212m}Po)
- Further LIST characterization
- 13.5 shifts requested (+4.5 from 2012)

'2012: HFS of ²¹⁷Po with LIST

Isotope	T _{1/2} [s]	Yield ions/uC	After LIST	Shifts	lsotope	T _{1/2} [s]	Yield ions/uC	After LIST
^{211m} Po	25.2	5x10 ⁵	5x10 ⁴	1+1	²¹¹ Fr	186	1.5x10 ⁸	2.2x10 ⁶
^{212m} Po	45.1	4x10 ⁵	4x10 ⁴	1+1	²¹² Fr	1200	1.6x10 ⁸	2.3x10 ⁶
²¹⁹ Po	~600		30	1+6	²¹⁹ Fr	0.021	9x10 ³	<100
²²⁰ Po	?		~10#	1+4+2	²²⁰ Fr	27.4	3.8x10 ⁷	4x10 ⁴ #

Summary: Windmill Collaboration '2014 Charge Radii, Shape Coexistence, Beta-Delayed Fission

- HFS measured for ~70 isotopes in the long chains of Au, TI, Pb, Po and At
- Shape coexistence
- Beta-delayed fission
- Large amount of "by-product" nuclear spectroscopic information (e.g. E0's)
- 1 RMP, 1 Nat. Comm., 3 PRL's, 1 PLB, + >10 articles
- 6 PhD and 6 MSc theses completed, 6 PhD projects in progress: Gatchina (1), Leuven (2), Manchester(1), York(2)
- Longer-term plans: Bi's -HFS and β DF; Hg's HFS; heaviest Fr's β DF

1st Step scanning vs 2nd step for ¹⁹⁷At

1st Step scanning vs 2nd step for ¹⁹⁷At

-5000

) 5000 10 laser frequency detuning, MHz

0

10000

15000

Fig.1. HFS spectra for ^{197,198, 205, 211, 217}At measured in October 2012 at HRS, by using WM, MR-TOF MS and FC. Vertical bars — centres of gravity of the corresponding HFS spectra.

Windmill System (WM) at ISOLDE

A. Andreyev et al., PRL 105, 252502 (2010)

Digital electronics

2012: IS534 HFS spectra for At isotopes (+ β DF of ^{194,196}At)

'2012 IS456 Results for ²¹⁶⁻²¹⁹Po with LIST and Addendum (courtesy T.E.Cocolios)

- 2006-2009 campaigns mostly neutron-deficient, need data for ^{211,212,219,220}Po, but dominant Francium contamination
- 2012 campaign with LIST
- Fr suppression by >1000
- Po reduction by <10
- First laser spectroscopy of ²¹⁶⁻²¹⁹Po possible

D.A.Fink et al, NIMB 317 (2013) 417-421

IS456 - Po in-source laser spectroscopy - 2012 LIST campaign

2012' IS456: First decay spectroscopy of ²¹⁹Po

Goals of the IS456 Add: high-spin isomers, deformation and $vi_{11/2}$

- For N>126, kink is seen in charge radii.
- Recent work by Goddard & Stevenson claims it relates to occupancy of $vi_{11/2}$.
- Long-lived, high-spin (18⁺) isomer in ²¹²Po arises from a neutron occupying this orbital.
- Direct study of its properties (spin, magnetic dipole moment, quadrupole moment, charge radii) to determine the importance of this orbital for the isotopes with N>126.

Hyperfine Splitting Scans for ^{178,185,191,197}Au

v, MHz

20000

40000

60000

80000

0

-20 -60000

-40000

-20000

IS534: Charge Radii of Au isotopes, ISOLDE 2012

Deformation jump toward less deformed shapes in the light Au isotopes
 Shape staggering in ¹⁷⁸Au (large deformation difference between 2 states)

At vs Po charge radii

Result II: to be more quantitative $\rightarrow \rho^2(E0)$

We can get the strength of the E0 transition but complementary informations are needed ...

Using the two states mixing model, by knowing the mixing amplitudes $\alpha_I^2 \cdot \alpha_{II}^2$, we can:

- \checkmark extract the difference in mean-square radii $\Delta \langle r^2 \rangle^2$
- ✓ compare it to the isomeric shifts measurements

WORK in PROGRESS

Five Physics Cases for LoI I086

•Studies of the beta-delayed fission (βDF) in At isotopes

•HFS, IS and charge radii measurements within the long chain of At isotopes, from the very neutron-deficient side, across the N=126 neutron closure, up to the most neutron-rich isotopes

•Shape coexistence in the lightest Po isotopes (β^+ /EC -decay products of At), in particular the search for coexisting oblate, prolate and spherical 0⁺ band-heads and corresponding excitations in the odd-A Po isotopes

•Search for octupole collectivity in the neutron-rich Rn isotopes (betadecay products of At) (

•Few-nucleon transfer reactions of At isotopes to study single-particle around N=126 and multi-particle multi-hole structures in the neutron-deficient and neutron-rich isotopes. This would need beam energies from HIE ISOLDE.

9-12 October 2012: Laser spectroscopy of Au isotopes with RILIS+ISOLDE

A. Andreyev et al, draft ready

^{177,179}Au, RILIS+ISOLDE

IS534: Hyperfine Splitting Scans (HFS) for ^{177,179}Au

Why is $1/2^+ \rightarrow 1/2^+ {}^{181}\text{TI} \rightarrow {}^{177}\text{Au} \alpha$ decay hindered?

What is the ground state spin of ¹⁷⁹Au: 1/2⁺, 3/2⁺or 5/2⁻?

Extensive ISOLDE data for g.s. of ¹⁸³TI are available, analysis underway

What is the ground state spin of ¹⁷⁷Au: 1/2⁺ or 3/2⁺?

F.G. Kondev et al., PLB 512, 268 (2001)

Why is α decay of 1/2⁺ gs of ¹⁸¹Tl hindered, HF>3? Extensive ISOLDE data for g.s. of ¹⁸¹Tl are available, analysis underway

SHIP(GSI): A.Andreyev et al., PRC 80, 024302 (2009)

HFS spectra for ^{197,198,217}At

Laser Spectroscopy of Po isotopes at ISOLDE

Shape Coexistence in Po isotopes

Shape Coexistence in Po isotopes

PRL 106, 052503 (2011)

week ending 4 FEBRUARY 2011

Early Onset of Ground State Deformation in Neutron Deficient Polonium Isotopes

July 2011: Shape Coexistence in Tl isotopes

Windmill Collaboration Status Report on Studies in the Lead Region Addenda IS456/IS534

Andrei Andreyev University of York, UK and JAEA, Tokai, Japan on behalf of the Windmill Collaboration

Charge radii in the long chains of Au, TI, Pb, Po, At (~70 isotopes)
Shape coexistence (E0's, new states...)
Beta-delayed fission (TI, At, Fr)

INTC, 12th February 2014