Total Absorption Spectroscopy Studies with the LUCRECIA setup

Status report for IS440 and IS539

IFIC, (CSIC-University of Valencia), Valencia, Spain University of Surrey, Guildford, UK IEM, CSIC, Madrid, Spain Universidad Complutense de Madrid, Madrid, Spain Institute of Nuclear Research, Debrecen, Hungary **CERN**, Switzerland Petersburg Nuclear Physics Institute, Gatchina, Russia School of Engineering, University of the West of Scotland, UK Instituto de Ciencias Nucleares, UNAM, Mexico Istanbul University, Science Faculty, Istanbul, Turkey

Half life of parent

✓ Level feeding in beta-decay

- \rightarrow Beta transition probability to daughter nucleus levels
- \rightarrow Missing strength due to low efficiency of standard Ge setups

Fermi function

 $S_{\beta}(E) =$

$$S_{\beta} = \frac{1}{6147 \pm 7} \left(\frac{g_A}{g_V}\right)^2 \sum_{E_f \in \Delta E} \frac{1}{\Delta E} B(GT)_{i \to f}$$

 $I_{\beta}(E)$

 $(Q_{\beta} - E)T_{1/2}$

Relationship

$$B(GT) = \left| \frac{1}{\sqrt{2}} \left\langle \psi_f \right| \sum_{\mu} \sum_{k} \sigma_k^{\mu} \tau_k^{\pm} | \psi_i \rangle \right|^2$$

✓ Level feeding in beta-decay

- \rightarrow Beta transition probability to daughter nucleus levels
- → Missing strength due to low efficiency of standard Ge setups

Fermi function

 $S_{\beta}(E) = -$

$$S_{\beta} = \frac{1}{6147 \pm 7} \left(\frac{g_{A}}{g_{V}}\right)^{2} \sum_{E_{f} \in \Delta E} \frac{1}{\Delta E} B(GT)_{i \to f} \qquad B(GT) = \left|\frac{1}{\sqrt{2}} \langle \psi_{f} \right| \sum_{\mu} \sum_{k} \sigma_{k}^{\mu} \tau_{k}^{\pm} \right| \psi_{i} \rangle \left|^{2} \frac{1}{2} \left(\frac{g_{A}}{g_{V}}\right)^{2} \frac{1}{2} \sum_{k} \left(\frac$$

Half life of parent

TOTAL ABSORPTION SPECTROSCOPY

 $I_{\beta}(E)$

 $(Q_{\beta} - E)T_{1/2}$

Relationship

 \rightarrow detection of the gamma **cascades** with highly efficient detectors

 \rightarrow nuclear structure studies and practical applications

L.M. Fraile – GFN-UCM

Lucrecia – the ISOLDE TAgS

Total absorption gamma spectrometer at CERN

A large NaI cylindrical crystal 38 cm Ø, 38cm length

An X-ray detector (Ge)

A β detector

Collection point inside the crystal

Lucrecia – the ISOLDE TAgS

Total absorption spectroscopy

Ideal case: beta minus decay, and no contamination. There is need for a 100% efficient summing device

$$d = R(B)f$$

Analysis method (Valencia group) NIM A 571, 710 (2007) NIM A 571, 728 (2007)

Total absorption spectroscopy

Real case: 2 processes in the beta+/EC We need to distinguish between them

EC:
$$\begin{bmatrix} {}^{A}Z X + e^{-} \rightarrow {}^{A}Z + v_{e} \\ Z^{-1}X + v_{e} \end{bmatrix}$$
$$\beta^{+} \begin{bmatrix} {}^{A}Z X \rightarrow {}^{A}Z + \beta^{+} + v_{e} \end{bmatrix}$$

Total absorption spectroscopy

Very prolate N=Z nucleus

E. Nácher et al. PRL 92 (2004) 232501 and PhD thesis Valencia Ground state of ⁷⁶Sr prolate (β_2 ~0.4) as indicated by Lister et al., PRC 42 (1990) R1191

Admixture of prolate and oblate E. Poirier et al., Phys. Rev. C 69, 034307 (2004) and PhD thesis Strasbourg Ground state of ⁷⁴Kr (60±8)% oblate, in agreement with other exp results and with theoretical calculations (A. Petrovigi et el.) 2014

Shape effects along the Z=82 line: study of the beta decay of ^{188,190,192}Pb using total absorption

Spokespersons: A. Algora, B. Rubio, W. Gelletly

 \rightarrow Region of shape co-existence

→ Theoretical calculations by P. Sarriguren et al. show that the GT strength distributions show clearly different patterns depending on the deformation of the parent nucleus (PRC 72 (2005) 054317, PRC 73 (2006) 054317

→ DEFORMATION from the measurement of the Beta Strength

- ✓ Subject of intensive experimental and theoretical work (shape coexistence, see for example ^{186,188}Pb)
- Hartree-Fock mean field calculations using an effective twobody Skyrme interaction and including pairing correlations in the BCS approximation
 - → s.p. energies, wave functions and occupation probabilities are generated from the mean field
 - \rightarrow Results independent on force (Sk3 and SG2) and pairing
 - → Different profiles depending on the deformation: characteristic B(GT) profile
- Complementary studies on deformation, i.e. isotope shifts
 Test of nuclear models

B(GT) Profiles

Moreno, Sarriguren et al. PRC 73 (2006) 054317

IS440 – experimental details

Isotope	Half life	EC branch (%)	Sp (keV)	Q _{EC} (keV)	Status
¹⁸⁶ Pb	4.82(3) s	60(8)	1303(185)	5205(25)	proposed
¹⁸⁸ Pb	25.1(1) s	90.7(8)	1520(40)	4530(30)	to be completed
¹⁹⁰ Pb	71(1) s	99.6(4)	1990(60)	3920(50)	done
¹⁹² Pb	3.5(1) min	99.9941(7)	2570(40)	3320(30)	done

IS440: example ¹⁹²Pb

PhD Thesis by M.E. Estévez (2012), and M.E. Estévez, A. Algora *et al.* in preparation. Theory from PRC 73 (2006) 054317

Results consistent with spherical picture, but less impressive than in the A \approx 80 region. Similar situation for ¹⁹⁰Pb. *Possible explanation, the spherical character of the Pb nuclei, but requires further testing. We realized that the decay information of the studied nuclei is incomplete!*

- ✓ The analysis of TAgS data requires the knowledge of the lowlying level scheme of the decay.
 - → The analysis of ¹⁸⁸Pb (PhD Thesis by E. Estevez) requires a better knowledge of the level scheme from high resolution.
 - → Nothing is known about populated levels by the decay of ¹⁸⁶Pb (shape coexistence)
 - future TAS study and interesting per se
- ✓ We propose to perform a high-resolution measurement of the decays of ^{186,188}Pb using a Ge setup, preferably using the planned ISOLDE Decay Station (IDS) setup in combination with a particle detection setup.

¹⁸⁶ Pb	4.6E+04 /µC	UC _x - RILIS (Pb)	4 shifts
¹⁸⁸ Pb	1.7E+06 /µC	UC _x - RILIS (Pb)	2 shifts

- ✓ TAS measurements of ¹⁸⁶Pb
 → Study of the ¹⁸⁶Pb isotope
 → Measurement of the daughter activity
 ✓ TAS measurements of ¹⁸⁸Pb
 - $\rightarrow \beta p$ -branch in combination with the TAS

L.M. Fraile – GFN-UCM

Shape effects in the vicinity of the Z=82 line: study of the beta decay of ^{182,184,186}Hg

Spokespersons: A. Algora, L.M. Fraile, E. Nácher

- \rightarrow Expand measurements to Z = 80
- → Expected to be **oblate** in their ground states
 - small mixing of the 0⁺ prolate intruder states
 - competing oblate / prolate minima
- → Complementary to α-decay of Pb isotopes (i.e J. Wauters et al., PRL72 (1994) 1329) and from in-beam measurements of high-spin states (i.e T. Grahn et al., PRC 80 (2009) 014324)
- → Theoretical calculations, same reference: O.Moreno, P. Sarriguren et al., PRC 73 (2006) 054317

L.M. Fraile – GFN-UCM

HF calculations with Skyrme + BCS pairing

IS539 – experimental details

Isotope	Half life	β ⁺ /EC branch (%)	α branch (%)	Q _{EC} (keV)	Status
¹⁸² Hg	10.83 s 6	84.8 8	15.2 8	4724 22	Data taken
¹⁸⁴ Hg	30.87 s 26	98.89 6	1.11 6	3970 24	Test done
¹⁸⁶ Hg	1.38 min 6	99.984 <i>5</i>	0.02	3176 24	Data taken

Alpha branch sizable Tiny alpha branch in ¹⁸⁶Hg to be measured Beta-delayed particle branches

On-line spectra from A=186 (186 Hg $\rightarrow ^{186}$ Au)

- ✓ The analysis of TAgS data requires the knowledge of the lowlying level scheme of the decay.
- ✓ Disentangle particle branches.
- ✓ High-resolution measurement of the decays of ^{182,184,186Hg} using a ISOLDE Decay Station (IDS) setup in combination with a particle detection setup (*see IS577 setup*)
 - \rightarrow limited by counting rate in HPGe detectors
 - \rightarrow beta-delayed alpha branch of $10^{-5} 10^{-4}$ assumed

¹⁸² Hg	4.0E+07/μC	Pb - VADIS	1.5 shifts
¹⁸⁴ Hg	6.5E+08 /µC	Pb - VADIS	2.5 shifts
¹⁸⁶ Hg	2.8E+09 /µC	Pb - VADIS	1.5 shifts

Pb-VADIS ISOLDE yield (ions/µC) for Hg isotopes

- ✓ TAS measurements of odd Hg isotopes such as ¹⁸⁵Hg
 - \rightarrow Selective selection of beta-decaying isomer via RILIS
 - \rightarrow Test of oblate/prolate decay patterns
 - → Theoretical calculations ongoing (J.M. Boillos, P. Sarriguren, IEM, Madrid)

ADDENDUM once analysis of even isotopes is more advanced and calculations available

IS440 and IS539 ISOLDE Collaborations

A. Algora, B. Rubio, J.L. Taín, M.E. Estevez, J. Agramunt, E. Valencia, C. Domingo, S. Origo A. Krasznahorkay, M. Csatlos, Zs. Dombrádi, D. Sohler, J. Timár W. Gelletly, P. Walker, P. Regan, Z. Podolyák, S. Rice E. Nácher, P. Sarriguren, M.J.G. Borge, O. Tengblad, A. Jungclaus, J.A. Briz, A. Perea, V. Pesudo L.M. Fraile, O. Moreno, B. Olaizola, V. Paziy, V. Vedia, J.M. Udías, J. Cal V. Fedosseev, B.A. Marsh, C. Guerrero, M. Kowalska, D. Fedorov B. Akkus, Y. Oktem, E. Ganioglu, L. Susam, L. Kucuk, R. Burcu Cakirli A.N. Andreyev A. Frank

L.M. Fraile – GFN-UCM

TAS analysis – knowledge of level scheme

 $d = R(B) \cdot f$

Expectation Maximization (EM) method: modify knowledge on causes from effects

 $P(f_j | d_i) =$

Algorithm:

$$f_{j}^{(s+1)} = \frac{1}{\sum_{i} R_{ij}} \sum_{i} \frac{R_{ij} f_{j}^{(s)} d_{i}}{\sum_{k} R_{ik} f_{k}^{(s)}}$$

the N≈Z region around A=70-80

⇒ ground state strongly deformed.
⇒ oblate to prolate transition and shape coexistence and mixing are predicted.

199/2 -1/2[301] -5/2[303] -3/2[301] -1/2[310] 2p_{1/2} 1f_{5/2} 2p3/2 -3/2[312] -1/2[321] 199/2 1/2[301] 5/2[303] 3/2[301] 1/2[310] 2p1/2 (28) 1f_{5/2}--7/2[303] -5/2[312] -3/2[321] -1/2[330] 2p3/2 3/2[312] 1/2[321] 1f_{7/2} (20) -3/2[202] -1/2[200] 7/2[303] 5/2[312] 3/2[321] 1/2[330] 1d 3/2 -1f7/2-1/2[211] 2s_{1/2} -5/2[202] -3/2[211] -1/2[220] 1d 5/2 3/2[202] 1d_{3/2}-NEUTRONS 1/2[211] 2s_{1/2} 5/2[202] 3/2[211] 1/2[220] 1d_{5/2}-

[A. Petrovici et al. Nuc. Phys. A708 (2002) 190 and ref. therein].

Free neutron orbitals with same quantum numbers than the valence protons:

⇒ Gamow-Teller decay allowed.
⇒ large part of the GT strength inside the Q_{EC} window

Theoretical calculations predict different B(GT) distribution for oblate, prolate and spherical shape of the ground state.

[I. Hamamoto *et al.*, Z. Phys. A353 (1995) 145] [P. Sarriguren *et al.*, Nuc. Phys. A635 (1999) 13]