Future of solar axion searches with the International AXion Observatory IAXO

Igor G Irastorza Universidad de Zaragoza

10th Patras Workshop on Axions, WIMPs and WISPs July 3rd, 2014

Outline

Axion motivation:

- Strong CP problem
- Axions as CDM
- Solar axions
- Previous helioscopes & CAST
- IAXO Conceptual Design
 - CDR
 - LoI to CERN
- IAXO physics potential
- Status of project
- Next steps
- Conclusions

Letter of Intent to the CERN SPSC

The International Axion Observatory IAXO

E. Armengaud¹, F. T. Avignone², M. Betz³, P. Brax⁴, P. Brun¹, G. Cantatore⁵, J. M. Carmona⁶, G. P. Carosi⁷, F. Caspers³, S. Caspi⁸, S. A. Cetin⁹, D. Chelouche¹⁰, F. E. Christensen¹¹, A. Dael¹, T. Dafni⁶, M. Davenport³, A.V. Derbin¹², K. Desch¹³, A. Diago⁶, B. Döbrich¹⁴,
I. Dratchnev¹², A. Dudarev³, C. Eleftheriadis¹⁵, G. Fanourakis¹⁶, E. Ferrer-Ribas¹, J. Galán¹, J. A. García⁶, J. G. Garza⁶, T. Geralis¹⁶, B. Gimeno¹⁷, I. Giomataris¹, S. Gninenko¹⁸, H. Gómez⁶, D. González-Díaz⁶, E. Guendelman¹⁹, C. J. Hailey²⁰, T. Hiramatsu²¹, D. H. H. Hoffmann²², D. Horns²³, F. J. Iguaz⁶, I. G. Irastorza^{6,*}, J. Isern²⁴, K. Imai²⁵, A. C. Jakobsen¹¹, J. Jaeckel²⁶, K. Jakovčić²⁷, J. Kaminski¹³, M. Kawasaki²⁸, M. Karuza²⁹, M. Krčmar²⁷, K. Kousouris³, C. Krieger¹³, B. Lakić²⁷, O. Limousin¹, A. Lindner¹⁴, A. Liolios¹⁵, G. Luzón⁶, S. Matsuki³⁰, V. N. Muratova¹², C. Nones¹, I. Ortega⁶, T. Papaevangelou¹, M. J. Pivovaroff⁷, G. Raffelt³¹, J. Redondo³¹, A. Ringwald¹⁴,
S. Russenschuck³, J. Ruz⁷, K. Saikawa³², I. Savvidis¹⁵, T. Sekiguchi²⁸, Y. K. Semertzidis³³, I. Shilon³, P. Sikivie³⁴, H. Silva³, H. ten Kate³, A. Tomas⁶, S. Troitsky¹⁸, T. Vafeiadis³, W. Wester³⁷, S. C. Yildiz⁹, K. Zioutas³⁸

IAXO Letter of Intent: CERN-SPSC-2013-022 90 signatures / 38 institutions IAXO Conceptual Design: JINST 9 (2014) T05002 (arXiv:1401.3233)

Axion motivation in a nutshell

Most compelling solution to the Strong CP problem of the SM

- Axion-like particles (ALPs) predicted by many extensions of the SM (e.g. string theory)
- Axions, like WIMPs, may solve the DM problem for free. (i.e. not ad hoc solution to DM)
- Astrophysical hints for axion/ALPs?
 - Transparency of the Universe to UHE gammas
 - White dwarfs anomalous cooling \rightarrow point to few meV axions
- Relevant axion/ALP parameter space at reach of current and near-future experiments
- Still too little experimental efforts devoted to axions when compared e.g. to WIMPs... (not justified...)

Axion Helioscope principle

- Solar axions produced by photon-to-axion conversion of the solar plasma photons in the solar core
 Detectable by the Axion helioscope concept
- Detectable by the Axion helioscope concept [Sikivie, PRL 51 (83)] *Field*

X ray

Solar WISPs production (see J. Redondo poster)

 $P_{a\gamma} = 2.6 \times 10^{-17} \left(\frac{B}{10 \text{ T}}\right)^2 \left(\frac{L}{10 \text{ m}}\right)^2$ $(g_{a\gamma} \times 10^{10} \text{ GeV})^2 \mathcal{F}$

Igor G. Irastorza / Universidad de Zaragoza

COHERENCE

4

Axion Helioscopes

Previous helioscopes:

- First implementation at Brookhaven (just few hours of data) [Lazarus et at. PRL 69 (92)]
- TOKYO Helioscope (SUMICO): 2.3 m long 4 T magnet

Presently running:

- CERN Axion Solar Telescope (CAST)

Patras Axions-WIMPs, CERN, July 2014

CAST experiment @ CERN

LHC test

magnet

ROPAMERALL

- Decommissioned LHC test magnet (L=10m, B=9 T)
- Moving platform ±8°V ±40°H (to allow up to 50 days / year of alignment)

CASI

- 4 magnet bores to look for X rays
 - 3 X rays detector prototypes being used.
- X ray Focusing System to increase signal/noise ratio.

X-ray focussing optics

2 low background Micromegas 1 low background Micromegas

Patras Axions-WIMPs, CERN, July 2014

IAXO magnet

IAXO magnet

Property		Value
Cryostat dimensions:	Overall length (m)	25
	Outer diameter (m)	5.2
	$Cryostat volume (m^3)$	~ 530
Toroid size:	Inner radius, R_{in} (m)	1.0
	Outer radius, R_{out} (m)	2.0
	Inner axial length (m)	21.0
	Outer axial length (m)	21.8
Mass:	Conductor (tons)	65
	Cold Mass (tons)	130
	Cryostat (tons)	35
	Total assembly (tons)	~ 250
Coils:	Number of racetrack coils	8
	Winding pack width (mm)	384
	Winding pack height (mm)	144
	Turns/coil	180
	Nominal current, I_{op} (kA)	12.0
	Stored energy, E (MJ)	500
	Inductance (H)	6.9
	Peak magnetic field, B_p (T)	5.4
	Average field in the bores (T)	2.5
Conductor:	Overall size (mm^2)	35×8
	Number of strands	40
	Strand diameter (mm)	1.3
	Critical current @ 5 T, I_c (kA)	58
(Operating temperature, T_{op} (K)	4.5
	Operational margin	40%
Te	emperature margin @ 5.4 T (K)	1.9
Heat Load:	at 4.5 K (W)	~ 150
	at 60-80 K (kW)	~ 1.6

Patras Axions-WIMPs, CERN, July 2014

•IEEE Trans. Appl. Supercond. (MT 23)

- X-rays are focused by means of grazing angle reflection (usually 2)
- Many techniques developed in the x-ray astronomy field. But usually costly due to exquisite imaging requirements

Patras Axions-WIMPs, CERN, July 2014

- Technique of choice for IAXO: optics made of slumped glass substrates coated to enhance reflectivity in the energy regions for axions
- Same technique successfully used in NuSTAR mission, recently launched
- The specialized tooling to shape the substrates and assemble the optics is now available
- Hardware can be easily configured to make optics with a variety of designs and sizes
- Key institutions in NuSTAR optics: LLNL, U.
 Columbia, DTU Denmark. All in IAXO !

Patras Axions-WIMPs, CERN, July 2014

Telescopes	8
N, Layers (or shells) per telescope	123
Segments per telescope	2172
Geometric area of glass per telescope	0.38 m^2
Focal length	5.0 m
Inner radius	50 mm
Outer Radius	300 mm
Minimum graze angle	2.63 mrad
Maximum graze angle	15.0 mrad
Coatings	W/B ₄ C multilayers
Pass band	1-10 keV
IAXO Nominal, 50% EEF (HPD)	0.29 mrad
IAXO Enhanced, 50% EEF (HPD)	0.23 mrad
IAXO Nominal, 80% EEF	0.58 mrad
IAXO Enhanced, 90% EEF	0.58 mrad
FOV	2.9 mrad

Patras Axions-WIMPs, CERN, July 2014

IAXO low background detectors

Patras Axions-WIMPs, CERN, July 2014

IAXO low background detectors

- Small Micromegas-TPC chambers:
 - Shielding
 - Radiopure components
 - Offline discrimination
- Goal background level for IAXO:
 - $10^{-7} 10^{-8} \text{ c keV}^{-1} \text{ cm}^{-2} \text{ s}^{-1}$
- Already demonstrated:
 - ~8×10⁻⁷ c keV⁻¹ cm⁻² s⁻¹ (in CAST 2013 result)
 - Below 10⁻⁷ c keV⁻¹ cm⁻² s⁻¹ (underground at LSC – 2014 - unpublished)
- Active program of development. Clear roadmap for improvement.

See JINST 8 (2013) C12042 & JINST 9 (2014) P01001

July 2014

IAXO pathfinder at CAST Exploratory optics+detector system

- IAXO optics+detector joint system
 - Newly designed MM detector (following IAXO CDR)
 - New x-ray optics fabricated following technique proposed for IAXO (but much smaller, adapted to CAST bore)
- It will take data in CAST in 2014 & 2015
 - First time low background + focusing in the same system
 - Very important operative experience for IAXO

Patras Axions-WIMPs, CERN, July 2014

IAXO sensitivity prospects

IAXO as "generic axion/ALP facility"

Patras Axions-WIMPs, CERN, July 2014

IAXO status of project

- **2011**: First studies concluded (JCAP 1106:013,2011)
- **2013**: Conceptual Design finished (arXiv:1401.3233).
 - Most activity carried out up to now ancillary to other groups' projects (e.g. CAST)
- August 2013: Letter of Intent submitted to the CERN SPSC
 - LoI: [CERN-SPSC-2013-022]
 - Presentation in the open session in October 2013:
- January 2014: Positive recommendations from SPSC.
- **2014:** Transition phase: In order to continue with TDR & preparatory activities, formal endorsement & resources needed.
 - Some IAXO preparatory activity already going on as part of CAST near term program.
 - Preparation of a MoU to carry out TDR work.
 - First IAXO-specific funding approved! (one week ago).

CERN SPSC recommendations

SPSC Draft minutes [Jan 2014]

The Committee **recognises** the physics motivation of an International Axion Observatory as described in the Letter of Intent SPSC-I-242, and considers that the proposed setup makes appropriate use of state-of-the-art technologies i.e. magnets, x-ray optics and low-background detectors.

The Committee **encourages** the collaboration to take the next steps towards a **Technical Design Report**.

The Committee recommends that, in the process of preparing the TDR, the possibility to **extend the physics reach** with additional detectors compared to the baseline goal should be investigated. The collaboration should be further strengthened.

Considering the required funding, the SPSC **recommends** that the R&D for the TDR should be pursuit within an MOU involving all interested parties.

Next steps

- Start works towards a Technical Design Report. As part of such:
 - Construction of a demostration coil IAXO-TO
 - Construction of a prototype x-ray optics IAXO-X0
 - Construction of a prototype low background detector setup IAXO-D0
 - Complete pathfinder project detector+optic at CAST
 - Coordination activities. Update physics case. Site.
 Tracking platform. Gas system. Software
 - Feasibility studies for "IAXO-DM" options.
- TDR completion is a ~2-4 MEUR effort.
- Memorandum of Understanding in preparation among interested parties
- Search for new interested partners

Conclusions

- Axion searches \rightarrow increasingly strong physics case.
- To be taken seriously: time for large projects.
- In particular, solar axions → CAST has been a very important milestone in axion research during the last decade
 - 1st CAST limits most cited exp. axion paper
 - Largest effort/collaboration in axion physics so far
- IAXO, a forth generation axion helioscope, natural and timely large-scale step to come now. It can probe deep into unexplored axion+ALP parameter space.
 - But also several additional physics cases
- Lol to CERN recently proposed. Positive recommendation from SPSC. MoU to start TDR under preparation.
- First firm steps for IAXO to become a large "generic axion facility" with discovery potential in the next decade.

More news in Zaragoza Patras2015!!

Backup slides...

IAXO costs

Item	Cost (MCHF)	Subtotals (MCHF)
Magnet		31.3
Eight coils based assembled toroid	28	
Magnet services	3.3	
Optics		16.0
Prototype Optic: Design, Fabrication, Calibration, Analysis	1.0	
IAXO telescopes (8 + 1 spare)	8.0	
Calibration	2.0	
Integration and alignment	5.0	
Detectors		5.8
Shielding & mechanics	2.1	
Readouts, DAQ electronics & computing	0.8	
Calibration systems	1.5	
Gas & vacuum	1.4	
Dome, base, services building and integration		3.7
Sum		56.8

Laboratory engineering, maintenance & operation and physics exploitation **not included**

Table 5: Estimated costs of the IAXO setup: magnet, optics and detectors. It does not include laboratory engineering, as well as maintenance & operation and physics exploitation of the experiment.

Patras Axions-WIMPs, CERN, July 2014

IAXO in astroparticle roadmaps

• ASPERA/APPEC Roadmap acknowledges axion physics, CAST, and recommends progress towards IAXO.

"...A CAST follow-up is discussed as part of CERN's physics landscape (new magnets, new cryogenic and X-ray devices). The Science Advisory Committee **supports** R&D on this follow up, as well as smaller ongoing activities on the search for axions and axion-like particles."

C. Spiering, ESPP Krakow

- Important community input in the European Strategy for Particle Physics
- Presence in the Briefing Book of the ESPP, which reflects also APPEC roadmap recommendations.
- ESPP recomends CERN to follow APPEC recomendatons.
- Important effort in relation with US roadmapping (Snowmass, and P5 process). Snowmass reports speak very favourably of axion physics and IAXO.

IAXO timeline

		~18 prep	~18 months -> TDR + preparatory activities							~3.5 years construction								~2.5 years integration + commissioning							
	Years			1			2	2		3				4				5				5			
	Months	З	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48	51	54	57	60	<mark>63</mark>	66	69	72
Magnet		_	_																						
Design	то																								
	Т1-Т8																								
Demo coil																									
Product	ion																								
Integrati	ion																								
Services	5																								
Optics																									
Optic de	esign study																								
Prototyp	pe construction																								
Calibrati	ion																								
Finalize	design																								
Build as	sembly machines																							\square	
Procure	mandrels & ovens																								
Build co	pating facilities																							\square	
Slump g	lass																								
Deposit	coatings																							\square	
Assemb	le optics																								
Calibrate	e optics																								
Installat	ion																								
Detector	rs																								
Prototyp	pe																								
Constru	ction (incl. spares)																								
Installat	ion & commissioning	1																							
atras Avians W/IMDs CEDN																									

Axion parameter space

Patras Axions-WIMPs, CERN, July 2014

AXION theory motivation

Axion: introduced to solve the strong CP problem

In QCD, nothing prevents from adding a term like that to the lagrangian:

$$\mathcal{L}_{CP} = \theta \frac{\alpha_s}{8\pi} G \tilde{G}$$

This term is **CP violating**.

$$\theta = \bar{\theta} + \arg \det M$$
 2 contributions of very different origin...

From non-observation of neutron electric dipole moment:

$$|\bar{\theta}| < 0.7 \times 10^{-11}$$

•Why so small?

•High fine-tunning required for this to work in the SM

Patras Axions-WIMPs, CERN, July 2014

AXION theory motivation

Peccei-Quinn solution to the strong CP problem

New U(1) symmetry introduced in the SM:
 Peccei Quinn symmetry of scale f_a
 The AXION appears as the Nambu-Goldstone boson

of the spontaneous breaking of the PQ symmetry

"Axion lagrangian"

$$\mathcal{L}_a = \frac{1}{2} (\partial_\mu a)^2 - \frac{\alpha_s}{8\pi f_a} a G \tilde{G}$$

 θ absorbed in the definition of *a*

 $\theta = \alpha / f_a$ relaxes to zero... CP conservation is preserved "dinamically"

Patras Axions-WIMPs, CERN, July 2014

THE AXION

The PQ scenario solves the strong CP-problem. But a most interesting consequence is the appearance of this new particle, the *axion*.

(Weinberg, Wilcek)

$$\mathcal{L}_a = \frac{1}{2} (\partial_\mu a)^2 - \frac{\alpha_s}{8\pi f_a} a G \tilde{G}$$

Basic properties:

- Pseudoscalar particle
- Neutral
- Gets very small mass through mixing with pions
- Stable (for practical purposes).
- Phenomenology driven by the PQ scale f_a . (couplings inversely proportional to f_a)

Patras Axions-WIMPs, CERN, July 2014

$$m_a \simeq 0.6 \ {\rm eV} \frac{10^7 {\rm GeV}}{f_a}$$

AXION phenomenology

Axion-photon coupling present in every model.

$$g_{a\gamma\gamma}(\mathbf{E}\cdot\mathbf{B})a \quad g_{a\gamma\gamma} = \frac{\alpha_s}{2\pi f_a} \left(\frac{E}{N} - 1.92\right)$$

 $\mathcal{L}_{a\gamma} =$

 Axion-photon conversion in the presence of an electromagnetic field (Primakoff effect)

This is probably the most relevant of axion properties. Most axion detection strategies are based on the axion-photon coupling

Patras Axions-WIMPs, CERN, July 2014

Beyond axions

Hidden photons / paraphotons

Chamaleons

Minicharged particles

WISPs (Weakly interacting Slim Particle)

Diverse theory motivation

- Higher scale symm. breaking
- String theory
- DM / DE candidates
- Astrophysical hints

 Generic Axion-like particles (ALPs) parameter space →

Patras Axions-WIMPs, CERN, July 2014

AXION as Dark Matter?

Can not be baryonic
Can not be relativistic (CDM)
Can not be standard (neutrinos)
Need to go beyond the SM →

AXION as Dark Matter?

- Axions are produced in the early Universe by a number of processes:
 - Axion realignment
 - Decay of axion strings
 - Decay of axion walls

- Axion mass giving the right CDM density? Depends on cosmological assumptions:
 - "classical window" ~10⁻⁵ 10⁻³ eV
 - "anthropic window" ~ much lower masses possible
 - Other \rightarrow subdominant CDM / non-standard scenarios
- Thermal production

RELATIVISTIC (HOT) AXIONS

 Axion mases ma > ~0.9 eV gives densities too much in excess to be compatible with latest CMB data

Hannestad et al, JCAP 08 (2010) 001 (arXiv:1004.0695)

Axion DM after BICEP2

Quite an impact... (a few preprints)

- Marsh et al. arXiv:1403.4216
- L. Visinelli, P. Gondolo arXiv:1403.4594
- Choi el al.arXiv:1404.38803.
- Chun. arXiv:1404.4284
- E. Di Valentino et al. Mena. arXiv:1405.1860
 among others...

In summary:

if "high inflation scale" interpretation of BICEP2 results is right... "classical window" (high mass) scenario is favored.

Solar Axions

Solar axions produced by photon-to-axion conversion of the solar plasma photons in the solar core

Solar axion flux [van Bibber PRD 39 (89)] CAST JCAP 04(2007)0101 Axion flux (cm⁻² s⁻¹ keV⁻¹) 0000 $\frac{1}{1000}$ (cm⁻² s⁻¹ keV⁻¹) 0000 $\frac{1}{1000}$ (cm⁻² s⁻¹ keV⁻¹) $\frac{\mathrm{d}\Phi_{\mathrm{a}}}{\mathrm{d}E} = 6.02 \times 10^{10} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{~keV}^{-1} g_{10}^2 E^{2.481} \mathrm{e}^{-E/1.205}.$ $g_{10} = g_{a\gamma}/10^{-10} \text{ GeV}^{-1}$ Solar physics 4000 **Primakoff effect** 3000 Only one unknown 2000F $\times^{\scriptscriptstyle \perp} g_{10}^2$ parameter g_{ay} 1000 10 Energy (keV)

()

Patras Axions-WIMPs, CERN, July 2014

Axions in Astrophysics

- Axions are produced at the core of stars, like the Sun, by Primakoff conversion of the plasma photons.
 - Axions drain energy from stars and may alter their lifetime. Limits are derived to the axion properties

See PDG and references therein

• Axion decay $a \rightarrow \gamma \gamma$ may produce gamma lines in the emission from certain places (i.e. galactic center).

Astrophysical hints for axions/ALPs

- Anomalous gamma transparency of the Universe (observation of gamma rays from from distant sources) → very light ALPs
- Anomalous cooling of white dwarfs
 - Favors few meV axions

Detecting DM axions: "haloscopes"

Resonant cavities (Sikivie, 1983)

- Primakoff conversion inside a "tunable" resonant cavity
- Energy of photon = $m_a c^2 + O(\beta^2)$

Primakoff conversion of DM axions into microwave photons inside cavity

$$P_0 = g_{a\gamma}^2 V B^2 C \frac{\rho_a}{m_a} Q$$

Axion DM detection – new ideas

Recent papers proposing new detection schemes. Very active field!

- Precession of nuclear spins (CASPERs): PRD 84, 055013 (2011) and arXiv:1306.6089
- Long thin cavities in dipole fields: PRD85 (2012) 035018
- Directional effect in long thin cavities: JCAP 1210 (2012) 022
- Dish antenna: JCAP 1304 (2013) 016
- Directional effect in dish antenna: arXiv:1307.7181
- LC circuit in B field: PRL 112, 131301 (2014)
- Active resonators: arXiv:1403.6720
- Cavitiy with wires: arXiv:1403.3121 (also old Sikivie paper)

InGrid Detectors

- Micromegas built on top of a CMOS ASIC
- Bump bond pads of the ASIC are used as charge collection pads
- Mesh made of thin aluminum foil
- One hole per readout pixel
 - \rightarrow well aligned
 - \rightarrow each primary electron can be seen as one hit on a pixel

Cosmic ray track

2 X-ray photons of a ⁵⁵Fe source

Background Suppression

Detailed desciption in: C. Krieger, J. Kaminski and K. Desch, *InGrid-based X-ray detector for low background searches*, NIM A729 (2013) 905–909

- Different event shape variables can be used to distinguish background events (tracks) from signal events (photons)
- First likelihood ratio-based analysis reached a background suppression of 120
- Threshold of detector is dominated by
 - transmission of entrance window

Spectrum of a ⁵⁵Fe source