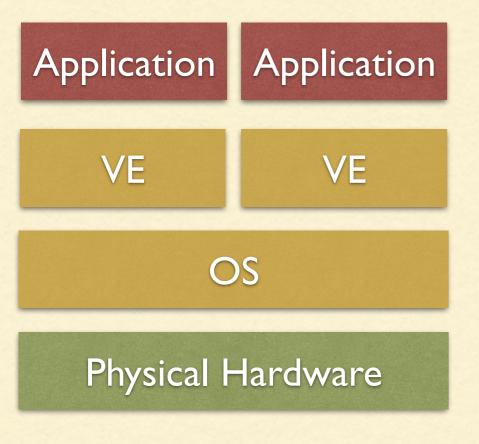


Evaluation of containers as a virtualisation alternative for HEP workloads

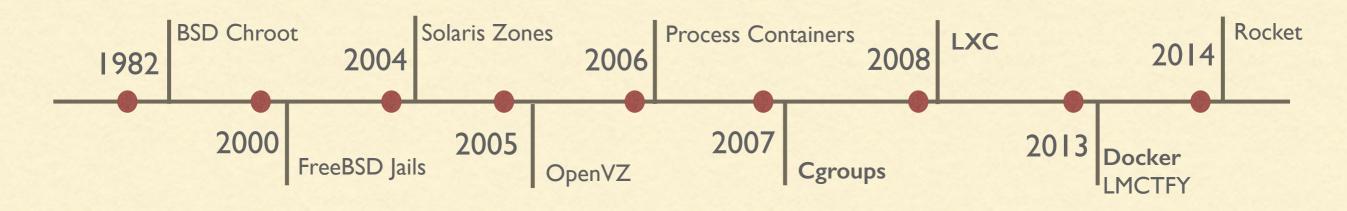
Gareth Roy¹, Andrew Washbrook²,

David Crooks¹, Gordon Stewart¹, Gang Qin¹, Samuel Skipsey¹, Dave Britton¹ ¹University of Glasgow ²University of Edinburgh


21st International Conference on Computing in High Energy Physics 13th April 2015

THE UNIVERSITY of EDINBURGH

- What are Containers?
- The Container ecosystem
- Container deployment and management
- HEP benchmarking
- Conclusions

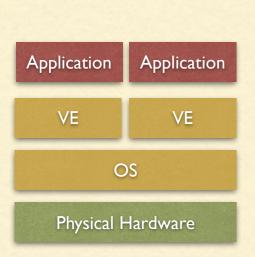

Containerisation

Linux Container

- Containerisation is a form of OS level virtualisation
- The Linux kernel hosts multiple partitioned userland instances (Virtual Environments)
- Accomplished through separate namespaces for filesystem mounts, network, processes and users
- Backing storage can be Copy-on-Write or a union filesystem (UnionFS/AUFS)

Containers Timeline

Comparison with Virtual Machines

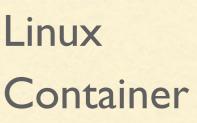

Pros:

- OS independent
- Security Model
- Live migration
- Mature ecosystem

Cons:

- Full system image
- Slow startup and build
- Memory consumption
- Opaque to host

Virtual Machine



Pros:

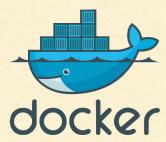
- Low barrier of entry
- Fast Instantiation
- Native Performance
- Deployment Flexibility

Cons:

- Restricted to Linux
- Shared Kernel
- Security Model
- Young Ecosystem

The Container Ecosystem

- There is a growing ecosystem of tools and services to deploy, manage and orchestrate containers
- The most popular container application platform is **Docker**



LXC - tools for container lifecycle management

Open source minimal OS specifically designed to host and cluster application containers

Rocket

Application virtualisation engine based on containers (LXC, libcontainer)

Kubernetes - Docker container orchestration system for large scale application deployment

Tools for working with containers focusing on the Application Container Image (an open standard for container formats)

Openstack Container Management

- Explored the readiness of OpenStack to natively support the management of containers
- Enables easy integration with cloud infrastructure available in WLCG
- A Docker driver is not in the current Openstack release (Juno)
 - Manually install driver: <u>https://wiki.openstack.org/wiki/Docker</u>

<pre># docker pull cern/sl # docker save cern/sldisk-format=rawr</pre>	Lc6-lite gland		mage-createis	-publi	c=True	conta	ainer-for	mat=doc]	ker	Virtual	Machine /	
	🔲 openstack	🔳 tes	t 👻							admin 👤 💌	Sign Out	
Container	Project -	In	Images									
	Compute		Images Project (0) Shared with Me (0) Public (6) + Create Image									
	Overview		Image Name	Туре	Status	Public	Protected	Format	Size	Actions	elete imaç és	
	Instances		tutum/wordpress	Image	Active	Yes	No	RAW	493.7 MB	Launch -		
	Volumes		cem/slc6-lite	Image	Active	Yes	No	RAW	132.5 MB	Launch 👻	1/	
	Images		UCERN VM 1.18-13	Image	Active	Yes	No	RAW	20.0 MB	Launch 👻	*	
	Access & Security] Fedora 21	Image	Active	Yes	No	QCOW2	151.1 MB	Launch 👻		
	Network >		CirrOS 0.3.3	Image	Active	Yes	No	QCOW2	12.6 MB	Launch 👻	1	
	Object Store		Fedora 21	Image	Deleted	Yes	No	QCOW2	0 bytes			
	Admin >	Dis	Displaying 6 items									
	Identity >											

HEP Containers

Container comparison with CERNVM image

- Pull base CentOS 6 image from Docker registry
- CVMFS mounted as an external volume
- Increase storage in the container for datasets and job output

CVMFS integration

- CVMFS requires root-privileges for FUSE interaction.
- Either run a privileged container and export the CVMFS volume to other containers
 - Security implications
- Or export the CVMFS volume from the host
 - Not a flexible hypervisor solution
 - Can lead to issues with other container management tools (CoreOS, Project Atomic)

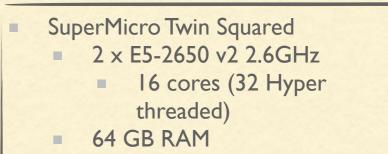
HEP Workload Performance Testing

Motivation

- Do containers offer native performance for realistic HEP-based workload?
- What is the performance penalty for using Virtual Machines over bare metal (and containers)?

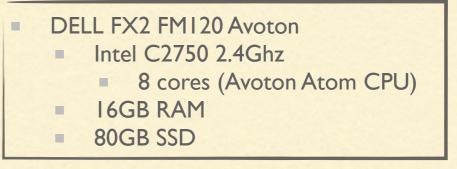
Workload types

- HEPSPEC benchmark
- Geant4 Monte Carlo Simulation
- Event Reconstruction
- Monte Carlo event generation

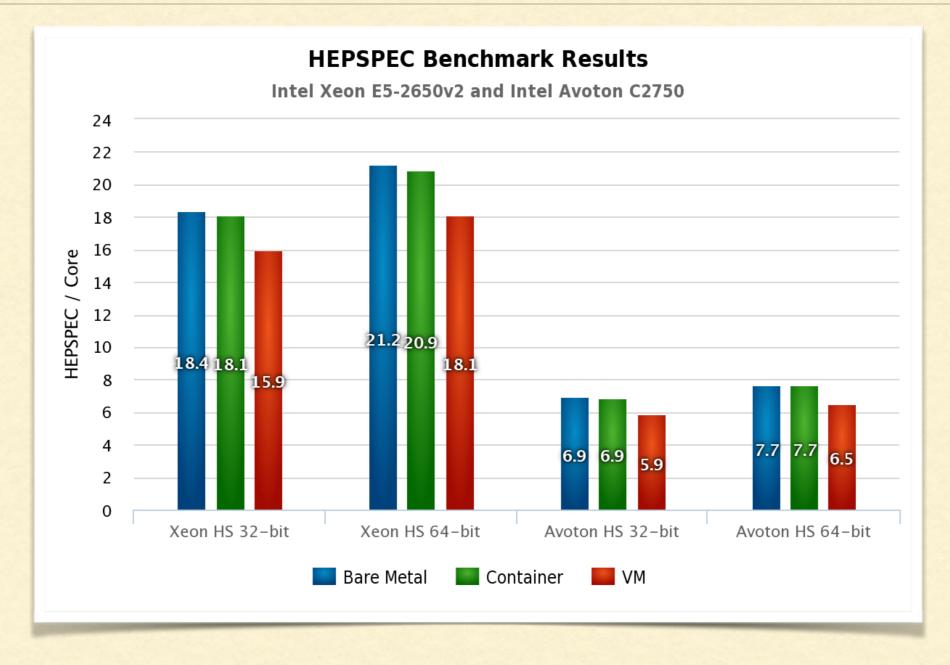

HEP Workload Performance Testing (2)

Test Platform

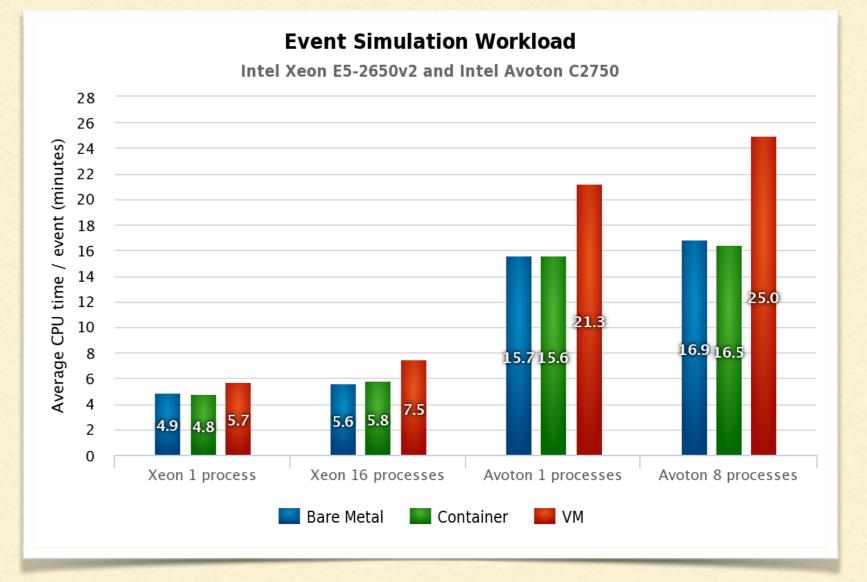
- Run each HEP workload type on two testbed servers; one containing an Intel Xeon processor and the other an Avoton processor
 - Avoton: Low power Atom-based 22nm SoC device
- Run each workload type on bare metal, in a virtual machine (KVM) and in a container (Docker)
 - Adapted a µCERNVM image for testing purposes
 - Tested both a RAW image file and a LVM partition as VM backing storage


Test Patterns

- Run each test multiple times to validate performance and timing consistency
- Run single core and N (= number of cores) simultaneous workload instances



2 x 500GB 7200rpm SATA 6.0

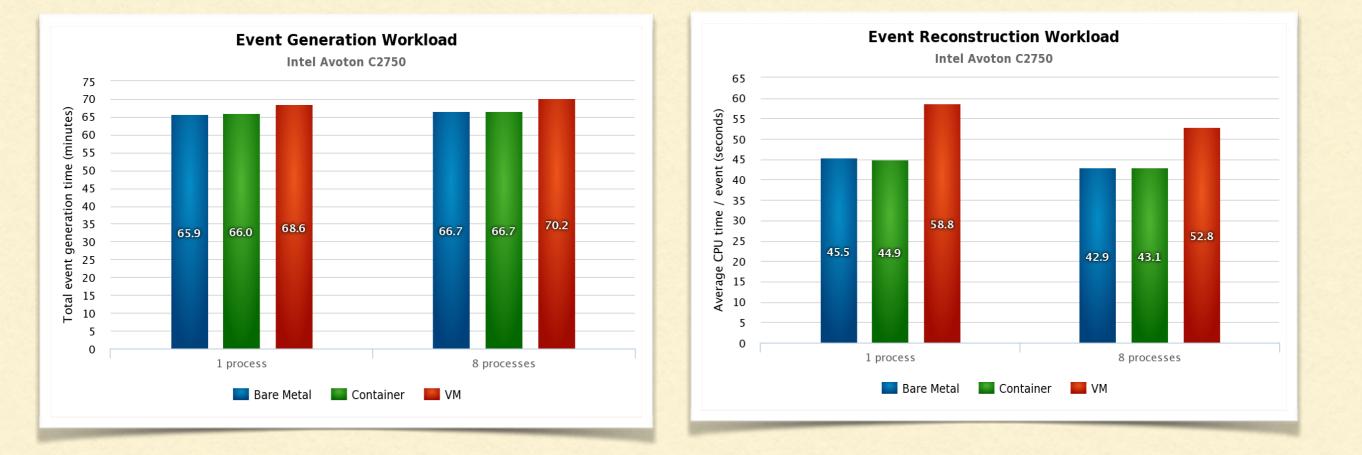

HEPSPEC Benchmark Results

- Containers are within 1% of "native" HEPSPEC performance
- Benchmark score for VMs are 14.7% less for the Xeon and 15.3% less for the Avoton compared to the native HEPSPEC (64-bit) score

MC Simulation Results

- Focus on relative performance in event processing loop
- CPU time/event (as reported by application) is averaged over 40 events

- Containers demonstrate near-native performance
- Single process MC simulation timing performance is 13.4% lower for the Xeon and 26.4% lower for the Avoton
- For 16 (8) simultaneous processes: VM is 24.7% lower for Xeon (32.5% lower for Avoton)

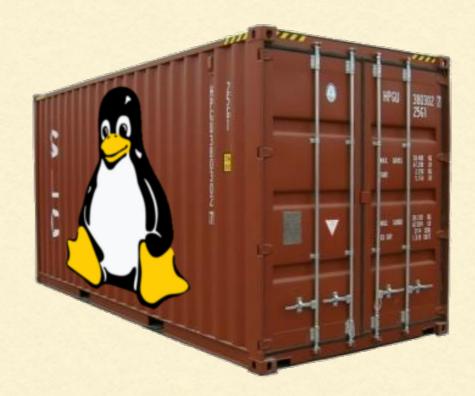

Event Generation and Reconstruction Results

Event Generation

- Measured total time taken to generate large sample of Zµµ events
- VMS lose only 5% performance compared to bare metal and containers

Event Reconstruction

- CPU time/event averaged over 50 events
- VMs show 22.6% performance drop for a single process, 18.8% for 8 simultaneous processes


Conclusions

- Containers are a compelling alternative to whole system virtualisation
- The performance of containers for HEP workloads are similar (if not the same) as native execution
- Virtual Machines observed to give a reduction in performance of 15-20% on HEP workloads
 - Caveat: VMs could be tuned to give better performance

Future Work

- Potential deployment of containers on existing HEP cloud resources
- Does HEP lend itself to the single application model preferred by Docker?
 - Consider: middleware deployment, distributed computing components (e.g pilots)
- Effort has already started (see next presentation!)

Any Questions?

