

Benchmarking and accounting for the (private) cloud

Jerome Belleman, Daniel Pek, Ulrich Schwickerath,

Special thanks to the CERN Cloud team

• CERNs batch farm

- CERNs batch farm
- Schema to classify worker nodes by performance

- CERNs batch farm
- Schema to classify worker nodes by performance
- Benchmarking

- CERNs batch farm
- Schema to classify worker nodes by performance
- Benchmarking
- Accounting

- CERNs batch farm
- Schema to classify worker nodes by performance
- Benchmarking
- Accounting
 - Traditional batch accounting

- CERNs batch farm
- Schema to classify worker nodes by performance
- Benchmarking
- Accounting
 - Traditional batch accounting
 - Cloud accounting

CERNs LSF batch farm

- CERN LSF batch farm:
 - About 4300 nodes in total, ~3700 VMs
 - About 3600 in public resources
 - Got rid of old physical worker nodes
 - 93% on virtual machines now
 - Traditional GRID worker nodes
 - Traditional APEL based accounting (HS06)
- In addition dedicated laaS projects for the experiments

mpi spacecharge terminate cms cmscafshared cfd mpi atlas atlasb1 sharelong Ihcb Ihcbt3 spare ■ cms cmscaf atlas atlasrtt6 share atlas atlasrttperf perf share ams amsprodexcl cms sftcms cms cmsinter atlas atlasinter cms cmsexpress ams amsprodall eng mpi atlas atlascaturgent Ihcb Ihcbinter cms cmscafexclusive

CERN

CERNs LSF batch farm

- CERN LSF batch farm:
 - About 4300 nodes in total, ~3700 VMs
 - About 3600 in public resources
 - Got rid of old physical worker nodes
 - 93% on virtual machines now
 - Traditional GRID worker nodes
 - Traditional APEL based accounting (HS06)
- In addition dedicated laaS projects for experiments

mpi spacecharge terminate cms cmscafshared cfd mpi atlas atlasb1 sharelong Ihcb Ihcbt3 spare ■ cms cmscaf atlas atlasrtt6 share atlas atlasrttperf perf share ams amsprodexcl cms sftcms cms cmsinter atlas atlasinter cms cmsexpress ams amsprodall eng mpi atlas atlascaturgent Ihcb Ihcbinter

cms cmscafexclusive

CERNs LSF batch farm

Heterogenious hardware

- Complexity partly hidden by virtualization
- Hypervisor and its performance is hidden
- Still large spread of per core performance

Classification of worker nodes

- Bare metal times
 - Procurement of chunks of identical machines
 - Classify by procurement (vendor, procurement time, sub-class ...)
 - Benchmark one or few sample machines

- Virtual worker nodes
 - No information available about the hypervisor
 - VMs can change name
 - Benchmarking each of them every time is expensive
 - Need a new way to classify machines by performance

Classification of worker nodes

- **Example:** a6_8_1512h23_266 AMD based virtual machine
- SLC6
- 8 cores
- CPU-ID 1512h, see below
- CPU speed 2300 MHz
- Default memory speed 266

Remark : Details of the machine:

Benchmarking by class

- Pre-requisites:
 - Enable CPU pass-through (else different classes are mapped to the same class)
 - Don't over-commit CPU resources
 - Tune KVM for best CPU performance
- Benchmark
 - Ensure the hypervisors are fully loaded
 - Easy for new batches of hardware coming in
 - Benchmark each VM to get statistics
 - Be pessimistic when interpreting the results

Benchmarking by class

Limitations:

- The memory speed is not passed to the VM by KVM
- A conservative default of 266MHz is assumed
- Different memory speeds yield to a double-peak structure

Traditional batch accounting

- WLCG Accounting via APEL and SSM
- Local database holding accounting data
- LSF job_finish records are sent to the local database
- Virtual and physical worker nodes look the same

Cloud accounting: general case

- Still experimental!
- No access to the VMs by the site
- Classify by performance of the hypervisor for now
- Loss of information for short lived VMs (loss of link to hypervisor after the VM is gone)

Cloud accounting: general case

- Work in progress:
 - Inject performance info from the hypervisor to ceilometer while the VM is running
- Possible future work:
 - inject all information we need to do the classification as for the batch case
 - Unclear how to do this in a general case

Conclusions

- Established a new classification schema for batch worker nodes
 - Using only information available from the machine itself
 - Works reasonably well
 - Used in production both for physical and virtual worker nodes
- Extension to the general case
 - Non-trivial because it's not the VMs which report in this case
 - Requires additional configuration in OpenStack
 - Work in progress

www.cern.ch