

Enabling Grids for E-sciencE

AMGA Metadata Service

Vladimir Dimitrov IPP-BAS

"gLite middleware Application Developers Course", Plovdiv, Bulgaria, 4.04.2008

www.eu-egee.org

Acknowledgements

- This presentation primarily consists in slides from:
 - Mike Mineter
 - **2006**, 200**7**
 - Tony Calanducci
 - Third EELA Tutorial for Managers and Users
 - Rio de Janeiro, 26-30 June 2006
 - Nuno Santos, Birger Koblitz
 - 20 June 2006
 - Workshop on Next-Generation Distributed Data Management
 - Patricia Méndez Lorenzo: UNOSAT application using AMGA
 - User Forum
 - CERN, 1st March 2006
 - http://indico.cern.ch/materialDisplay.py?contribId=23&sessionId= 11&materialId=slides&confld=286
 - Documents and examples from AMGA web site.

Contents

- Background and Motivation for AMGA
- Interface, Architecture and Implementation
- Metadata Replication on AMGA
- Examples
- Further information

Metadata on the GRID

 Metadata is data about data (a formal definition)

- On the Grid: information about files
 - Describes files
 - Locate files based on their metadata

AMGA Implementation

- AMGA ARDA Metadata Grid Application
 - ARDA: A Realisation of Distributed Analysis for LHC
- Now part of gLite middleware
 - Official Metadata Service for EGEE
 - Also available as standalone component
- Expanding user community
 - HEP, Biomed, UNOSAT...
 - More on this later

Metadata Concepts

Some Concepts

- Metadata List of attributes associated with entries
- Attribute key/value pair with type information
 - Type The type (int, float, string,...)
 - Name/Key The name of the attribute
 - Value Value of an entry's attribute
- Schema A set of attributes
- Collection A set of entries associated with a schema
- Think of schemas as tables, attributes as columns, entries as rows

Examples

gLibrary

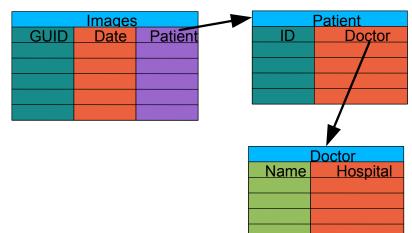
- Files are saved on SEs and registered into LFC file catalogues
- The AMGA Metadata Catalogue is used to archive and organize metadata and to answer users' queries.

LHCb-bookkeeping

- Migrated bookkeeping metadata to ARDA prototype
 - 20M entries, 15 GB
 - Large amount of static metadata
- Feedback valuable in improving interface and fixing bugs
- AMGA showing good scalability

Ganga

- Job management system
 - Developed jointly by Atlas and LHCb
- Uses AMGA for storing information about job status
 - Small amount of highly dynamic metadata


Biomed VO

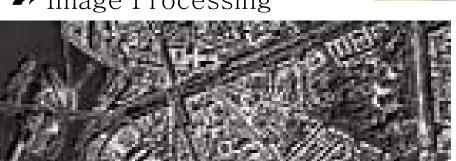
E-infrastructure shared between Europe and Latin America

Medical Data Manager – MDM

- Store and access medical images and associated metadata on the Grid
- Built on top of gLite 1.5 data management system
- Demonstrated at 4th EGEE conference in Pisa
- Strong security requirements
 - Patient data is sensitive
 - Data must be encrypted
 - Metadata access must be restricted to authorized users
- AMGA used as metadata server
 - Demonstrates authentication and encrypted access
 - Used as a simplified DB

- More details at
 - https://twiki.cern.ch/twiki/bin/view/EGEE/DMEncryptedStorage

UNOSAT Presentation


UNOSAT is a United Nations Initiative

Objectives

- ➤ Provide the humanitarian community with access to satellite imagery and Geographic Information System services
 - Reduce disasters and plan sustainable development
- ➤ Ensure cost-effective and timely products

Core Services

- **→** Humanitarian Mapping
- **→** Image Processing

VEGETATION – 1 Km

IKONOS - 1m

One step further: GRID

Énabling Grids for E-sciencE

Potential Bottlenecks:

- >> UNOSAT beginning to suffer from limited capacity and processing power
- ➤ Multiple satellites being launched
- ➤ Larger and larger storage capacity needed

- **▶** UNOSAT Virtual Organization (VO)
- → 3.5TB in CASTOR
- **→** Computing Elements, Resource Brokers
- ➤ Collaboration with ARDA group
- → AFS area of 5GB

We have provided the whole GRID infrastructure At CERN in summer 2005 for UNOSAT

- We have run some UNOSAT tests (images compression) inside the GRID environment (quite successful)
- The framework developed for in principle for Geant4 (See Alberto Ribon's presentation [49]) has been adapted for UNOSAT needs

- UNOSAT provided us with a set of images for testing
- Associated to each image a metadata file was included File name, directory path, geographical coordinates

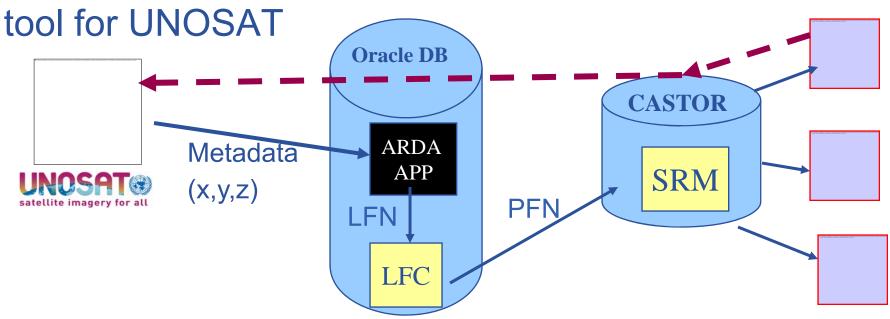
Steps:

STORAGE LEVEL

- ➤ Copy and registration of the images in Castor@CERN
 - ▶ Use of the LFC Catalog
- → Parse the metadata files to extract the different metadata
- >> Use of the AMGA tool to parse metadata to location of the files

COMPUTING LEVEL

- >> Use of compression tools to compress images inside LCG resources
- → Use of the general submission tool adapted to UNOSAT needs

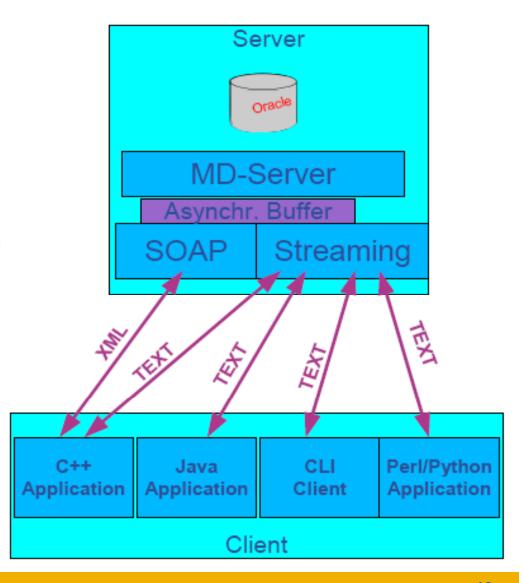


A GRID Metadata Catalogue

Énabling Grids for E-sciencE

- LFC Catalogue
 - ➤ Mapping of LFN to PFN
- UNOSAT requires
 - ➤ User will give as input data certain coordinates
 - ➤ As output, want the PFN for downloading

The ARDA Group assists us setting up the AMGA



AMGA Implementation

AMGA Implementation:

- SOAP and Text frontends
- Streamed Bulk Operations
- Supports single calls, sessions & connections
- SSL security with grid certs (negociated by client)
- Own User & Group management + VOMS
- PostgreSQL, Oracle,
 MySQL, SQLite backends
- Works alongside LFC
- C++, Java, Perl, Python clients

AMGA Features

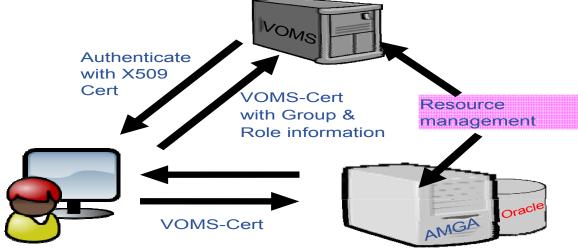
Dynamic Schemas

- Schemas can be modified at runtime by client
 - Create, delete schemas
 - Add, remove attributes

Metadata organised as an hierarchy

- Schemas can contain sub-schemas
- Analogy to file system:
 - Schema ⇔ Directory; Entry ⇔ File

Flexible Queries


- SQL-like query language
- Joins between schemas

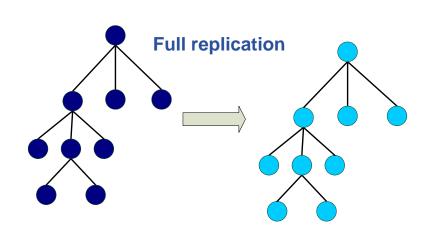
- Unix style permissions
- ACLs Per-collection or per-entry.
- Secure connections SSL
- Client Authentication based on
 - Username/password
 - General X.509 certificates
 - Grid-proxy certificates

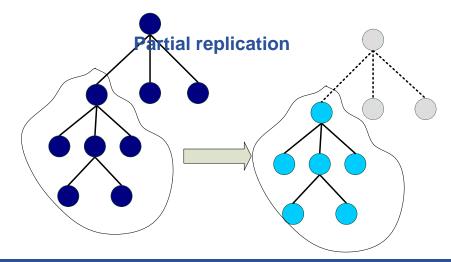
 Access control via a Virtual Organization Management System (VOMS):

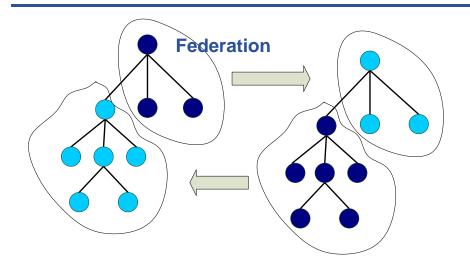
Metadata Replication

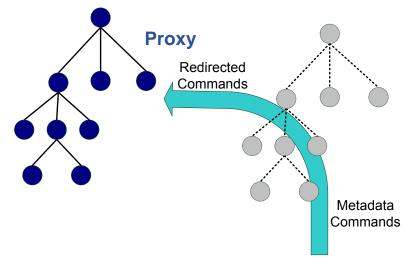
- Currently working on replication/federation mechanisms for AMGA
- Motivation
 - Scalability Support hundreds/thousands of concurrent users
 - Geographical distribution Hide network latency
 - Reliability No single point of failure
 - DB Independent replication Heterogeneous DB systems
 - Disconnected computing Off-line access (laptops)

Architecture


- Asynchronous replication
- Master-slave Writes only allowed on the master
- Replication at the application level
 - Replicate Metadata commands, not SQL → DB independence
- Partial replication supports replication of only sub-trees of the metadata hierarchy
- http://amga.web.cern.ch/amga/publications/nsantos2006AMGAReplication.pdf




Metadata Replication


Enabling Grids for E-sciencE

Some use cases

Not only metadata....

But also....

simplified DB access on the Grid

- Many Grid applications need structured data
- Many applications require only simple schemas
 - Can be modelled as metadata
- Main advantage: better integration with the Grid environment
 - Metadata Service is a Grid component
 - Grid security
 - Hide DB heterogeneity

gLibrary prototype implementation

Enabling Grids for E-sciencE

- Files are saved on SEs and registered into LFC file catalogues
- The AMGA Metadata Catalogue is used to archive and organize metadata and to answer users' queries.
- gLibrary is built using the following AMGA collections:
 - /gLibrary contains generic metadata for each entry
 - /gLAudio, /gLImage, /gLVideo, /gLPPT, /EGEEPPT, /gLDoc, ...
 are examples of collections of "additional features" (shown later)
 - /gLTypes
 - keeps the associations between document types and the names of the collection that contains the "additional features"
 - is used by gLibrary to find out where it has to look when new document types are added into the system (extensibility)
 - /gLKeys is used to store Decryption Keys

gLibrary Example of entries

Enabling Grids for E-sciencE

Collection		/gLibrary				
Entry Names	Attributes					
Entry Names	FileName	PathName	Туре	Submitter		
4ffaffc8-26e7-4826-b460-3d5bf08081a4	DedicatoAte.mp3	/grid/gilda/calanduc	ci Audio	Tony Calanducci		
00454dca-a269-4b93-8a45-c4012af05600	ardizzonelarocca_is_231005.	.ppt.gpg /grid/gilda/calanduc EGEE	ci/ EGEEDOC	Tony Calanducci		

/gLibrary (continuum)

Attributes

SubmissionDate	Encryption	Description	Keywords	CreationDate
2006-01-05 00:00:00	false	Canzone delle vibrazioni che ha ricevuto un enorme successo tra i teenagers nel 2003	Vibrazioni	2004-02-05 00:00:00
2005-01-05 16:44:22	true	gLite Information System	R-GMA, RGMA, BDII, IS	2005-10-05 23:40

Example of gLibrary collections

Enabling Grids for E-sciencE

Collection	/gLTypes
Entry names	Attributes
Entry names	Path (refers to a collection)
Audio	/gLAudio
Image	/gLImage
Video	/gLVideo
Documents	/gLDOC
PowerPoint	/gLPPT
EGEEDOC	/EGEEPPT

Collection	/gLKeys
Entry names	Attributes
Entry names	Passphrase
00454dca-a269-4b93-8a45- c4012af05600	ardizzo

"additional features"

Collection	/EGEEPPT							
Entry names	Attributes							
Entry names	Title	Runtime	Author	Туре	Date	Event	Speaker	Topic
00454dca-a269- 4b93-8a45- c4012af05600	Information Systems	00:30:00	Valeria Ardizzione, Giuseppe La Rocca	Theorical	2005-10-23	4 th EGEE Conferen ce	Giuseppe La Rocca, Valeria Ardizzone	R-GMA, BDII

Collection	/gLAudio					
Entry names	Attributes					
Entry names	SongTitle	Duration	Album	Genre	Singer	Format
4ffaffc8-26e7-4826- b460-3d5bf08081a4	Dedicato A Te	00:03:27	Dedicato A Te	Рор	Le Vibrazioni	MP3

gLibrary Security

User Requirements:

- a valid proxy with VOMS extensions
- VOMS Role and Group needed to be recognized by gLibrary as a contents manager.

3 kinds of users:

- gLibraryManager: (s)he can create new content type and allows a generic VO user to become gLibrarySubmitter
- gLibrarySubmitters: they can add new entries and define access rights on the entries they create.
 - Fine-grained permission (reading, writing, listing, decrypting) settings on each entry: whole VO members, VO groups, list of DNs
- generic VO users: browse and make queries (on entries they have access to)

Basic level of cryptography:

 New files saved on SEs can be encrypted beforehand with a symmetric passphrase that will be saved in /gLKeys. Only selected users (that have a specific DN in the subject of their VOMS proxy) can access the passphrase and decrypt the file.

AMGA client installation

 The clients (C++, Java and Python) are provided as RPMs packages here:

http://project-arda-dev.web.cern.ch/project-arda-dev/metadata/downloads/

```
rpm -i glite-amga-cli-1.3.0-1.i386.rpm
  (for C++ API)
    or
rpm -i glite-amga-api-java-1.2.5.rpm
  (for Java API)
```

- Copy the /opt/glite/etc/mdclient.config client configuration file into the directory from which you intend to work or into ~/.mdclient.config and customize it according to the instructions in the manual.
- There is also a Python Client API module available as an RPM package.

Example: gLibrary queries

Enabling Grids for E-sciencE

Initialize your VOMS proxy asking to be member of the gilda VO

Edit your .mdclient.config setting Login=NULL (user will be retrieved from your

proxy extensions)

Log into AMGA using mdclient

```
$ voms-proxy-init --voms gilda
$ voms-proxy-info -fqan
/gilda/Role=NULL/Capability=NULL
$ grep Login .mdclient.config
Login = NULL
```

Suppose we want to look for all contents about VOMS

```
Query> whoami
>> gilda
Query> selectattr /gLibrary:FILE /gLibrary:FileName /gLibrary:Type
'like(/gLibrary:Keywords, "%VOMS%")'
>> 1f6e9ac6-5c86-4599-b03b-560e0e7ea38a
>> VOMS_server_Installation.ppt.gpg
>> EGEEDOC
```

EGEEDOC attributes

```
Query> getattr /DLTypes/EGEEDOC Path
>> EGEEDOC
>> /EGEEPPT
```


Example: gLibrary queries (II)

Enabling Grids for E-sciencE

JOIN between the 2 tables to extract all the information we like

```
Query> selectattr /gLibrary:FILE /gLibrary:FileName /gLibrary:Description /EGEEPPT:Author /EGEEPPT:Title /EGEEPPT:Event '/gLibrary:FILE=/EGEEPPT:FILE and like(/gLibrary:Keywords, "%VOMS%")'
>> 1f6e9ac6-5c86-4599-b03b-560e0e7ea38a
>> VOMS_server_Installation.ppt.gpg
>> VOMS Server installation tutorial done in Venezuela
>> ziggy, Giorgio
>> Installing a gLite VOMS Server
>> First Latin American Workshop for Grid Administrators
```

Decrypting

Query> selectattr /gLibrary:FILE DecryptKeyDir 'FILE="1f6e9ac6-5c86-4599-b03b-560e0e7ea38a"'

- >> 1f6e9ac6-5c86-4599-b03b-560e0e7ea38a
- >> /DLKeys/gildateam

But ...

```
Query> getattr /gLKeys/gildateam/1f6e9ac6-5c86-4599-b03b-560e0e7ea38a
Passphrase
```

Error 4: Permission denied

Because gilda is not a member of the gildateam group

Practicals using AMGA mdclient

Enabling Grids for E-sciencE

```
Query>
dir /gilda/plovdiv
listattr /gilda/plovdiv
getattr /gilda/plovdiv/ Author
getattr /gilda/plovdiv/ Title
getattr /gilda/plovdiv/ Date
find /gilda/plovdiv 'like(Author, "Vla%")'
find /gilda/plovdiv 'like(Author, "P%")'
cd /gilda/plovdiv
setattr Test01 Author 'Pesho G. Petrov'
getattr Test01 Author
quit
```


Using the C++ Client API

 Two different C++ client APIs are available for the AMGA metadata service:

- md api many API functions
- MDClient C++ class. A direct interface but does not parse the responses of the server into suitable structures, while this is done by the md api.

Both ways to access the metadata service from C++ depend on an existing and accessible mdclient.config

Example of using md_api

Enabling Grids for E-sciencE

```
#include "client/md api.h"
#include <iostream>
int main (int argc, char *argv[])
  std::cout << "Listing attributes of /test\";</pre>
  std::list < std::string > attrList;
  std::list < std::string > types;
  if( (res=listAttr("/test", attrList, types)) == 0){
    std::cout << " Result:" << std::endl;</pre>
    std::list< std::string >::iterator I=attrList.begin();
    while(I != attrList.end())
      std::cout << " >" << (*I++) << "<" << std::endl;
  } else {
    std::cout << " Error: " << res << std::endl;</pre>
/* more code here ... */
  return 0;
```


Example of using MDClient C++ class

Enabling Grids for E-sciencE

```
#include <MDClient.h>
#include <iostream>
int main (int argc, char *argv[])
  int res;
 MDClient client;
  // client.setDebug(true);
  if(client.connectToServer()){
    std::cout << client.getError() << std::endl;</pre>
    return 5:
  std::string command="pwd";
  if( ( res=client.execute(command)) ) {
      std::cout << " ERROR: execute failed"</pre>
                << " (" << res << "): "
                << client.getError() << std::endl;
      return res;
/* more code here ... */
return 0;
```


Further information

on AMGA and gLibrary:

http://indico.eu-eela.org/conferenceTimeTable.py?confId=37 (go to day 3 for the AMGA tutorial)

AMGA Web Site

http://project-arda-dev.web.cern.ch/project-arda-dev/metadata

Conclusion

- AMGA Metadata Service of gLite
 - Useful for simplified DB access
 - Integrated in the Grid environment (Security)
- Replication/Federation under development
- Tests show good performance/scalability
- Already deployed by several Grid Applications:
 - LHCb, ATLAS, Biomed, ...
 - DLibrary