

Gridification practices in gLite 3.x

Vladimir Dimitrov IPP-BAS

"gLite middleware Application Developers Course", Plovdiv, Bulgaria, 4.04.2008

www.eu-egee.org

EGEE-II INFSO-RI-031688

- This talk gives a high-level view of application development in Grids
- Contents
 - Review of concepts: grids and grid applications
 - Characteristics of VOs
 - Challenges to researchers who write applications
 - General steps of application gridification
 - Practical: Preparing and submitting a job based on a simple nongrid application.
- Acknowledgements
 - Gergely Sipos, SZTAKI, Hungary
 - Miklos Kozlovszky, SZTAKI, Hungary
 - Mike Mineter, University of Edinburgh, UK, "Application Development and Aspects of gLite 3.0", 2006
 - Douglas Thain, The University of Notre Dame
 - GILDA team

Enabling Grids for E-sciencE

• **Definition**

Software that interacts with grid services to achieve requirements that are specific to a particular Virtual Oraganization (VO) or user.

Characteristics of VOs

- What is being shared?
 - resources of storage and/or compute cycles
 - software and/or data

• Distinct groups of developers and of users?

- Some VOs have distinct groups of developers and users...
 - Biomedical applications used by clinicians,....
- Some don't
 - Physics application developers who share data but write own analyses
- Effect: need to
 - hide complexity from the 1st type of VOs
 - expose functionality to 2nd type of VOs
 - many security issues

- 1. Developing a non-grid application (or inheriting and updating an ancient one);
- 2. Go/no-Go decision about gridification
 - Is it suitable for the Grid environment?
 - "Cost/profit" analysis / feasibility study

Typical Questions Groups:

- Current structure of the application
- Dependencies of the application
- Available resources (manpower, knowledge, etc.)
- Requirements for the gridified application
- Expected impact of gridification
- Requirements for the grid infrastructure

Basic tasks while Porting applications to the Grid (contd.)

3. Grid environment access

- Requesting Certificates / VO membership
- Accessing Grid environment
 - Appropriate VO **UI** machine account for command line
 - Portal GUI account;

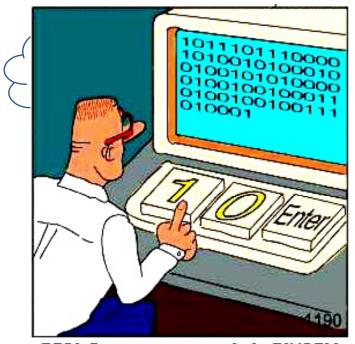
4. Executing, Testing and Debugging the application;

- Testing the non-grid application (debugging in Grid environment is a hard task), creating use cases for single (non-grid) runs;
- Constructing the job suite JDL (Job Description Language) files, executables, auxiliary scripts and input/output data files;
- 6. Submitting the job to the Grid as a small-scale pilot application;

- 7. Executing, Testing and Debugging the pilot application;
- *IF* something goes wrong *THEN GOTO* 4;
- **9.** *IF* everything seems to work

THEN increase the scale of the application (increase problem size, amount of used resources);

10. Optimizing and improving the grid application;

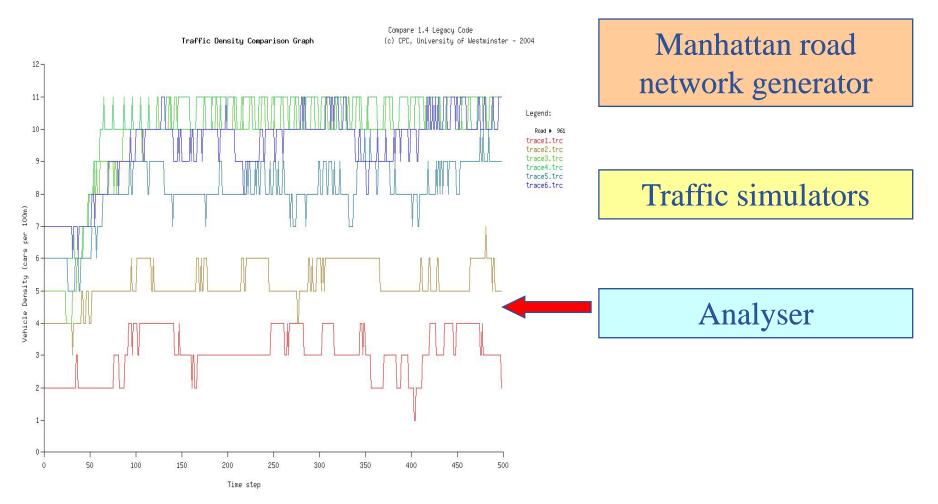

Code from the past, maintained because it works Often supports business critical functions Not Grid enabled

Porting legacy code applications

What to do with legacy codes in service Grids?

Enabling Grids for E-sciencE

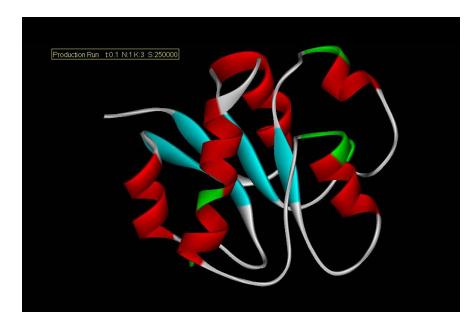
- Bin them and reimplement them as grid services
- Reengineer them → who knows the source code?
- Port them onto the Grid with minimum user effort!

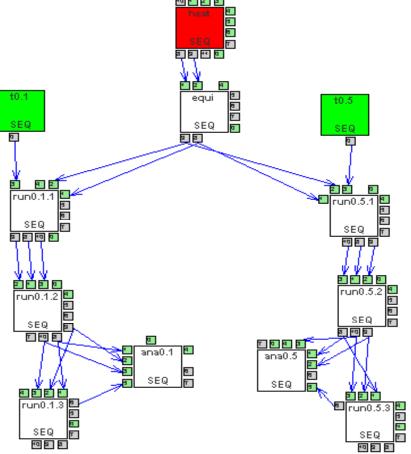

GGGGG

Legacy Application example

Enabling Grids for E-sciencE

Workflow to analyse road traffic

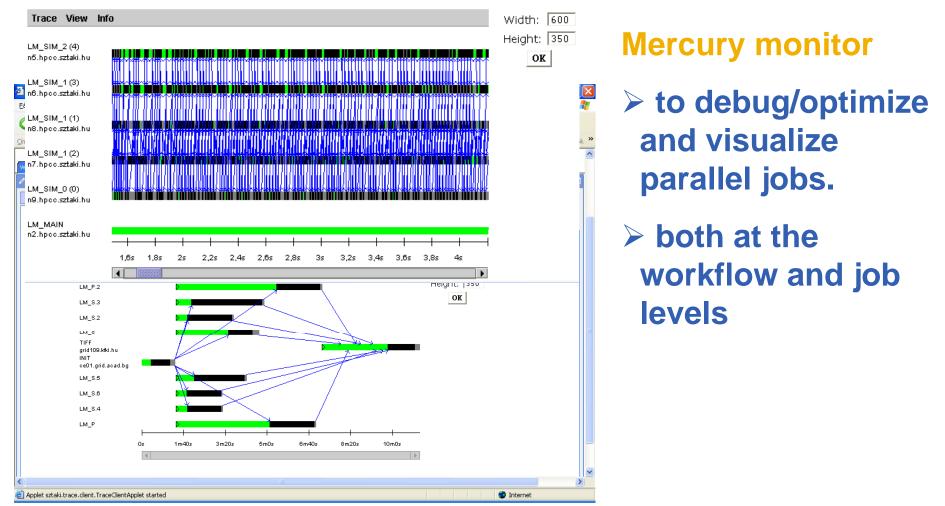




Enabling Grids for E-sciencE

Molecular Dynamics Study of Water Penetration in Staphylococcal Nuclease using CHARMm

 Analysis of several production runs with different parameters following a common heating and equilibrium phase



Practical tools @ gridification

Enabling Grids for E-sciencE

On-Line Monitoring

Practical tools @ gridification (contd.)

Hiding Grid remote storage system from a legacy application

- Parrot
 - a handy tool for attaching old programs to new storage systems
 - EGEE (gLite module) Data Access: GFAL, LFN, GUID, SRM, RFIO, DCAP, and LFC
 - does not require any special privileges, any recompiling to existing programs
 - For example, an anonymous FTP service is made available to vi like so:

parrot vi /anonftp/ftp.cs.wisc.edu/RoadMap

Or example with gsiftp:

\$./parrot app_name /gsiftp/<gsiftp usr without gsiftp://>

More info:

http://www.cse.nd.edu/~ccl/software/manuals/parrot.html

Now some bad news:

The candidate-applications for porting usually are huge and complex.

Some of them use low-level network functions and/or parallel execution features of a specific non-grid environment.

Usage of non-standard or proprietary communication protocols.

The complete source code might not be available, might not be well documented or its "out-of-host" usage is restricted by a license agreement.

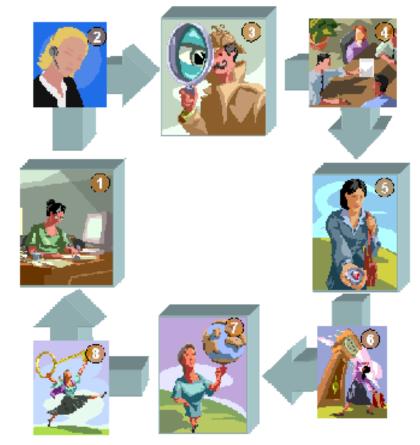
The application might be written in many different programming languages – C, C++, C#, Java, FORTRAN etc. or even mixture of them.

Applications may depend on third-party libraries or executables which are not available by default on some Grid worker nodes.

Some application features could cause unintentional violation of <u>Grid Acceptable Use Policies</u> (Grid AUP).

Furthermore, the application can have hidden security weakness which will be very dangerous in case of remote Grid job execution.

- Some applications are pre-compiled or optimized for using on a machine with particular processor(s) only – Intel, AMD, in 32-bit or 64-bit mode, etc. <u>But the Grid is heterogeneous</u>!
- The application may contain serious bugs, which have never been detected while running in a non-grid environment.
- Lack of convenient Grid-enabled program debuggers and profilers.
- Finally, the formal procedure for accepting a new application to be ported to a Grid for production or even for experimental purpose is not simple.


Therefore, the porting of an arbitrary application to Grid could be very long, difficult and expensive process!

Grid Application Development Enabling Grids for E-science Support Model

8 steps support model

- Contact phase
- Pre-selection phase
- Analysis phase
- Planning phase
- Prototyping phase
- Testing phase
- Execution phase
- Dissemination and feedback phase

 The application called *MatrixDemo* will be ported and executed in GILDA grid environment. (The program is borrowed from the *"EGEE summer school"* at MTA SZTAKI, 2006. The archive can be downloaded from: http://vgd.acad.bg/grid/MatrixDemo.zip)

MatrixDemo is written in C programming language

GILDA environment (gLite based) is supporting C, so porting the C or C++ programs is easy ... hopefully.

MatrixDemo program

- *MatrixDemo* program performs some matrix operations inverting, multiplying, etc.
- Usage:
- *MatrixDemo* has command line interface which accepts several arguments. Starting the program without any argument will display a short help.
 - Example:

MatrixDemo I V

This will Invert (I) the matrix defined in the file named INPUT1 and will store the result in the file OUTPUT with verbose details (V).

GGCC *MatrixDemo* program (continued) Enabling Grids for E-sciencE

- **Prerequisites:**
- **File** *MatrixDemo.c* the source code of the program.
- Files INPUT1 and INPUT2 they contain matrix data in the following text format:

rows, columns, cell1, cell2, cell3 ...

Where *rows* is an integer representing the number of rows. *columns* represents number of columns, and *cell1, cell2* etc. are the cells of the matrix, floating point numbers separated by commas (,).

- A standard C compiler and linker. In this case we will use GNU C (gcc) already installed.
- File MatrixDemo.jdl a prepared JDL (Job Description Language) file.

Questions?

Enabling Grids for E-sciencE

