

Update on the LHeC IR

LHeC Meeting April 8th, 2014

Emilia Cruz Alaniz

Linac-Ring LHeC IR

Interaction Region Design

Interaction Region Lattice

Interaction Region Lattice

2 Recombination Dipoles Change trajectory of proton beams

```
kd1.12 := ad1.12/1.mbx ;
kd1.r2 := ad1.r2/1.mbx ;
kd2.12 := ad2.12/1.mbrc ;
kd2.r2 := ad2.r2/1.mbrc ;
```

Interaction Region Lattice

26 Quadrupoles for each beam. 13 each side. 23 independent. Focus proton beams

IT antisymmetric

KQX.L2	:=	0.877985714100E-02	÷
KTQX1.L2	:=	0.00000000000E+00	÷
KTQX2.L2	:=	0.00000000000E+00	÷
KQX.R2	:=	-KQX.L2	;
KTQX1.R2	:=	-KTQX1.L2	;
KTQX2.R2	:=	-KTQX2.L2	;

!Beam1						
KQ4.L2B1	:=	-0.258592456320E-02	;	!Beam2		
KQ4.R2B1	:=	0.371540198462E-02	;	KQ4.L2B2	:=	0.185133533486E-02 ;
KQ5.L2B1	:=	0.289870812115E-02	;	KQ4.R2B2	:=	-0.309985129373E-02 ;
KQ5.R2B1	:=	-0.364729424407E-02	;	KQ5.L2B2	:=	-0.349664775637E-02 ;
KQ6.L2B1	:=	-0.469531641707E-02	;	KQ5.R2B2	:=	0.469937679927E-02;
KQ6.R2B1	:=	0.432365742510E-02	;	KQ6.L2B2	:=	0.442385030629E-02;
KQ7.L2B1	:=	0.745357182830E-02	;	KQ6.R2B2	:=	-0.370019633193E-02 ;
KQ7.R2B1	:=	-0.640978067866E-02	;	KQ7.L2B2	:=	-0.813254954261E-02;
KQ8.L2B1	:=	-0.529525684936E-02	;	KQ7.R2B2	:=	0.733992956089E-02;
KQ8.R2B1	:=	0.671971927152E-02	;	KQ8.L2B2	:=	0.700517746627E-02 ;
KQ9.L2B1	:=	0.703623363164E-02	;	KQ8.R2B2	:=	-0.560890926907E-02;
KQ9.R2B1	:=	-0.651667220851E-02		KQ9.L2B2	:=	-0.701852180932E-02;
KO10.L2B1	:=	-0.644030443578E-02		KQ9.R2B2	:=	0.681308273586E-02;
KQ10.R2B1	:=	0.730142490022E-02		KQ10.L2B2	:=	0.702844127608E-02;
KQTL11.L2B1	-	0.294599974395E-03		KQ10.R2B2	:=	-0.525944973661E-02;
KQTL11.R2B1	.=	-0.711502410599E-04		KQTL11.L2B2	:=	0.381920898127E-02;
	-		•	KQTL11.R2B2	:=	0.399409216637E-03;
KQT12.L2B1	:=	0.208264468927E-02		KQT12.L2B2	:=	-0.333493643883E-02 ;
KQT12.R2B1	:=	-0.237270956314E-02		KQT12.R2B2	:=	-0.194961708850E-02 ;
KQT13.L2B1	:=	0.296816023135E-02		KQT13.L2B2	:=	0.278690239431E-03;
KQT13.R2B1	:=	-0.206932585417E-02	;	KQT13.R2B2	:=	0.482280250116E-02;

Changes IR2 Lattice

4/8/2014 LHeC Meeting V V 7

Magnets Q1 Q2

S. Russenschuck

Nb3Sn: 8600 A, 311 <T/m, at

83% LL

23 mm aperture 87 mm septum Nb3Sn: 5700 A, 175 T/m, 4.7 T at 8.2% on LL

46 mm (half) aperture 63 mm septum

Magnets Q1 Q2

S. Russenschuck

Nb3Sn: 8600 A, 311 <T/m, at 83% LL

Nb3Sn: 5700 A, 175 T/m, 4.7 T at 8.2% on LL

23 mm aperture 87 mm septum 46 mm (half) aperture 63 mm septum

ZOOM IR2

IR2 Optics

Towards Luminosity ≥10³³ cm⁻²s⁻¹

$$L = \frac{1}{4\pi e} \frac{N_{b,p}}{\varepsilon_p} \left(\frac{1}{\beta_p^*}\right) I_e H_{hg} H_D$$

Minimize β* = More Luminosity!

$$\sigma_x = \sqrt{\epsilon \beta(s)}$$

MADX

Vary	Constraints	
Q1-Q13 in IR2	Twiss parameters IP2 and ends of IR2	_

$$\rightarrow \beta^*=0.3 \text{ m}$$

IR2 Optics

Towards Luminosity ≥10³³ cm⁻²s⁻¹

$$L = \frac{1}{4\pi e} \frac{N_{b,p}}{\varepsilon_p} \left(\frac{1}{\beta_p^*}\right) I_e H_{hg} H_D$$

Minimize β* = More Luminosity!

$$\sigma_x = \sqrt{\epsilon \beta(s)}$$

MADX

Vary	Constraints	
Q1-Q13 in IR2	Twiss parameters IP2 and ends of IR2	

$$\rightarrow \beta^*=0.3 \text{ m}$$

$$\beta^* = 0.1 \text{ m}$$
?

Limits quadrupole strengths.

IT causes huge chromatic aberrations

MADX

Vary	Constraints
Q1-Q13 in IR2	Twiss parameters IP2 and end of IR2

Increases Beta tunction in location of sextupoles in arc

$$\xi_{x,y}^{S} = -\frac{1}{4\pi} \oint \mp \beta_{x,y}(s) S(s) D_x(s) ds$$

HL-LHC

MADX

Vary	Constraints
Q1-Q13 in IR4, IR6	Twiss parameters end IR5 (beginning IR6), beginning IR5 (end IR4) Phase advance

HL-LHC

HL-LHC + LHeC

HL-LHC

HL-LHC + LHeC

HL-LHC

HL-LHC + LHeC

Chromaticity corrected?

- Tuning of the arc cells in the sector 23 to 90 degree
- Re-matching for the IR3 to provide absorption of the betabeating wave
- Tuning of the arc cells in the sectors 34 and 67 to restore the betatron tunes of the machine to 62.31/60.32
- Re-matching for the IR4, IR6 and IR7 to adjust modified arc sectors 34 and 67

HL+LHeC ATS Optics. Beam 2

New triplet

Q1=187 T/m Q2=310 T/m Q3=182 T/m Length=9 m IR2

 β *=10 cm

IR1/IR5

 β *=15 cm

M. Korostelev

Qxb2/Qyb2 = 62.31/60.32

HL+LHeC ATS Optics. Beam 1

IR1/IR5 β*=15 cm

M. Korostelev

Qxb1/Qyb1 = 61.31/59.32

Chromaticity correction, L*=10 m, β *=10 cm

Vary	Constraints
KSF1, KSF2, KSD1, KSD2 all	dq1=2, dq2=2
arcs	Wx, Wy<200 in IR3 and IR7

Before correction

dq1= -99.38

dq2 = -103.86

After correction

dq1= 2

dq2=2

22

Frequency Map-Order 5

L*=10 m, Beta*=0.1 m, $\Delta p=\pm 0.001$

Zoom Frequency Map-Order 5

 $L^*=10 \text{ m, Beta}^*=0.1 \text{ m, } \Delta p=\pm 0.001$

Zoom Frequency Map-Order 10

 $L^*=10 \text{ m, Beta}^*=0.1 \text{ m, } \Delta p=\pm 0.001$

Competing Criteria

Luminosity vs Aperture

Increased beam growth ($\beta(s) = \beta^* + s^2/\beta^*$) bigger beam size in the location of the inner triplet

Luminosity vs Chromatic Aberration

Increased beta function in the triplets, more natural chromaticity produced.

SR vs Aperture

More distance, less bending electron beam, bigger beam size on proton beam.

SR vs Chromatic Aberration

Bigger beam size on proton beam, increased chromatic aberration.

26

Competing Criteria

Luminosity vs Aperture

Increased beam growth ($\beta(s) = \beta^* + s^2/\beta^*$) bigger beam size in the location of the inner triplet

Luminosity vs Chromatic Aberration

Increased beta function in the triplets, more natural chromaticity produced.

SR vs Aperture

More distance, less bending electron beam, bigger beam size on proton beam.

SR vs Chromatic Aberration

Bigger beam size on proton beam, increased chromatic aberration.

Initial solution. L*=10 m, β *=10 cm. We have values at ends of IR2 that produce beta beating. Change parameters?

Change Parameters

Increase L*

Less synchroton radiation, more space, useful for quadrupole design. **More chromaticity**.

MADX

Vary	Constraints
Q1-Q13 Left/Right in IR2	Beforehand: Location IT Same twiss parameters at IP and ends of IR

Minimize β*

Increase Luminosity. Inner triplet forced, possible? More chromaticity.

MADX

Vary	Constraints
Q1-Q13 Left/Right in IR2	Same twiss parameters at ends of IR2. Adjusted β* in IP

Change Parameters

Increase L*

Less synchroton radiation, more space, useful for quadrupole design. **More chromaticity**.

MADX

Vary	Constraints		
Q1-Q13 Left/Right in IR2	Beforehand: Location IT	\rightarrow	L*=10-20 m
	Same twiss parameters at IP and		
	ends of IR		

Minimize β*

Increase Luminosity. Inner triplet forced, possible? More chromaticity.

MADX

Vary	Constraints		
Q1-Q13 Left/Right in IR2	Same twiss parameters at ends of IR2. Adjusted β* in IP	\rightarrow	β*=5-10, 20 cm

Change Parameters

Increase L*

Less synchroton radiation, more space, useful for quadrupole design. **More chromaticity**.

MADX

Vary	Constraints		
Q1-Q13 Left/Right in IR2	Beforehand: Location IT Same twiss parameters at IP and ends of IR	\rightarrow	L*=10-20 m

Minimize β*

Increase Luminosity. Inner triplet forced, possible? More chromaticity.

MADX

Vary	Constraints		
Q1-Q13 Left/Right in IR2	Same twiss parameters at ends of IR2. Adjusted β* in IP	\rightarrow	β*=5-10, 20 cm

How much more chromaticity? Sextupoles to zero, check natural chromaticity

Natural Chromaticity vs L*

Natural Chromaticity vs β*

4/8/2014

Case L*=15 m, β *=10 cm

- Distance and strength of Q1 (164 T/m) useful for Quadrupole design.
- Less synchroton radiation

Chromaticity correction

Before correction

dq1= -118.44

dq2= -125.60

After correction

dq1=2

dq2=2

Frequency Map-Order 5

L*=15 m, Beta*=0.1 m, $\Delta p=\pm 0.001$

Frequency Map - Order 9

 $L^*=15 \text{ m, Beta}^*=0.1 \text{ m, } \Delta p=\pm 0.001$

Frequency Map-Order 10

 $L^*=15 \text{ m, Beta}^*=0.1 \text{ m, } \Delta p=\pm 0.001$

Limits on the Chromaticity Correction

$$\beta$$
*=8 cm

Aperture vs L*

LHeC Meeting

4/8/2014

Aperture vs β*

Aperture vs β*

4/8/2014

Electron Optics. Original Design

$$L_p^*=10 \text{ m}$$

 $L_e^*=20 \text{m} \text{ (outside)}$

- PROBLEM. Stray
 Fields in free field
 hole of Q1 . 7 T/M
- Cannot successfully match with stray fields

Electron Optics. Option 1

Electron final

Electron matching

triplet

Electron

dipoles

Proton final

triplet (offset)

Optics and layout around proton elements.

Matching quadrupoles correct linear stray fields does not deal with higher order yet.

Electron Optics. Option 1

$$L_p^*=15 \text{ m}$$

 $L_e^*=6\text{m (inside)}$

- Removal half-quadrupole.
 Higher order stray fields
 negligible, more control
 synchrotron radiation.
- Still advantageous to have early electron focusing. Afte increases electron L* significantly.
- SR 22 kW

Summary and Future Work

- 2 Different options: L*=10 m and L*=15 m seem feasible. Option L*=15 m works better for magnet and e⁻ beam.
- Explore limits chromaticity correction. Current script L*=19 m, β *= 8 cm. Do we need bigger L*?
- Dynamic Aperture on SixTrack studies to validate ATS scheme in the 3 interaction points.
- Work further with e-beam. Explore other options location triplet.

Thank you!

e.cruz-alaniz@liverpool.ac.uk