

Hunting The Higgs Using the Worldwide LHC Computing Grid (WLCG)

Abstract

- This talk describes the long process of hardening the WLCG through a series of Service Challenges and production readiness tests leading to reliable petascale computing services that allowed data to be turned into discoveries in record time.
- It covers not only the preparation period for Run1 of the LHC, the data-collection period that led to the announcement of the discovery of a Higgs-like particle, but also the preparations for Run2 and beyond – higher data rates, more flexible network architectures and the challenges of tomorrow's processors.

• It also describes collaborative work performed in the context of the EGI-InSPIRE Heavy User Communities work package in developing and sharing common solutions across multiple communities.

Caveat

 It is not my intention to give a purely historical talk but rather try to understand how future challenges – such as the SKA – can be met

• After all, the only thing that we learn from history is that we never learn from history

LHC Computing – A Grand Challenge

- In 1978, a former DG of CERN proposed that the LEP tunnel – should it be built – be large enough for a future hadron collider (on top)
- It was in September 1992 that I realized I was working essentially full-time on LHC Computing
- Daily WLCG Operations meetings started in 2008: first collisions of accelerated pp in 2010;
- "Higgs day" 4th July 2012
- But we are still just at the beginning....

1990s: Revolution(s) in HEP Computing

- In parallel with the exploitation of LEP, more or less every "constant" in terms of HEP Computing was overturned
- Arrival of networking (multiple protocols)
- End of the main-frame: minis and micros were rapidly superseded by PCs – and Linux
- Fortran plus extensions were replaced by C++
- Numerous R&D projects: ODBMS, re-implementation of key HEP s/w packages...
- MONARC: "the set of viable computing models"
- "622 Mb/s to a few centres with tape as backup"

2000s: "Enter the Grid"

- With x86, Linux and C++ as the new norm, HEP became infected with grid-itus in the early 2000s
- Assisted by a series of EU projects (EDG, EGEE I/II/II, EGI) with other efforts in the US and elsewhere, production grid computing appeared
- But it was not without significant effort (blood, sweat, tears)
- Now that "it works", many have already forgotten what it took to get there

2004 – Service Challenges Begin

- Originally conceived as a series of 4 challenges, later supplemented by two "production readiness" tests
- SC1 & 2 did not involve users (and failed to meet targets)
- SC3 failed to meet targets but a re-run 6 months later was successful
- Step-by-step pains-taking debugging
- Even SC4 did not include the "analysis use case" only successfully demonstrated 2 years after target startup-date of 2007

Ed

Reminder – one of the conclusions from the plenary talk at CHEP' 04 by Fabiola Gianotti

My 2 main worries today (as an LHC physicist and end-user):

- End-users not yet exposed to massive use/navigation of database and of GRID

 → what will happen when O(10³) physicists will simultaneously access these systems ?

 Software and Computing Model developed for steady-state LHC operation (≥ 2009 ?)

 <u>But</u>: at the beginning they will be confronted with most atypical (and stressful) situations, for which a lot of flexibility will be needed:
 - -- staged, non-perfect, non-calibrated, non-aligned detectors with all sorts of problems
 - -- cosmic and beam-halo muons used to calibrate detectors during machine commissioning
 - -- machine backgrounds ; higher-than-expected trigger rates
 - -- fast/frequent reprocessing of part of data (e.g. special calibration streams)
 - -- O(10³) physicists in panic-mode using and modifying the Software and accessing the database, GRID ...

⇒ it is time for the Software/Computing to address the early phase of LHC operation, not to hinder the fast delivery of physics results (and a possible early discovery ...)

The LCG Service Challenges: Rolling out the LCG Service

RUSSIA

LCG

NADA

NITED

Jamie Shiers, CERN-IT-GD-SC http://agenda.cern.ch/fullAgenda.php?ida=a053365

June 2005

Antarctica

LCG Service Challenges - Overview

- LHC will enter production (physics) in summer 2007
 - Will generate an enormous volume of data
 - Will require huge amount of processing power
- LCG 'solution' is a world-wide Grid
 - Many components understood, deployed, tested..
- But...

>

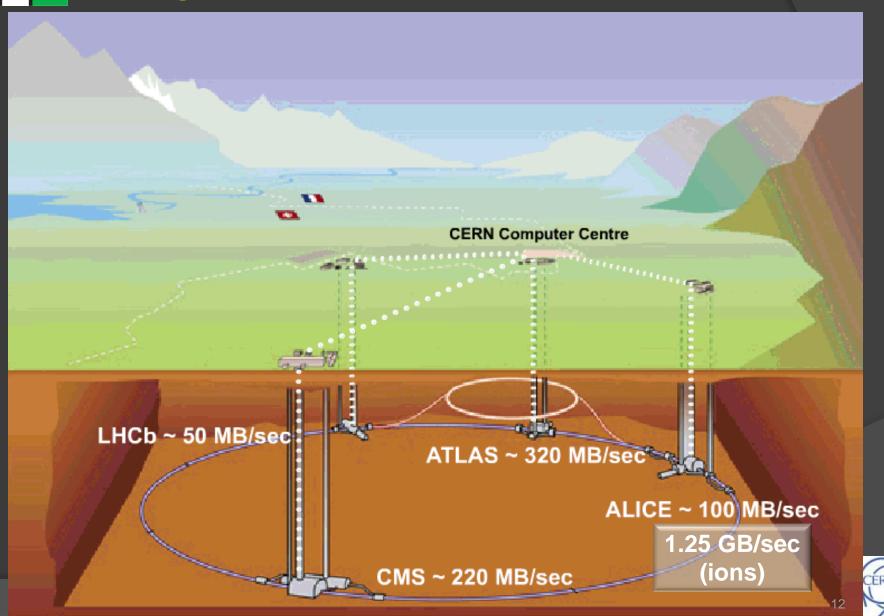
- Unprecedented scale
- Humungous challenge of getting large numbers of institutes and individuals, all with existing, sometimes conflicting commitments, to work together
- LCG must be ready at full production capacity, functionality and reliability in <u>little more than 1 year</u> from now
 - Issues include h/w acquisition, personnel hiring and training, vendor rollout schedules etc.
 - Should not limit ability of physicist to exploit performance of detectors nor LHC's physics potential
 - Whilst being stable, reliable and easy to use

LCG Service Hierarchy

Tier-0 - the accelerator centre

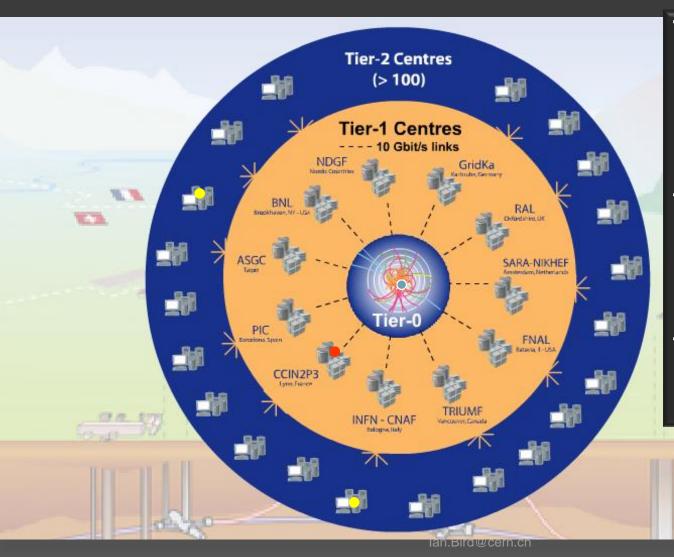
- Data acquisition & initial processing
- Long-term data curation
- Data Distribution to Tier-1 centres

Tier-1 – "online" to data acquisition process → high availability


- Managed Mass Storage -→ grid-enabled data service
- All re-processing passes
- Data-heavy analysis
- National, regional support

Tier-2 - ~100 centres in ~40 countries

- Simulation
- End-user analysis batch and interactive
- Services, including Data Archive and Delivery, from Tier-1s



Tier O at CERN: Acquisition, First pass reconstruction, Storage & Distribution

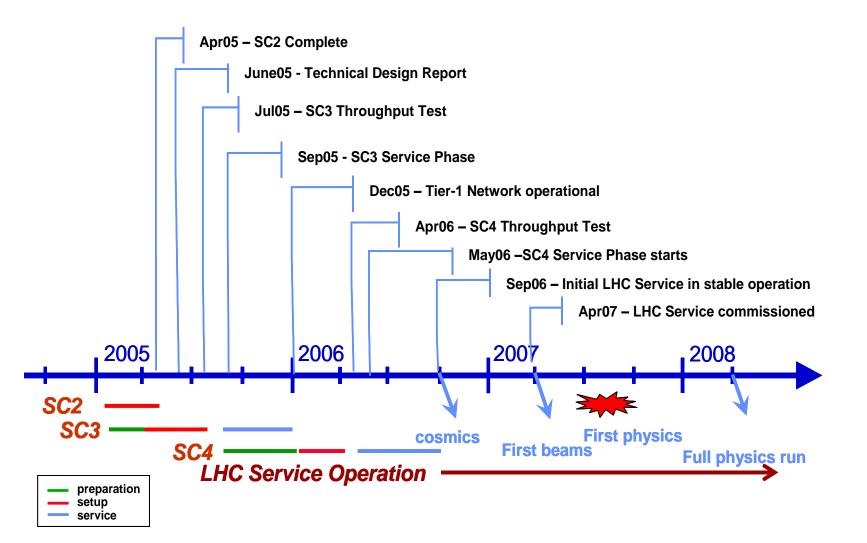
Tier 0 – Tier 1 – Tier 2

Tier-0 (CERN):

Data recording

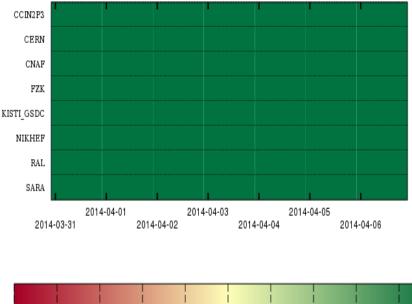
- Initial data reconstruction
- Data distribution

Tier-1 (11 centres): • Permanent storage • Re-processing • Analysis


Tier-2 (>200 centres):

- Simulation
- End-user analysis

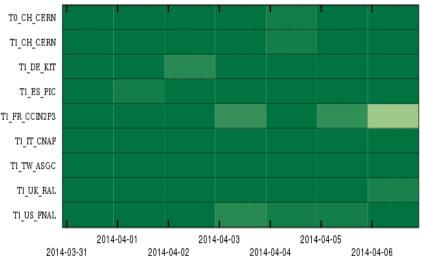
LCG Deployment Schedule

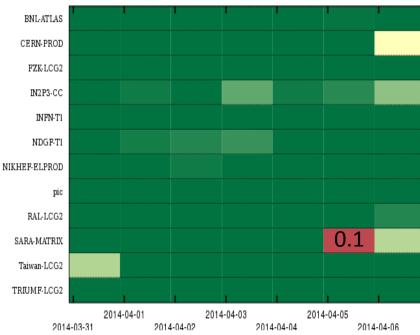


Metrics for Success

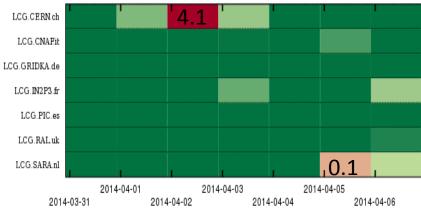
- (EU) projects typically have a bunch of metrics
- EGI-InSPIRE had, for example:
 - # GGUS tickets; MTR etc.
- But no clear understanding of what represented "good" or "progress"
- We developed some very simple metrics, still in use today:
 - Examined at "weekly" (now monthly or less) MB meetings;
 - Examined via quarterly reports at CB/OB level
- Plus a "high-level" metric...

Site reliability using ALICE_CRITICAL

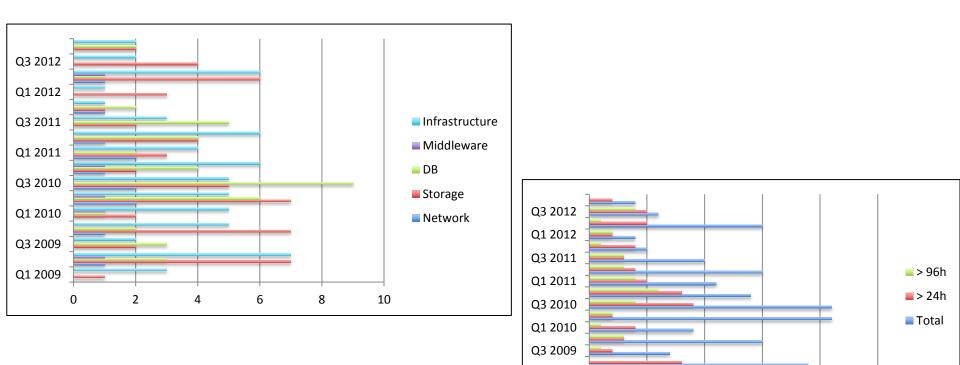

168 hours from 2014-03-31 00:00 to 2014-04-07 00:00


Site reliability using CMS_CRITICAL_FULL

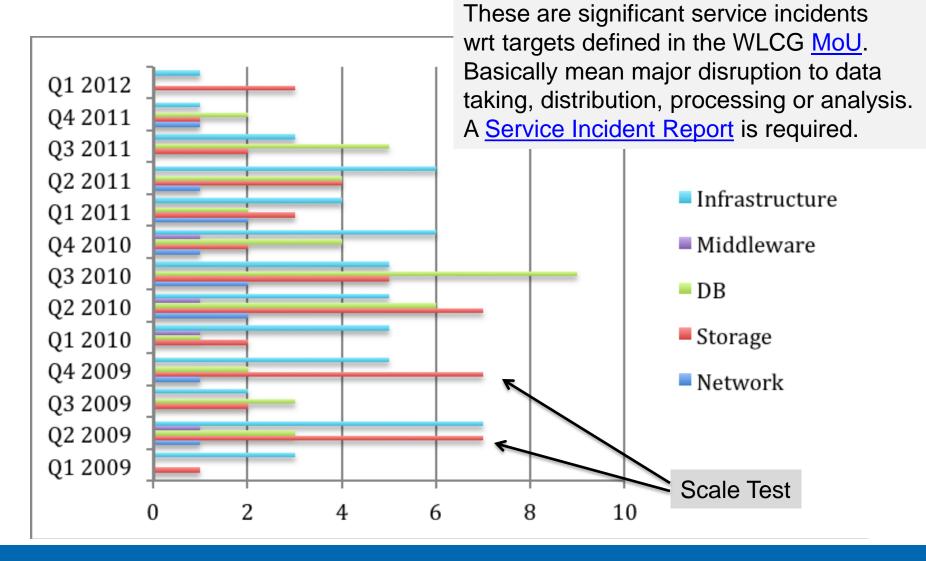
168 hours from 2014-03-31 00:00 to 2014-04-07 00:00


Site reliability using ATLAS_CRITICAL

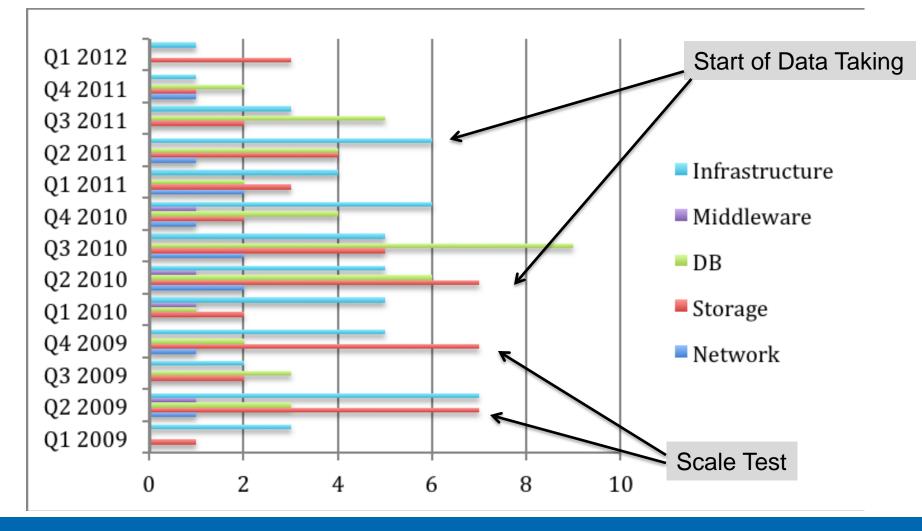
168 hours from 2014-03-31 00:00 to 2014-04-07 00:00



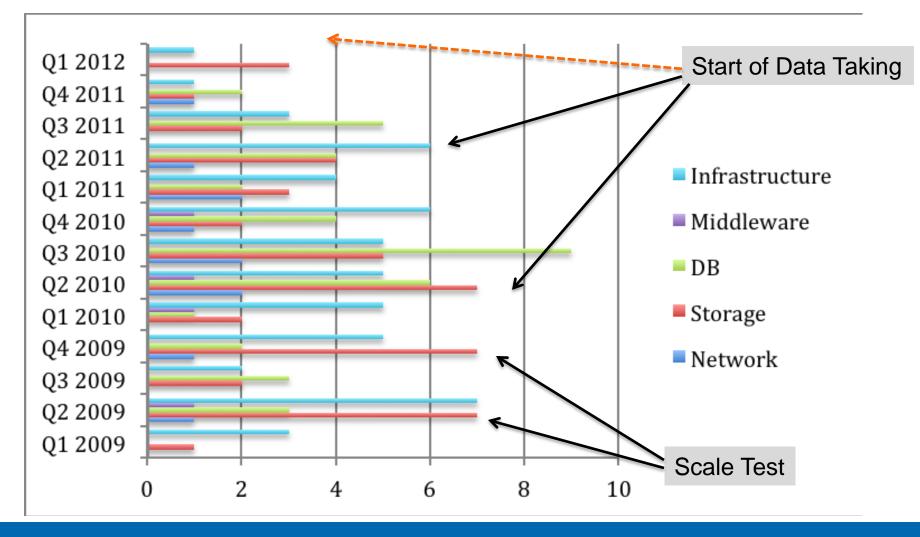
Site reliability using LHCb_CRITICAL


168 hours from 2014-03-31 00:00 to 2014-04-07 00:00

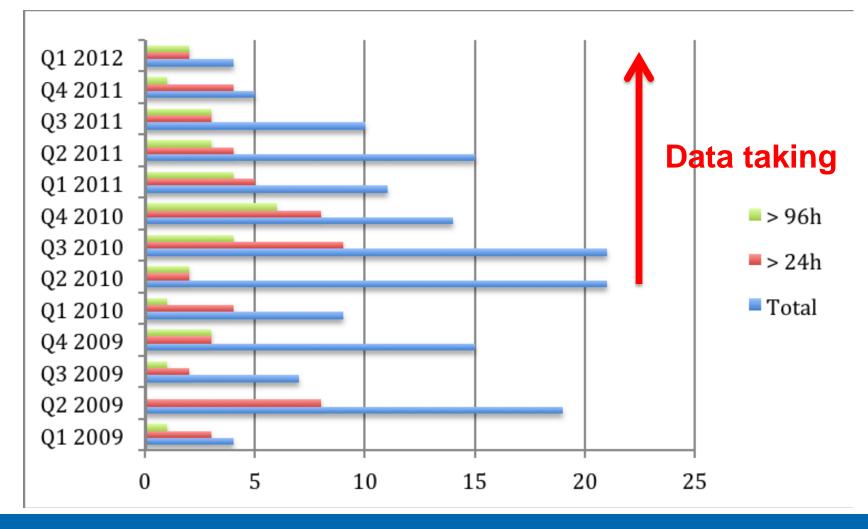
• Aka "post-mortems"



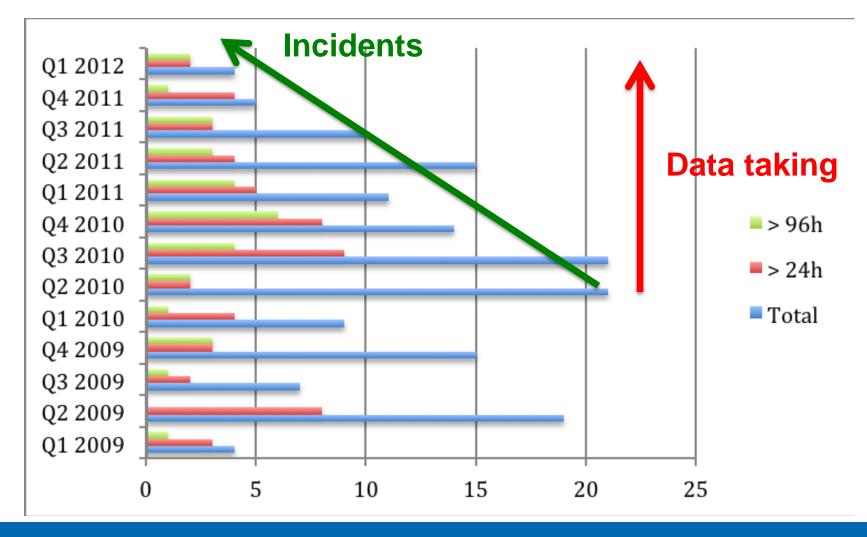
Q1 2009

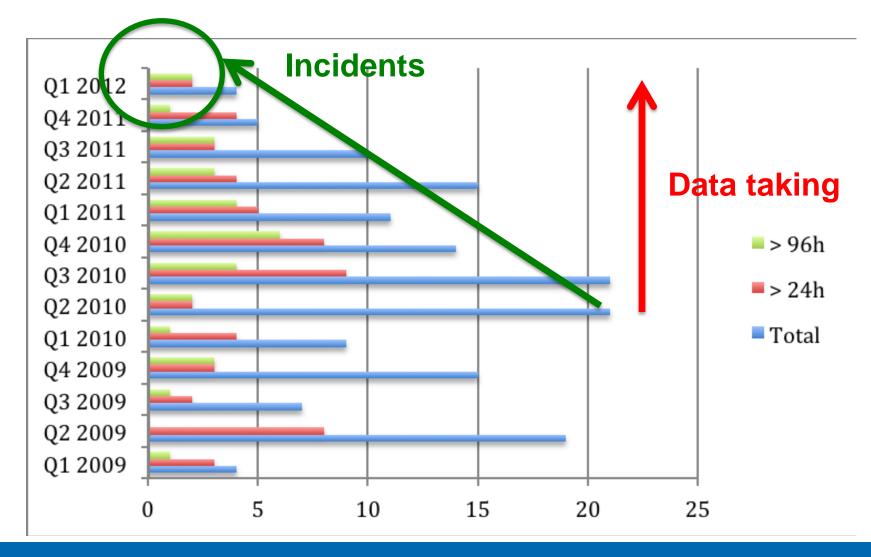

SA3 - June 2012

SA3 - June 2012



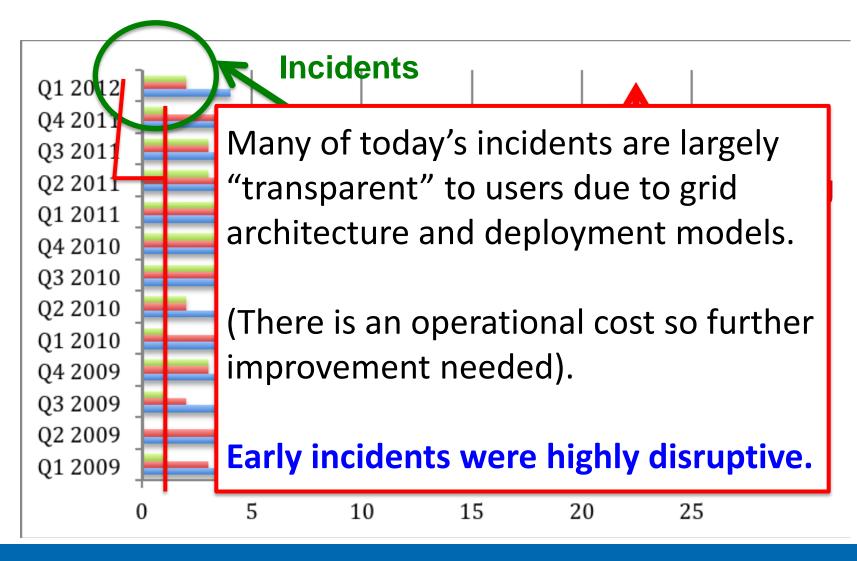
SA3 - June 2012


EGI-InSPIRE RI-261323

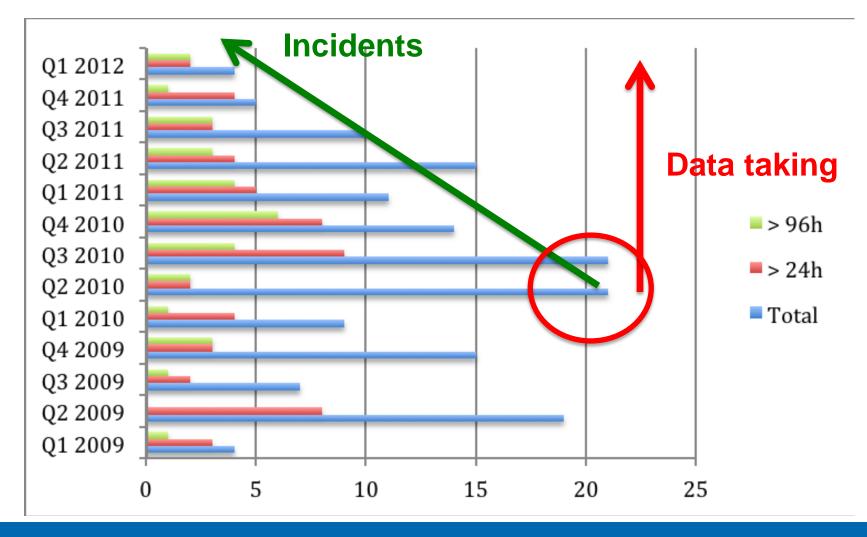


EGI-InSPIRE RI-261323

SA3 - June 2012



SA3 - June 2012



SA3 - June 2012

SA3 - June 2012

SA3 - June 2012

		WP	Task	Beneficiary	Total PMs
		WP6-G	TSA3.1	CERN	18
9 Countries	e	WP6-G	TSA3.2	ARNES	3
11 Beneficiaries		WP6-G	TSA3.2	CERN	120
672 PMs 56 FTEs		WP6-G	TSA3.2	CNRS	30
		WP6-G	TSA3.2	CSC	18
		WP6-G	TSA3.2	CSIC	45
		WP6-G	TSA3.2	CYFRONET	6
		WP6-G	TSA3.2	EMBL	5
		WP6-G	TSA3.2	INFN	36
SA3 Effort		WP6-G	TSA3.2	TCD (ended 31-12-12)	17
SA3 8%	JRA1 NA1	WP6-G	TSA3.2	UI SAV (shift 10 to TSA2.6)	8
SA2 6%	4% 4% NA2 16%	WP6-G	TSA3.3	INFN (shift 24 to CERN, 12 to SA2.6)	24
		WP6-G	TSA3.3	CERN	251
	NA3	WP6-G	TSA3.4	CNRS	29
SA1 58%	4%	WP6-G	TSA3.4	EMBL (reclaimed 32 PMS)	5
		WP6-G	TSA3.5	INFN	30
		WP6-G	TSA3.6	KIT-G	27
	Task ended on 30-0	<mark>4-13 - 95</mark>	% of total	PMs committed have	been used

SA3 Objectives

- Transition to sustainable support:
 - + Identify tools of benefit to multiple communities
 - Migrate these as part of the core infrastructure

+ Establish support models for those relevant to individual communities

- The communities identified as "Heavy Users" of the grid infrastructure are:
 - High Energy Physics (HEP);
 - Life Sciences (LS);
 - Astronomy & Astrophysics (A&A);
 - Earth Sciences (ES);
 - Computational Chemistry and Materials ST;
 - Fusion.

Achievements in Context

- As a clear example, we use the case of HEP / support for WLCG
- The 3 phases of EGEE (I/II/III) overlapped almost exactly with final preparations for LHC data taking:
 - WLCG Service Challenges 1-4, CCRC'08, STEP'09
- EGI-InSPIRE SA3 covered virtually all the initial data taking run of the LHC: first data taking and discoveries!
 - > "Mis-aligned" by just over 1 month at the beginning, plus two months at the end
- ✓ The transition from EGEE to EGI was non-disruptive
- ✓ Continuous service improvement has been demonstrated
- ✓ Problems encountered during initial data taking were rapidly solved
- ✓ Significant progress in the identification and delivery of common solutions
- ✓ Active participation in the definition and realization of the future evolution of WLCG
- All tasks have contributed to adding cohesion to the respective communities (LS, A&A, ES) and preparing for long-term (post-2020) future

- "HUCs" will continue to be (big) users of e-Infrastructures in the future
- A number of major projects are on or beyond – the (2020) Horizon
 - e.g. Square Kilometre Array, High-Luminosity LHC, EUCLID, etc.
- Will continue to work together, as well as through official bodies such as e-IRG (& User Forum?) to make requirements known

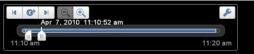
 SA3 has helped increase internal and crosscommunity cohesion

- More funding would have improved the latter

- It has contributed to a range of collaborative developments and support
- Specific technical support e.g. to the LHC programme would have been missed
 - The recognition at the "Higgs day" might not have happened – justifiably

 Future support (funding) could build on successes of SA3, particularly in crosscommunity support

– e.g. "Big data" users: Elixir, SKA, HL-LHC


- Period of "meta-stability" is over: we are all facing major platform-related changes (GPUs etc.) and "beyond Moore's law" needs
- Future e-Infrastructures will still need support: e-IRG message re: User Communities

And that metric?

- To find the Higgs you need 3 things:
 - 1. The machine;
 - 2. The experiments;
 - 3. The GRID

• Rolf-Dieter Heuer, DG, CERN, July 4 2012

©2009 Google"

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image © 2010 TerraMetrics Image IBCAO © 2010 Cnes/Spot Image 38°12'16.64" N 11°25'14.95" W elev 0 ft

Eye alt 9812.04 mi 🔘

ß