"Data is the new Oil" (Ann Winblad)

Keith G Jeffery

keith.jeffery@keithgjefferyconsultants.co.uk

JRC Workshop Big Open Data

Data is the New Oil

- Like oil has been, data is
 - Abundant
 - Unrefined
 - Needs refining to extract value
 - Has great value when refined
 - Can be used in many ways
- So how do we gain value from data?
 - We manage it
- And what is required for that management?
 - Data management plan
 - Appropriate metadata covering all aspects of the data lifecycle

STFC Rutherford Appleton Laboratory

CAREER

- Late 60s First UK relational system: G-EXEC
- 70s Filematch: interoperation
- Early 80s Online grants, library, science
- Late80s IDEAS, EXIRPTS
- 90s CERIF
- 90s W3C Standards
 CGI, SVG, SMIL, OWL, SKOS
- 00s e-Science
 - GRIDs, CLOUDs

Agenda

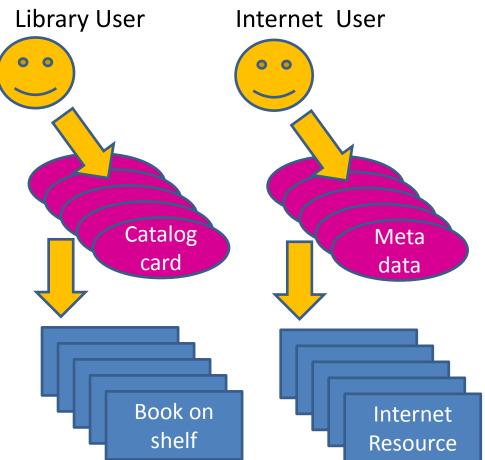
- Kinds of data
 - Open government data, open data, big data
- Need for metadata
 - problems with exiting standards and experience of ENGAGE
- CERIF
 - for research information
 - wider
- CERIF / INSPIRE proposed mapping
- Metadata in RDA context
- Conclusion

Data Characterisation

- Data
 - Structured
 - Semi-structured
 - Unstructured
 - Static
 - Dynamic
 - Streamed
 - Secure / open
 - Private / public
 - Toll free/Toll

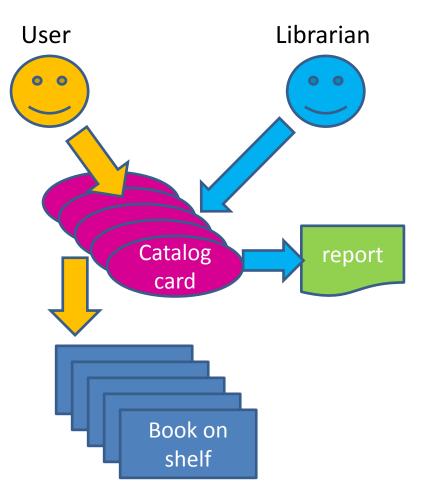
- Open government data
- Open data
- Big data

Agenda


• Kinds of data

- Open government data, open data, big data

- Need for metadata
 - problems with exiting standards and experience of ENGAGE
- CERIF
 - for research information
 - wider
- CERIF / INSPIRE proposed mapping
- Metadata in RDA context
- Conclusion


Metadata

- Data about data (DCMI definition)
 - Unhelpful!
- Analogy of user of library
- Somehow describes internet resources for the end-user



Metadata

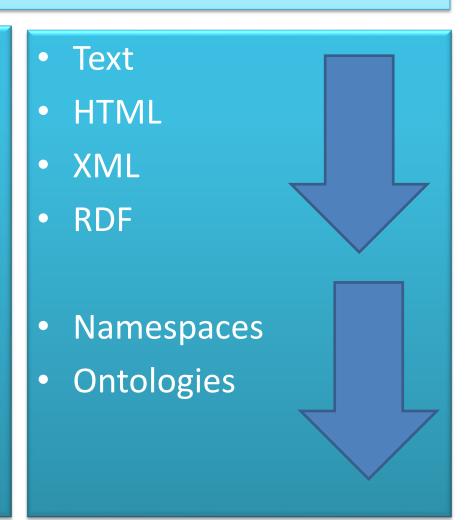
- Consider a library
 - Catalogue cards
 - Books on shelves
- To researcher or reader the catalogue cards are metadata
 - Describe the book and point to where it is on the shelf
 - Descriptive and navigational metadata
- To librarian catalogue cards are data
 - use catalogue cards to count number of books on 'information technology
- So do not distinguish data and metadata except by how used

Data Lifecycle

Metadata

- Description
- Location
- Contextualisation
- Preservation
- Provenance
- Schema

- Discovery
- Context
- Detail
- Re-use
- Interoperation


Metadata Standards

- There are hundreds of specific formats used as a 'standard' within a specific community but ones used widely are:
- DC (Dublin Core): used to describe web pages → web resources
- CKAN (Comprehensive Knowledge Archive Network): used in government open data sites based on DC
- eGMS; e-Government Metadata Standard based on DC
- DCAT (Data Catalog): used for datasets on the web based on DC
- INSPIRE : used for datasets with geospatial coordinates
 EU Directive and standard; some overlap with DC but extended
- CERIF (Common European research Information Format): used for all research information

• All but CERIF are 'flat' or 'linear'

Metadata Standards: DC

- Contributor
- Coverage
- Creator
- Date
- Description
- Format
- Identifier
- Language
- Publisher
- Relation
- Rights
- Source
- Subject
- Title
- Type

Metadata Standards: CKAN

RDF

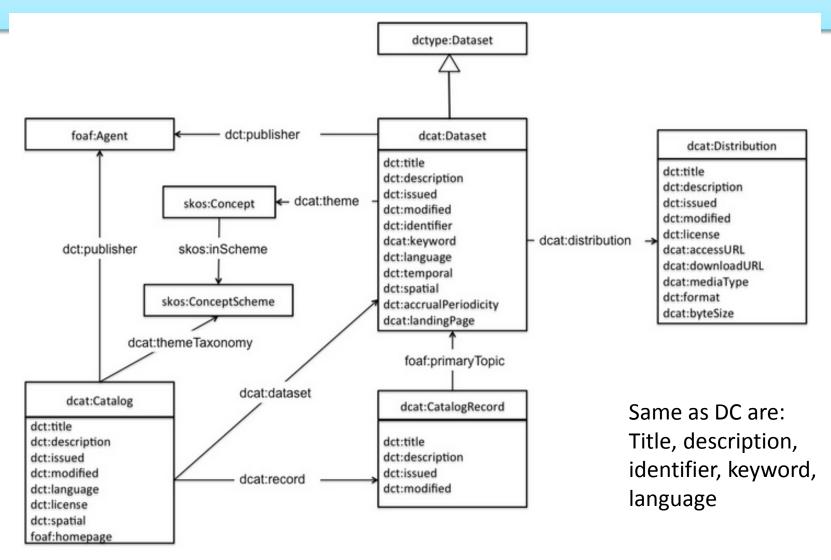
ontologies

• Title

- Unique Identifier
- Groups
- Description
- Revision History
- Licence
- Tags
- Multiple Formats
- API key
- Extra Fields

Black signifies same as DC

Metadata Standards: e-GMS


- Accessibility
- Addressee
- Aggregation
- Audience
- Contributor
- Coverage
- Creator
- Date
- Description
- Digital signature
- Disposal
- Format
- Identifier

• Language

- Location
- Mandate
- Preservation
- Publisher
- Relation
- Rights
- Source
- Status
- Subject
- Title
- Туре

Black signifies same as DC

Metadata Standards: DCAT

Metadata Standards: INSPIRE

- EU Directive (2008, 2009)
- For Geospatial datasets
 Initiated by ESA
- Essentially DC plus geospatial information
- Geospatial information very detailed coordinate system, precision etc

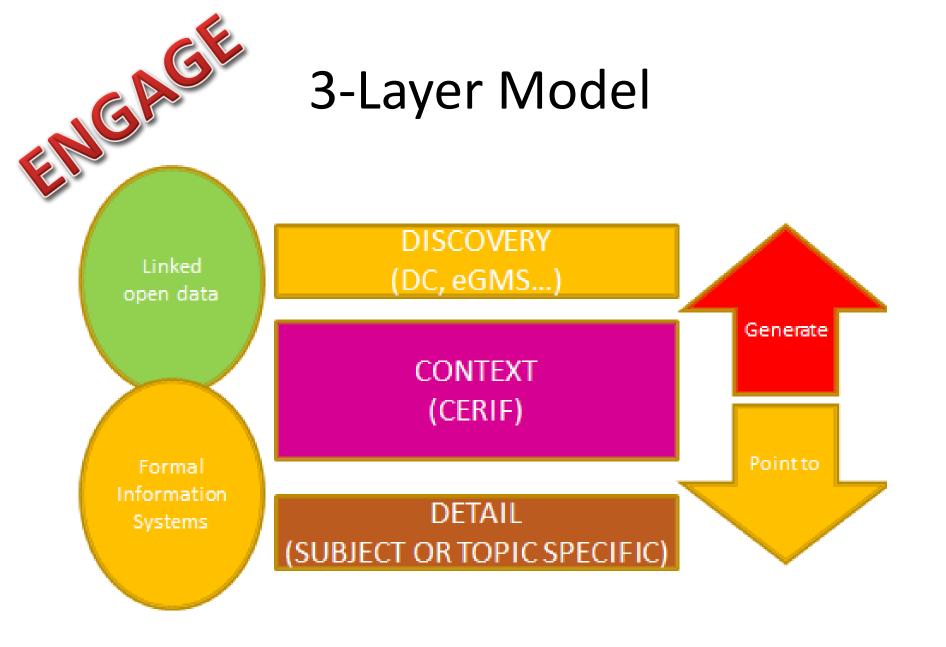
Metadata Standards: CERIF

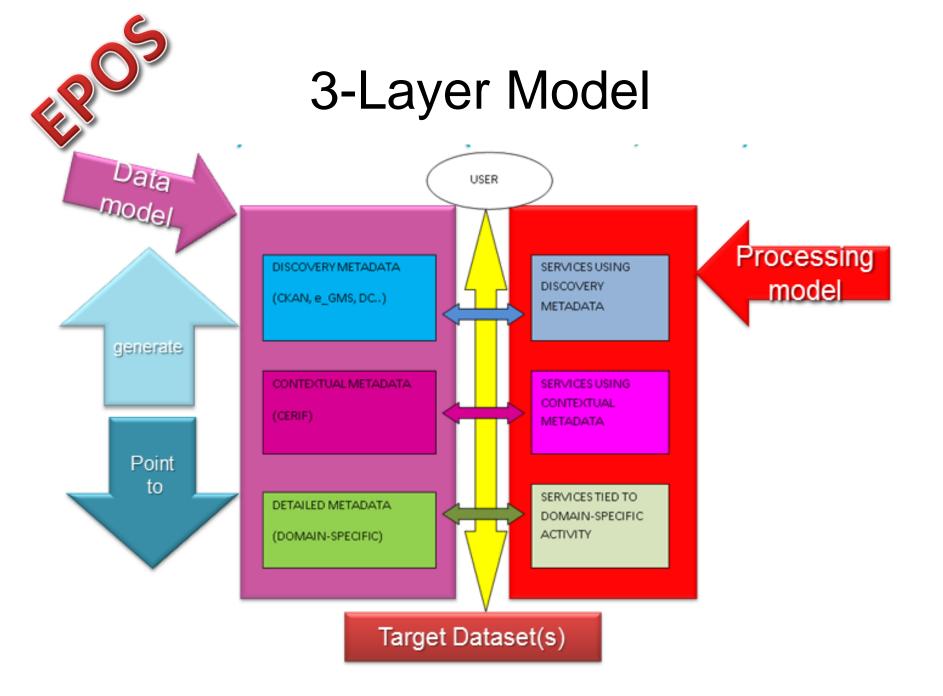
- Common European Research Information Format
- Data Model for exchange and storage of information about research
- CERIF91 (1987-1990) quite like the later Dublin Core (late 1990s)
- CERIF2000 (1997-1999) used full E-E-R modelling
 - Base entities
 - Linking entities with role and temporal interval
- 2002 EC requested euroCRIS to maintain, develop and promote CERIF <u>www.eurocris.org</u>
- Now in use in 43 countries and national standard for research information in 10

Metadata Comparison (1)

Ħ	Feature	Use case	CEKIF	Core	CKAN	DCAI
1	Representation of graph structures	representation of of domain of discourse, Generation of Linked	YES	YES	NO	YES
2	Typed values enforced for values that are entity instances	us identification of types and	YES	NO	NO	YES
3	files)	embodiment s of what the metadata	YES	NO	YES	YES
4	Time-stamping of relationships	describes Accurate real-world representati on, provenance, versioning	YES	NO	NO	NO

Metadata Comparison (2)


5	Capture both the dates and actors of events	Accurate real-world representati on, provenance, versioning Compound	YES	Only dates	Only dates	Only dates
6	Recursive relationships	objects, Derived objects	YES	YES	NO	NO
7	Extensible relationship semantics	Complex objects, accurate	YES	NO	NO	NO
8	Representation and crosswalking between vocabularies	semantics Co- existence of different vocabularies	YES	NO	NO	YES/NO
9	Vocabularies Multilingual values for the same metadata field	Vocabularies Multi- lingual environment (e.g. Europe) Warn metadata	YES	YES	YES	YES
10	Translated flag for multi-linguality	Warn metadata consumers (including programs) for machine translated values	YES	NO	NO	NO


The Problem with 'flat' metadata

- they violate basic principles of information integrity
 - elements do not depend functionally on the uniquely identified metadata record.
- they store event flags or dates in the metadata
 - e.g. 'date of publication', 'received (Y/N)'
- they do not handle well multilinguality and multiple linguistic versions of the same text field;
- they do not manage well versioning and provenance
 - this requires time-stamped relationships between one research information entity and another
- they do not allow multiple classification schemes for the same entity or more generally – multiple terminology schemes for the same attribute of an entity;
- they do not provide mechanisms for crosswalking between different vocabularies;
- they do not provide extension mechanisms that preserve interoperability;

3-Layer Model

- Need to interoperate at discovery level with other commonly-used metadata standards
- Need to navigate user to detailed domain-specific metadata on datasets to allow further (re-)processing
- Between these two need to understand the CONTEXT of the described objects (not only data)
- So use **CERIF** as the middle contextual layer
- Generate discovery level (above)
- Point to detailed level (below)

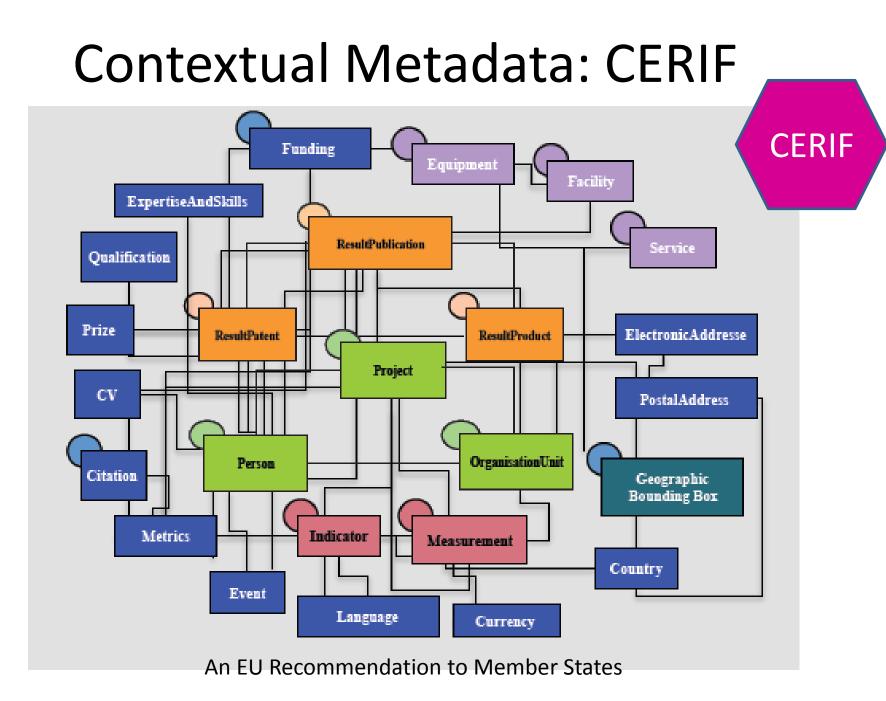
Agenda

- Kinds of data
 - Open government data, open data, big data
- Need for metadata
 - problems with exiting standards and experience of ENGAGE
- CERIF
 - for research information
 - wider
- CERIF / INSPIRE proposed mapping
- Metadata in RDA context
- Conclusion

Information of Interest

Equipment

Publisher



Journal/article

THE LANCET Neurology

RESULT_PUBLICATION

ORGUNIT. PERSON **Result_Publication**

CERIF Expressiveness **O**

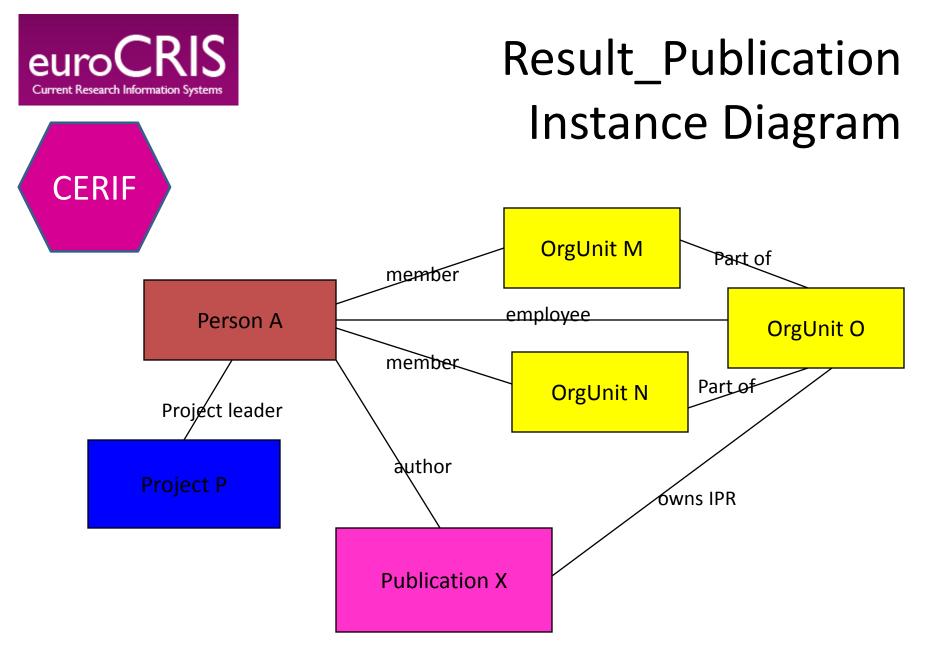
(DT1-DT2)

(DT1-DT2)

(DT1-DT2)

(DT1-DT2)

Call Expres	55.
Person A	(DT1 -


Orgunit O Person A Person A Person A

Person A **Orgunit M**

Orgunit N

DT2) (is author of) (is owner of IPR in) (DT1 - DT2) (DT1 - DT2) (is employee of) (is project leader of) (DT1 - DT2) (is member of) (is member of) (is part of) (is part of)

Publication X Publication X **Orgunit** O **Project P Orgunit M Orgunit** N **Orgunit** O **Orgunit** O

CERIF Features

- Developed by international community consensus
- Flexible and extensible
- Separation of base and link entities
 - Flexible / extensible
 - Rich semantics (role)
 - Temporal : it is the relationships that have duration
- Multi characterset
- Multilingual
- Formal Syntax
 - Efficient, accurate computer processing
- Declared Semantics
 - Including crosswalks for interoperation

CERIF

Repositories and CERIF CERIF

 To view content (white or grey) in repositories through contextualised, structured metadata

- E.g. Relate publication to:
 - Persons
 - Organisations
 - Projects
 - Funding
 - Facilities
 - Equipment
 - Event
 - Patent
 - Product

Repository metadata DC (Dublin Core) insufficient

(as recognised by OpenAIREPlus when adopted CERIF)

Allows the user to judge better relevance, quality

Agenda

- Kinds of data
 - Open government data, open data, big data
- Need for metadata
 - problems with exiting standards and experience of ENGAGE
- CERIF
 - for research information
 - wider
- CERIF / INSPIRE proposed mapping
- Metadata in RDA context
- Conclusion

INSPIRE-CERIF

Fairly straighforward Already have CERIF-DC INSPIRE geospatial elements → CERIF: GeoBbox

- Identifier (Title, ID, Abstract, Locator)
- Classification
- Keyword
- Geo B Box, Country
- Temporal (dates)
- Lineage
- Resolution
- Conformity
- Constraints (use)
- Responsible party

- Title, ID, Abstract, URI
- Class Scheme, Class
- Keyword
- Geo B Box, Country
- Linking relations start/end date/time
- Linking relations temporal/classification
- Measurement
- Linking relation to certifier
- Linking relation to licence
- Linking relation to OrgUnit/Person

Agenda

- Kinds of data
 - Open government data, open data, big data
- Need for metadata
 - problems with exiting standards and experience of ENGAGE
- CERIF
 - for research information
 - wider
- CERIF / INSPIRE proposed mapping
- Metadata in RDA context
- Conclusion

Metadata RDA

- Metadata Interest Group
- Metadata Standards Directory Working Group
- Data In Context Interest Group

- Working with Provenance Group
- and groups on repositories, types...
- An various domain-specific groups

Agenda

- Kinds of data
 - Open government data, open data, big data
- Need for metadata
 - problems with exiting standards and experience of ENGAGE
- CERIF
 - for research information
 - wider
- CERIF / INSPIRE proposed mapping
- Metadata in RDA context
- Conclusion

Conclusion

Data is the new Oil

Metadata is the catalyst to make it useful