
Manual vectorization

@ LHCb trigger
A CASE STUDY

1

Vectors 101

 Vectorization is an old concept

 Streaming SIMD Extensions (SSE) – Pentium III, 1999

 SSE2 – 2001, SSE3, SSE4.1, SSE4.2, AVX, AVX2

2

SSE – 128-bit-wide registers AVX – 256-bit wide registers

AVX2 – 512-bit

CPU does SIMD – Use it! 3

 Ye oldie CPU is capable of doing it

 128-bit registers are there, expect increasing registers for future generations!

model name : Intel(R) Xeon(R) CPU X5650 @ 2.67GHz
...
flags : fpu vme de pse tsc msr pae mce cx8 apic
sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr
sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm
constant_tsc arch_perfmon pebs bts rep_good xtopology
nonstop_tsc aperfmperf pni dtes64 monitor ds_cpl vmx smx
est tm2 ssse3 cx16 xtpr pdcm pcid dca sse4_1 sse4_2 popcnt
lahf_lm ida arat epb dts tpr_shadow vnmi flexpriority ept
vpid

model name : Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz
...
flags : fpu vme de pse tsc msr pae mce cx8 apic
sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr
sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm
constant_tsc arch_perfmon pebs bts rep_good xtopology
nonstop_tsc aperfmperf pni pclmulqdq dtes64 monitor ds_cpl
vmx smx est tm2 ssse3 cx16 xtpr pdcm pcid dca sse4_1 sse4_2
x2apic popcnt tsc_deadline_timer aes xsave avx f16c rdrand
lahf_lm ida arat epb xsaveopt pln pts dts tpr_shadow vnmi
flexpriority ept vpid fsgsbase smep erms

Q1’2010 Q3’2013

Why isn’t our software already

vectorized?

 Auto-vectorization – Perhaps Cilk? Only for specific cases.

 Portability

 Data

 Data format (the recurrent AoS vs SoA)

 Data alignment

 Control

 Branches

 Manpower

4

Case study – LHCb trigger

 We may need a case-by-case study, identify hotspots.

 I’m familiar with the VELO Pixel code, there’s where I looked.

5

6VELO Pixel - revisited

 In the VELO, tracks are reconstructed by using a square root fit each

time a hit is added.

 Other than that, the fit variables are also utilized for calculating the

covariance.

PrPixel algorithm parts average time

searchByPair setHits, addHits 43 %

searchByPair covariance 0.6 %

It looks very nice for Amdahl’s law!

7Analyzing the code (brief)

void addHits(A* a, B* b){

const float x = a->x;

const float y = a->y;

const float z = a->z;

const float wx = a->wx;

const float wy = a->wy;

...

b->m_tx = (b->m_sxz * b->m_s0 - b->m_sx * b->m_sz) / den;

b->m_x0 = (b->m_sx * b->m_sz2 - b->m_sxz * b->m_sz) / den;

b->m_ty = (b->m_uyz * b->m_u0 - b->m_uy * b->m_uz) / den2;

b->m_y0 = (b->m_uy * b->m_uz2 - b->m_uyz * b->m_uz) / den2;

}

 SoA, but looks nice. In fact, better for tracking vectorization than normal SIMD.

 Parameters from fit can be taken away.

 load / store overhead is not so much.

 Need to convert to float. Clear gain in vectors.

Can you spot whether it’s

vectorizable?

8Unit test results

 SSE performance varies across CPU

 Implemented with intrinsics

CPU addHits u addHits a cov u cov a

Intel(R) Xeon(R) CPU E5-2670 0 @
2.60GHz (Q1’10)

2.22 x 2.25 x 2.18 x 2.18 x

Intel(R) Xeon(R) CPU E5-2670 v2 @
2.50GHz (Q3’13)

1.92 x 1.95 x 1.36 x 1.37 x

HLT node - Intel(R) Xeon(R) CPU
X5650 @ 2.67GHz (Q1’10)

1.75 x 1.77 x 2.06 x 2.10 x

9The real scenario – PrPixel
Physics

 Results from an unaligned vectorized version

 v45r0 (latest two weeks ago)

PrChecker.Velo INFO **** Velo 42422 tracks including 9502 ghosts

PrChecker.Velo INFO velo : 22582 from 30102 [75.0 %] 7460 clones [24.8 %]

Vanilla PrPixel v45r0

PrChecker.Velo INFO **** Velo 42427 tracks including 9506 ghosts

PrChecker.Velo INFO velo : 22583 from 30102 [75.0 %] 7459 clones [24.8 %]

Vector PrPixel v45r0

10The real scenario – PrPixel
Performance

PrPixel vanilla vectorized speedup

prepare 0.026 0.026 1 x

findByPairs 0.858 0.724 1.19 x

store 0.036 0.032 1.13 x

total 0.919 0.783 1.17 x

Current HLT node

The vectorized version is about 14.6 % faster!

More on the results

 Results vary between 1.13 – 1.17x depending on CPU.

 No additional includes were necessary. It’s coded in intrinsics.

 X-compiler tests didn’t change much.

 After all, code is not auto-vectorized, and intrinsics map very much the

same way to ASM.

 Aligning code to match vectorized implementation (sort of reverse-

engineering) didn’t help.

 A conversion to float was done, with no visible impact on Physics
efficiency (although we should test on bigger datasets).

 AVX would allow a double implementation (but why?)

 Or perhaps a slightly better vectorized one.

11

Aligned?

 Good luck.

 It’s tough. Specially in Gaudi.

 I stepped into at least three cases to align:

 Stack – Override new

 Heap – Libraries (ie. std::vector can be aligned by changing the

allocator)

 Heap – Attributes (is this solved? Architecture-dependent instructions)

 Unaligned instructions will benefit of the performance boost when

data is aligned (no performance penalty). They are simply more

flexible.

12

Is the gain worth it?

13Other considerations

Agner Fog’s library

 Agner Fog provides a higher level library, preferred over intrinsics

where possible.

 However my tests were not very successful.

 29 lines in C, intrinsics compiled into 50 ASM, Fog’s library into 62.

Times: seq: 0.0266874, fog_vec: 0.0191835, intrinsics: 0.013965

Speedup (fog_vec vs seq): 1.39117x

Speedup (fog_vec vs intrinsics): 0.727969x

Speedup (intrinsics vs seq): 1.91103x

Results are not identical!

vanilla results:

m_x0 7.50546, m_tx 0.0618172, m_y0 2.81588e+15, m_ty -3.51984e+14

fog_vec:

m_x0 7.50546, m_tx 0.061817, m_y0 2.81591e+15, m_ty -3.51989e+14

intrinsics:

m_x0 7.50546, m_tx 0.0618172, m_y0 2.81588e+15, m_ty -3.51984e+14

Some conclusions

 Current PrPixel received a boost of 12-15%. On current HW.

 Vectors have been there since long. Use them.

 Sure, we need to use them now.

 But manycore is next stop, and there you need vectors even more.

 We need to rethink our trigger.

 Identify hotspots, discuss.

 Do small test units.

 Why not? Learn intrinsics.

14

Do it yourself!

 Intel Intrinsics guide

 Microsoft guide to Intrinsics

 http://d3f8ykwhia686p.cloudfront.net/1live/intel/An_Introduction_to

_Vectorization_with_Intel_Compiler_021712.pdf

 http://d3f8ykwhia686p.cloudfront.net/1live/intel/CompilerAutovect

orizationGuide.pdf

 http://www.agner.org/optimize/

15

http://d3f8ykwhia686p.cloudfront.net/1live/intel/An_Introduction_to_Vectorization_with_Intel_Compiler_021712.pdf
http://d3f8ykwhia686p.cloudfront.net/1live/intel/An_Introduction_to_Vectorization_with_Intel_Compiler_021712.pdf
http://d3f8ykwhia686p.cloudfront.net/1live/intel/An_Introduction_to_Vectorization_with_Intel_Compiler_021712.pdf
http://d3f8ykwhia686p.cloudfront.net/1live/intel/CompilerAutovectorizationGuide.pdf
http://www.agner.org/optimize/

Backup. We need backup! 16

17

CPU PrPixel speedup

Xeon L5520 @ 2.27GHz Q1’09 1.15 x

Xeon E5-2620 v2 @ 2.10GHz Q3’13 1.12 x

Xeon E5-2670 v2 @ 2.50GHz Q3’13 1.13 x

More figures on performance

Other nodes

