. Hupp ct++
O

| ‘ CHAPTER 2:
e FLOW OF CONTROL

21| Boolean Expressions

He who would distinguish the true from the false must have an
adequate idea of what is true and false.

Benedict Spinoza, Ethics

Most branching statements are controlled by Boolean expressions. A Boolean
expression is any expression that is either true or false. The simplest form for
a Boolean expression consists of two expressions, such as numbers or variables,
that are compared with one of the comparison operators shown in Display
2.1. Notice that some of the operators are spelled with two symbols, for exam-
ple, =, I=, <=, >=. Be sure to notice that you use a double equal = for the
equal sign and that you use the two symbols != for not equal. Such two-
symbol operators should not have any space between the two symbols.

THE “"AND"” OPERATOR, &&

You can form a more elaborate Boolean expression by combining two simpler Boolean expres-
sions using the "and™ operator, &&.

SYNTAX FOR A BOOLEAN EXPRESSION USING &&
(Boolean_Exp_i) && (Boolean_Exp_2)
EXAMPLE (WITHIN AN if-else STATEMENT)

if (score = 8) &% (score < 1@))

cout << "score is between @ and 18.%\n";
else

Cout << "score is not between @ and 18.%n";

If the value of score is greater than @ and the value of score is also less than 18, then the first
cout statement will be executed; otherwise, the second cout statement will be executed.
(if-else statements are covered a bit later in this chapter, but the meaning of this simple exam-
ple should be intuitively clear.)

AL STRINGS OF INEQUALITIES

Do not use a string of inequalities such asx < z < y. If you do, your program will probably
compile and run, but it will undoubtedly give incorrect output. Instead, you must use two ine-
qualities connected with an &&, as follows:

(x <2) & (z <)

THE “OR” OPERATOR, ||

You can form a more elaborate Boolean expression by combining two simpler Boolean expres-
sions using the "or” operator, | |.

SYNTAX FOR A BOOLEAN EXPRESSION USING ||
(Boclean_Exp_1) || (Boolean_kxp_z)
EXAMPLE WITHIN AN if-else STATEMENT

if (x=1) || (x = v})
cout =< "x is 1 or x equals y.\n";
else
cout == "x is neither 1 nor equal to v.\n";

If the value of x is equal to 1 or the value of x is equal to the value of v (or both), then the first
cout statement will be executed; otherwise, the second cout statement will be executed.
(if-else statements are covered a bit later in this chapter, but the meaning of this simple
example should be intuitively clear.)

You can also combine two comparisons using the “or” operator, which is spelled || in
C++. For example, the following is true provided v is less than @ o7y is greater than 12:

Oy < @) || v = 12)

When two comparisons are connected using a | |, the entire expression is true provided
that one or both of the comparisons are true; otherwise, the entire expression is false.

You can negate any Boolean expression using the | operator. If you want to nepare a
Boolean expression, place the expression in parentheses and place the ! operator in
front of it. For example, ! (x < y) means “x is nof less than y.” The ! operator can usu-
ally be avoided. For example, 1(x < y) is equivalent to x >= y. In some cases you can
sately omit the parentheses, but the parentheses never do any harm. The exact details
on omitting parentheses are given in the subsection entitled Precedence Rules.

MATH ENGLISH C+ NOTATION C++ SAMPLE MATH

SYMBOL EQUIVALENT
= Equal to == X + 7 == 2%y K+7=2y
= Not equal to l= ans != 'n’ ans = 'n’
< Less than < count < m + 3 count<m+3
< Less than or <= time <= limit time < limit

equal to

> Greater than > time = limit time = limit
= Greater than »= age »= 21 age =2

or equal to

AND

Exp 1 Exp_2 Exp i && Exp 2

true true true

true false false

false true false NoT

false tfalse false Exp ! CExp)
true false

OR false true

Exp_i1 Exp_z Exp 1| | Exp_z

true true true

true false true

false true true

false false false

THE BOOLEAN (bool) VALUES ARE true AND false

true and false are predefined constants of type bool. (They must be written in lowercase.) In
C++, a Boolean expression evaluates to the bool value true when itis satisfied and to the bool
value false when itis not satisfied.

Display 2.3 Precedence of Operators (part 1 of 2)

Scope resolution operator

Dot operator
Member selection

[] Array indexing

) Function call

++ Postfix increment operator (placed after the variable)

- Postfix decrement operator (placed after the variable)
++ Prefix increment operator (placed before the variable)
— Prefix decrement operator (placed before the variable)
! Mot

— Unary minus

+ Unary plus

#* Dereference

& Address of

new Create (allocate memory)

delete Destroy (deallocate)

delete[] Destroy array (deallocate)

sizeof Size of object

CJ Type cast

¥ Multiply

! Divide

% Remainder (modulo)

+ Addition

- Subtraction

<< Insertion operator (console output)

e Extraction operator (console input)

Highest precedence
{done first)

Y

Lower precedence
(done later)

Display 2.3 Precedence of Operators (part 2 of 2)

All operators in part 2 are of lower precedence than those in parti.

'-.",.l'i,'-u",."-.

Less than

Greater than

Less than or equal to
Greater than or equal to

Equal
Mot equal

=
@

And

o

[N

Assignment

Add and assign
Subtract and assign
Multiply and assign
Divide and assign
Modulo and assign

Conditional operator

throw

Throw an exception

Comma operator

'

Lowest precedence
{done last)

The previous description of how a Boolean expression is evaluated is basically cor-
rect, but in C++, the computer actually takes an occasional shortcut when evaluating a
Boolean expression. Notice that in many cases you need to evaluate only the furst of two
subexpressions in a Boolean expression. For example, consider the following:

(X »= @) && (y > 1)

If x is negative, then (x >= 8) is false. As you can see in the tables in Display 2.1,
when one subexpression in an & expression is false, then the whole expression is
false, no matter whether the other expression is true or false. Thus, if we know thar
the first expression is false, there is no need to evaluate the second expression. A simi-
lar thing happens with || expressions. If the first of two expressions joined with the | |
operator is true, then you know the entire expression is true, no matter whether the
second expression is true or false. The C++ language uses this fact to sometimes save
itself the trouble of evaluating the second subexpression in a logical expression con-
nected with an && or | |. C++ first evaluates the leftmost of the two expressions joined
by an &% or ||. If that gives it enough information to determine the final value of the
expression (independent of the value of the second expression), then C++ does not
bother to evaluate the second expression. This method of evaluation is called short-
circuit evaluation.

short-circuit
evaluation

Some languages other than C++ use complete evaluation. In complete evaluation, complete
when two expressions are joined by an & or | |, both subexpressions are always evalu- evaluation
ated and then the truth tables are used to obrtain the value of the final expression.

Both short-circuit evaluation and complete evaluation give the same answer, so why
should you care that C++ uses short-circuit evaluation? Most of the time vou need not
care. As long as both subexpressions joined by the && or the || have a value, the two
methods yield the same result. However, if the second subexpression is undefined, you
might be happy to know that C++ uses short-circuit evaluation. Let’s look at an exam-
ple that illustrates this point. Consider the following statement:

if { Ckids !'= @) && ((pieces/kids) »= 2))
cout << "Each child may have two pleces!";

If the value of kids is not zero, this statement involves no subtleties. However, suppose
the value of kids is zero; consider how short-circuir evaluation handles this case. The
expression (kids != @) evaluates to false, so there would be no need to evaluate the

second expression. Using short-circuit evaluation, C++ says that the entire expression is
false, without bothering to evaluate the second expression. This prevents a run-time
error, since evaluating the second expression would involve dividing by zero.

if-else STATEMENTS

An if-else statement chooses berween two alternative statements based on the value
of a Boolean expression. For example, suppose you want to design a program ro com-
purte a week’s salary for an hourly employee. Assume the firm pays an overtime rate of
one-and-one-half times the regular rate for all hours afrer the first 40 hours worked.
When the employee works 40 or more hours, the pay is then equal o

rate*4d + 1.5*rate*(hours - 48)

However, if the employee works less than 40 hours, the correct pay formula is simply

rate*hours

The following if-else statement computes the correct pay for an employee whether
the employee works less than 40 hours or works 40 or more hours,

if (hours = 48)

grossPay = rate*40 + 1.5*rate*(hours - 48);
else

grossPay = rate*hours;

The synrax for an if-else starement is given in the accompanying box. If the Bool-
ean expression in parentheses (after the if) evaluates to true, then the statement before
the else is executed. If the Boolean expression evaluates to false, the statemenr after
the else is execured.

SYNTAX: A SEQUENCE OF STATEMENTS FOR EACH ALTERMNATIVE

if (Boolean Expression)

|
Yes Sfaterment_i
Yes Staterment_2
Yes Sfarterment_Last
¥
else
1
ANo Staterment i
No_Staterment_2
AMo_Staterment_Last
¥
ExAMPLE
if (myScore > yourScore)
1
cout << "I win!lyn";
wager = wager + 100;
¥
else
1

cout == "I wish these were golf scores.“ZWwn";
wager = @;

COMPOUND STATEMENTS

You will often want the branches of an if-else starement to execure more than one
statement each. To accomplish this, enclose the statements for each branch berween a
pair of braces, { and }. as indicated in the second syntax template in the box enrtitled
if-else Statement. A list of statements enclosed in a pair of braces is called a com-
pound statement. A compound statement is treared as a single statement by Ca+4+ and
may be used anywhere thar a single statement may be used. (Thus, the second synrax
remplate in the box enrided if-else Statement. is really just a special case of the first
one.)

There are two commonly used ways of indenring and placing braces in if-else
statements, which are illusrrared below:

if (myScore > yourScora)

i
cout << "I winlyn"™;
wager = wager + 108;

¥

else

i
cout =< "I wish these were golf scores.ywn™;
wager = @;

¥

and

if (myScore » yourScore){
cout =< "I win!yn™;
wager = wager + 10@8;
} else {
cout << "I wish these were golf scores.\n";
wager = 8;

¥

The only differences are the placemenrt of braces. We find the first form easier to read
and therefore prefer it. The second form saves lines, and so some programmers prefer
the second form or some minor variant of it

OMITTING THE else

Sometimes you want one of the two alternarives in an if-else statement to do nothing ar
all. In C++ this can be accomplished by omirring the else part. These sorts of starements

are referred to as if statements o dis:inguiih them from if-else starements. For
example, the first of the following two statements is an if statement:

if (sales »>= minimum)
salary = salary + bonus;
cout << "salary = $§" << salary;

If the value of sales is greater than or equal ro the value of minimum, the assignment
statement is execured and then the following cout starement is executed. On the other
hand, if the value of sales is less than minimum, then the embedded assignment stare-
ment is not executed. Thus, the if statement causes no change (thar is, no bonus is

added to the base salary), and the program proceeds directly ro the cout statement.

MuLTIWAY if—else STATEMENT

SYMNTAX

if (Boolean_ Expression_i)
Staterment_i1

else if (Boolean Expression_z)
Staterment_2

else if (Hoolean Expression_m)
Staferment_n

elsea
Staterment_For_All_Other_Possibilities

ExaAMPLE

if ((temparature = 187 && (day == SUNDAY}]
CouUt == "Stay home.";

else if (tamparature = —1073 SSfand day |= SUNDAY
cout << "Stay home, but call work.™;

else if (temperature == 8) JSSand temperature == 18
Cout << "Dress warm.™;

else JSStemperature = O
cout << "Work hard and play hard.”;

The Boolean expressions are checked in erder until the first true Boolean expression is encoun-
tered, and then the cormesponding statement is executed. If none of the Boolean expressions is
true, then the Statement_For_All_Other_Possibilities is executed.

switch STATEMENT
SYMNTAX

switch {Controlling_Expression)
i
case Constant_i:
Statement_Segquence_t
break;
case Corstant_2:
Statement_Sequence_z2
break

case Comsfant_n:

Statement_Sequence_n
break;
default:
Default_Statement_Seguence
¥
ExAMPLE

int vehicleClass;
double toll;

cout =< "Enter vehicle class:

cin >»> wehiclelClass;

switch (vehiclelClass)}

£

case 1:

Cout == "Passenger car.™;

toll = G.506;

¥You rneed not place a break statement in each
case. If you amit a break, that case conftinues
until a break (or the end of the switch
statement) is reached.

if you forget this break,
thern passenger cars will

break; =
case 2:

Cout == "Bus.";

toll = 1.58;
break ;
case F:

cout <= "Truck.™;

toll = 2.008:;
break ;
default:

pay .50,

cout == "Unknown wehicle classi"™;

MNote thar you can have rwo case labels for the same secrion of code, as in the fol-
lowing portion of a switch statement:

case "A":
case "a’:
cout == "Excellent.
<< "You need not take the final.wn™;
break;

Since the first case has no break statement (in fact, no statement ar all), the effecr is the

same as having rwo labels for one case, bur C++ syntax requires one keyword case for

each label, such as "A" and "a".

If no case label has a constant thar marches the value of the controlling expres- default

sion, then the statements following the default label are execured. You need not

have a default secrion. If there is no default secrion and no march is found for the

value of the controlling expression, then nothing happens when the switeh statement

is execured. However, it is safest to always have a default secrion. If you think your

case labels list all possible ourcomes, then you can pur an error message in the

default secrion.

Pitfall FORGETTING A break 1N A switch STATEMENT

If you forget a break in a switch statement, the compiler will not issue an error message. You
will have written a syntactically correct switch statement, but it will not do what you intended it
to do. Motice the annotation in the example in the box entitled switch Statement.

Use switch STATEMENTS FOR MENUS

The multiway if-else statement is more versatile than the switch statement, and you can use
a multiway if-else statement anywhere you can use a switch statement. Howewver, sometimes
the switch statement is clearer. For example, the switch statement is perfect for iImplementing
menus. Each branch of the switch statement can be one menu choice.

EMUMERATIOMN TYPES

An enumeration type is a type whose values are defined by a list of constanrts of type
int. An enumerarion type is very much like a list of declared constants. Enumerarion
rypes can be handy for defining a list of idenrifiers to use as the case labels in a switch
STATEITIENT.

When defining an enumerarion type, you can use any int values and can define any
number of constants. For example, the following enumeration ype defines a constanc

for the length of each month:

enum MonthLength { JAN_LENGTH — 31, FEBE_LENGTH — 28,
MAR_LENGTH = 31, APR_LENGTH — 38, MAY_LEMGTH — 31,
JUN_LENGTH = 38, JUL_LENGTH = 31, AUG_LENGTH = 31,
SEP_LENGTH = 38, OCT_LENGTH = 31, NOV_LEMGTH = 38,
DEC_LENGTH = 31 };

As this example shows, two or more named constants in an enumeration type can receive
the same int value.

If you do not specify any numeric values, the identifiers in an enumerartion type
definirion are assigned consecurive values beginning wirth 8. For example, the type
definition

enum Direction { NORTH = @, S0UTH = 1, EAST = 2, WEST = 3 };

is equivalenr to

enum Direction { NORTH, SOUTH, EAST, WEST }:
The form thar does not explicitly list the int values is normally used when you justc
want a list of names and do nort care abour whar values they have.

Suppose you inirialize an enumerarion constant to some value, say

enum MyEnum { OME = 17, Twd, THREE, FOUR = -3, FIWE };

then ONE takes the value 17; TWO takes the nexr int value, 18; THREE takes the next
value, 19; FOUR takes —-3; and FIVE takes the next value, -2. In short, the defaulr for the
first enumerarion constant is 8. The rest increase by 1 unless you set one or more of the
enumerarion Constants.

THE CONDITIONAL OPERATOR

It is possible to embed a condirional inside an expression by using a ternary operator

know as the conditional operator (also called the rernary operator or arithmeric if). Its

use is reminiscent of an older programming style, and we do nor advise using it. Ir is
included here for the sake of completeness (and in case you disagree with our program-
ming style).

The condirional operator is a norational variant on certain forms of the if-else
statement. This variant is illustrated below. Consider the statement

if (nl > n2)
max = nl;
else
max = n;

This can be expressed using the conditional operaror as follows:
mix = {nl > n2) ? nl : nZ;

The expression on the right-hand side of the assignment statement is the condi- conditional

tional operator expression: operator
expression

(nl > n2) ? nl : n2

The 7 and : together form a rernary operator know as the conditional operaror. A con-
dirional operaror expression starts with a Boolean expression followed by a 7 and then
followed by two expressions separated with a colon. If the Boolean expression is true,
then the first of the two expressions is returned; otherwise, the second of the wo

Exprﬂsinns is returned. ‘

while and THE while AND do-while STATEMENTS

do—while
compared

SYNTAX FOR while anp do-while STATEMENTS
A while STATEMENT WITH A SINGLE STATEMENT BobDy

while (Boolean_Expression)
Stalerment

A while STATEMENT WITH & MULTISTATEMENT BoDYy

while (Boolean_Expression)

i
Statement_i
Statement_z
Staftermeni_Lasr
¥

A do-while STATEMENT WITH A SINGLE-STATEMENT BoDY

da
Staferment

while (Boolean_Expression) ; ..____‘
Do not forget the

A do-while STATEMENT WITH & MULTISTATEMENT BoDy : .
final semicalon.

do

i
Stafemeni_i
Staterment_2
Staftermeni_Last

} while (Boolean_Expression) ;

Example of a while Statement (part 1 of 2)

1 #include =<iostream=
2 using namespace std;

3 int main{)

4 1

5 int countDown ;

& cout << "How many greetings do you want? ";
7 cin => countDown ;

. while (countDown = &)

9 i
18 cout == "Hello ";
11 countDown = countDown — 1;
12 I
13 cout << endl;
14 cout << "That's alliyn";:
15 return 8;
16 }

SAMPLE DIALOGUE 1

How many greetings do you want? 3
Helle Hello Hello
That's all!

SAMPLE DIALOGUE 2

How many greetings do you want? @ The loop body s executed
rero tmes

That's alll

Example of a do—while Statement {part r of 2}

1 #include <iostredan:=
2 using namespace std:

3 int mainm{ }

4+ £

5 int countDown;

& Cout =< "How many gresetings do you want? ™
Fi cin >> countDown;

g8 dao

9 1

16 Cout <= "Hella ":

11 countDown = countDown — 1:
12 Iwhile (countDown = @) ;

13 cout =< endl;

14 cout << "That's alliyn";

15 return @:

16 ¥

SAMPLE DNALOGUE 1

How many greetings do you want? 3
Hello Hello Hello
That"s all!

S5aMPLE DIALOGUE 2

How many greetings do you want? @
Hello —

That's alll

=
¥

The loop body
is always executed at least once.

INCREMENT AND DECREMENT OPERATORS REVISITED

The Increment Operator in an Expression

i #include <iostream=

2 using namespace std;

3 imt maim{)

4 f

5 int numberOfItems, count,

& caloriesForltem, totalCalories;

3 cout == "How many items did you eat today? ";
2 cin >> number0Ofltems;

9 totalCalories = 8;
16 count = 1;
11 Cout << "Enter the number of calories in each of thelyn"
12 << numberOfFltems << " items eaten:\n";
13 while (count++ <= numberOfFLltems)
14 i
15 cin »>> caloriesForltem:
16 totalCalories = totalCalories
17 + caloriesForltem;
1% }
19 cout =< "Total calories eaten today = "
28 << totalCalories << endl;
21 return @;
22 T

SAMPLE DIHALOGUE

How many items did you eat today? 7

Enter the number of calories in each of the
7 items eaten:

386 &0 1260 608 158 1 126

Total calories eaten today = 2431

THE COMMA OPERATOR

The comma operator is a way of evaluaring a list of expressions and remrning the
value of the last expression. It is sometimes handy to use in a for loop, as indicated in
our discussion of the for loop in the next subsection. We do nort advise using it in other
conrexts, bur ir is legal to use it in any expression.

The comma operaror is illustrared by the following assignmenrt starement:

result = [first = 2, second = First + 1);

The comma operator is the comma shown. The comma expression is the expression
on the right-hand side of the assignment operator. The comma operator has owo
expressions as operands. In this case the rao operands are

First = ? and second = first + 1

The first expression is evaluared. and then the second expression is evaluared. As you
may recall from Chaprer 1, the assignment statement when used as an expression
returns the new value of the variable on the left side of the assignment operator. 5o, this
comma expression returns the final value of the variable second, which means that the
variable result is ser equal o 3.

Since only rhe value of the second expression is rerurned, rhe first expression is eval-
uared solely for irts side effects. In rthe above example, the side effecr of the first expres-
sion is to change rthe value of the variable fFirse.

You may have a longer list of expressions connecred with commas, bur you should
only do so when the order of evaluation is not important. If the order of evaluarion is
important, you should use parentheses. For example:

result = {({first = 2, second = Ffirst + 1), third = second + 1);

sets the value of result equal to 4. However, the value that the following gives to
result is unpredictable, because it does not guarantee that the expressions are evalu-
ared in order:

result = (First = 2, second = first + 1, third = second + 1);

For example, third = second + 1 mighr be evaluared before second = first + 1.1

THE for STATEMENT

The third and final loop statement in C+4+ is the for statement. The for starement is
most commonly used o step through some integer variable in equal increments. As we
will see in Chapter 5, the for starement is often used to step through an array. The for
statement is, however, a completely general looping mechanism thar can do anything
thar a while loop can do.

For example, the following for statement sums the integers 1 through 18:

sum = 8;
for (n = 1; N <= 18; n+e)
SUM = Sum + n;

A For statement begins with the keyword for followed by three things in parenthe-
ses thar tell the compurer whar to do with the controlling variable. The beginning of a
for starement looks like the following:

for (inffialization_Action; Boolean Expression; Update Action)

The first expression tells how the variable, variables, or other things are inidalized; the
second gives a Boolean expression thar is used o check for when the loop should end;
and the last expression tells how the loop control variable is updared afrer each ireration

of the loop body.

for Cnumber = 1068; number >= 8; number—)
£
COUt << number
== " bottles of beasr on the shelfF.Wwn™:
1F (number = 8
Cout == "Take one down and pass it arowund.n™;

for STATEMENT SYNTAX

for (initlalization_Action; Boolean Expression; Update Action)
Body_staterment

EXAMPLE

for (number = 108; number >= &; number—)
cout == number
<< " bottles of beer aon the shelf.wwn";

EqguivalLENT while Loor SYNTAX

Initialization_Action;
while (Boolean_Expression)
|
Body__Statermert
LUipdate_Action;
1

EQuUIvALENMT ExAMPLE

number = 1808 ;
while (number == @)

i
cout == number
=< " bottles of beer on the shelf.wwn";
numbe r——;
f]

SAamMmPLE DIALOGUE

108 bottles of beer on the shelf.
99 bottles of beer on the shelf.

8 bottles of beer on the shelf.

EAps REPEAT=MN-TIMES LOOPS

A For statement can be used to produce a loap that repeats the loop bady a predetermined num-
ber of times. For example, the following is a loop bady that repeats its loop body three times:

for (int count = 1; count == 3; CoOUnt++)
cout << "Hip, Hip, Hurrayyn";

The body of a for statement need not make any reference 1o a loop control variable, such as the
variable count.

FPictfall

ExXTrRA SEMICOLON IN A for STATEMENT

You normally do not place a semicolon after the parentheses at the beginning of a for loop. To
see what can happen, consider the following for loop:

for (int count = 1; count <= 18; count++) ;—e——— Prablem semicalon
cout =< "Helloyn"™;

If you did not notice the extra semicolon, you might expect this for loop to write Hello to the
screen ten times. If you do notice the semicelon, you might expect the compiler to issue an error
message. Neither af thase things happens. If you embed this for loop in a complete program, the
compiler will not complain. If you run the program, only one Hello will be output instead of ten
Hellos. What is happening? To answer that question, we need a little backeground.

One way to create a statement in C++ is to put a semicolon after something. If you put a semicolon
after x4+, you change the expression

X++

imto the statement
4]

If you place a sermicolon after nothing, you still create a statement. Thus, the semicolon by itself is
a staternent, which is called the empty statement or the null statement. The empty statement per=
forms no action, but it still is a statement. Therefore, the following is a complete and legitimate
for loop, whose body is the empty statement:

for (int count = 1; count <= 18; counts++);

This for loop is Indeed iterated ten times, but since the body is the empty statement, nothing
happens when the body is iterated. Thiz loop does nothing, and it does nothing ten times!

This same sart of problem can arise with awhile loop. Be careful not to place a semicalon after

the clesing parenthesis that encloses the Boolean expression at the start of awhile loop. A do—

while loop has just the opposite problem. You must remember always to end a do—while loop
with a semicolon.

FictfFall
INFIMITE LOOPS

Awhile loop, do—while loop, or For loop does not terminate as long as the controlling Boolean
expression is true. This Boolean expression normally contains a variable that will be changed by
the loop body, and usually the value of this variable is changed in a way that eventually makes
the Boolean expression false and therefore terminates the loop. Howewver, if you make a mistake
and write your program so that the Boolean expression is always true, then the loop will run for-
ever. A loop that runs forever is called an nfinite loop.

Unfortunately, examples of infinite loaps are not hard te come by. First let's describe a loop that
does terminate. The following C++ code will write out the positive even numbers less than 12. That
is, it will output the numbers 2, 4, 6, 8, and 10, one per line, and then the loop will end.

X o= 2
while (x != 12)
i

CoOUt =< X =< endl;
X o= X + 2;

¥

The value of x is increased by 2 on each loop iteration until it reaches 12 At that point, the Bool=-
ean expression after the word while is no longer true, so the loop ends.

Mow suppose you want to write out the odd numbers less than 12, rather than the even numbers.
¥ou might mistakenly think that all you need do is change the initializing statement to

x = 1;

But this mistake will create an infinite loop. Because the value of x goes from 11 to 13, the value
of x is never equal to 12; thus, the loop will never terminate.

This sort of problem iz common when loops are termimated by checking a numeric quantity using
== or = When dealing with numbers, it is always safer to test for passing a value. For example,
the following will work fine as the first line of our while loop:

while (x < 12)

With this change, x can be initialized to any number and the loop will still terminate.

A program that is in an infinite loop will run forever unless some external force stops it. Since you
can now write programs that contain an infinite loop, it is a good idea to learm how to force a pro=
gram to terminate. The method for forcing a program to stop varies from system to system. The
keystrokes Control-C will terminate a pregram on many systems. (To type Contrel-C, hold down
the Contral key while pressing the C key.)

In simple programs, an infinite loop is almaost always an error. However, some programs are
intentionally written to run forever (in principle), such as the main suter loop in an airline reser-
wvation program, which just keeps asking for more reservations until you shut down the computer
{or atherwise terminate the program in an atypical way).

THE break AND continue STATEMENTS

A break Statement in a Loop

1 #include <iostream:

2 using namespace std;

3 int maim{)

4 {

5 int number, sum = &, count = 8&;

& cout =< "Enter 4 negative numbers:i\mn"”:

7 while (++count <= 4}

8 1

9 cin >> number;
16 if (numbar == &)
11 i
12 cout == "ERROR: positive number”
13 << " or zero was entered as theyn"
14 <z count =< "th number! Input ends "
15 <=z "with the " << count << "th number.yn"
16 <=z count =< "th number was not added in.Yn™;
17 break;
18 ¥
19 sum = sum + number;
28 }
21 cout << sum << " is the sum of the first
22 << (count — 1) =< " numbers.\n";
23 return 8;
24 }

SampPLE DilaLoGUE

Enter 4 negative numbers:

-1 -2 3 -4

ERROR: positive number or zero was entered as the
ird number! Input ends with the 3Ird number.

ird number was not added in

-3 is the sum of the first 2 numbers.

A continue Statement in a Loop

1 #ginclude <iostream:>

. using namespace std;

3 int main{)

A 1

5 int number, sum = &, count = 8;

& cout << "Enter 4 negative numbers, ONE PER LINE:%n";
7 while (count < 4)

a 1

cin »>> number;

16 if (number >= &)

11 {

12 cout << "ERROR: positive number (or zero)!wn"™
13 <=z "Reenter that number and continue:yn';
14 continue:;

15 }

1i Sum = sum + number;

17 count++;

18 T

19 COUt << sum =< " is the sum of the "

26 < count =< " numbers.n";

21 return @;

22 1

SAMPLE DIALOGUE

Enter 4 negative numbers, ONE PER LIME:
1

ERROR: positive number {or zero)!
Reenter that number and continue:

=1

=]

3

ERROR: positive number!

Reenter that number and continue:

-3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

