Higgs Physics in ep

B.MelladoUniversity of the Witwatersrand

On behalf of the LHeC Study Group

LHeC IAC Meeting, CERN 26/06/14

Habemus novum Boson Phys.Lett. B716 (2012) 1-29

On July 4^{th} reported 5σ . With the addition of WW a 6σ effect is reached and reported in the final paper.

Evidence for VBF and VH production modes given in terms of ratio w.r.t. ggF+ttH modes.

Observe > 4 σ evidence.

Higgs at LHeC

- □It is remarkable that VBF diagrams were calculated for lepton nucleon collisions before for pp!
- □ Consider feasibility for the following point:

At LHC replace lepton lines by quark lines

$$E_p = 7 \ TeV, E_e = 60 \ GeV, M_H = 120 \ GeV$$

Higgs via VBF Qualitative remarks

$$\begin{split} &\sigma(fa\to f'X)\approx \int dx dp_T^2 P_{V/f}(x,p_T^2)\sigma(Va\to X) \\ &P_{V/f}^T(x,p_T^2) \; = \; \frac{g_V^2+g_V^2}{8\pi^2} \frac{1+(1-x)^2}{x} \frac{p_T^2}{\left(p_T^2+(1-x)M_V^2\right)^2} \\ &P_{V/f}^L(x,p_T^2) \; = \; \frac{g_V^2+g_V^2}{4\pi^2} \frac{1-x}{x} \frac{\left(1-x\right)M_V^2}{\left(p_T^2+(1-x)M_V^2\right)^2}. \end{split}$$

- □ Unlike QCD partons that scale like 1/P_T², here P_T~sqrt(1-x)M_W
- □ Due to the 1/x behavior of the Weak boson the outgoing parton energy (1-x)E is large \rightarrow forward jets
- \Box At high P_T $P_{V/f}^T \sim 1/p_T^2$ and $P_{V/f}^L \sim 1/p_T^4$
 - □ Contribution from longitudinally polarized Weak Bosons is suppressed in favor of transversely polarized WB at high p_T

Well-defined prediction of the SM. Kinematics of scattered quarks, very sensitive to new physics

Total Higgs cross sections

5

LHeC, a Higgs Factory

A A	1/	1 _ 9	
M.	K	181	In
	•		•

LHeC Higgs	}	$CC(e^-p)$	$NC(e^-p)$	$CC(e^+p)$
Polarisation		-0.8	-0.8	0
Luminosity	$[ab^{-1}]$	1	1	0.1
Cross Section	on [fb]	196	25	58
Decay Br	Fraction	$N_{CC}^{H} e^{-}p$	$N_{NC}^{H} e^{-}p$	$N_{CC}^{H} e^{+}p$
$H o b\overline{b}$	0.577	113 100	13 900	3 350
$H \to c\overline{c}$	0.029	5 700	700	170
$H \to \tau^+ \tau^-$	0.063	12 350	1 600	370
$H \to \mu\mu$	0.00022	50	5	_
$H \rightarrow 4l$	0.00013	30	3	_
$H \to 2l2\nu$	0.0106	2 080	250	60
H o gg	0.086	16 850	2 050	500
$H \to WW$	0.215	42 100	5 150	1 250
H o ZZ	0.0264	5 200	600	150
$H \to \gamma \gamma$	0.00228	450	60	15
$H \to Z\gamma$	0.00154	300	40	10

MC Samples in Hadron-level study

U.Klein et al.

Signal CC: $H \rightarrow b\overline{b}$ (BR ~ 0.7 at M_H=120GeV) σ ~ 0.16 pb at v=2.05TeV

NOTE: Background sample numbers are after preselection in generator

H→bb results updated

[after Higgs discovery $M_H = 125$ GeV, $E_D = 7$ TeV]

Case study for electron beam energy of 60 GeV using same analysis strategy

I luminosity values of 50 fb⁻¹ \rightarrow with high luminosity LHeC 100 fb⁻¹/year would be

Masahiro Tanaka, BSc thesis, Tokyo Tech 2014

M _H selection [100-130 GeV]	E _e = 60 GeV (50 fb ⁻¹ , P=0)
H → bb signal	175
S/N	1.9
S/VN	18.1

Electron energy recovery LINAC with high electron polarisation of 80% and 10³⁴ cm⁻² s⁻¹
 → enhancement by factor 20*1.8 feasible, i.e. around 6300 Higgs candidates for E_e=60 GeV allowing to measure Hbb coupling with ~ 0.5 % - 1% statistical precision.

	$\sigma(\mathrm{pb})$	Number of samples	$\frac{N}{\sigma}$ (fb ⁻¹)
CChbb	0.072	0.1M	1390
CCbkg	5.9	0.6M	101.6
NCbkg	28	3M	107.2

CCbkg: p e- > vljjj/h

NCbkg:pe->e-jjj/h

CDR analysis is being revisited by Tokyo/Liverpool

Refining event selection Work in progress

Nbjet	≧2
Njet	≧3
missing ET(GeV)	>20
total ET(GeV)	>100
Nelectron	0
$Q^2({ m GeV}^2)$	>400
У	<0.9
light jet η	>2
W mass(GeV)	>130
top mass (GeV)	>250
Δφ	>0.3

• 100 fb-1 are assumed

Masahiro Tanaka

Events in signal region [100,130]GeV

CCHbb 309 CCbkg

86.5

NCbkg

40.1

$$\frac{N_{signal}}{\sqrt{N_{bkg}}} = 27.5_{13}$$

Intrinsic Charm Mechanism for Inclusive High-X_F Higgs Production

Also: intrinsic strangeness, bottom, top

Higgs can have > 80% of Proton Momentum!

New production mechanism for Higgs

AFTER: Higgs production at threshold!

Spin/CP Quantum numbers

At some point the study of the signal strength is not sufficient to understand presence of new physics in Higgs couplings. Scrutiny of kinematics of scattered quarks is a unique window of opportunity to establish admixtures of BSM terms in the HVV coupling

higgs + 2jets: VBF (LHC), higgs + jet + missing E_T (LHeC)

ep process uniquely addresses the HWW vertex.

Need to investigate physics beyond the SM within the 0⁺ hypothesis with high precision

CP Structure of HVV Couplings

Higgs Couplings with pair of gauge bosons (ZZ/WW) and the pair of heavy fermions (t/τ) are largest. Study $\mathcal{Q}P$ in a model independent way (most studies so far)

$$Hfar{f}:-rac{gm_f}{2M_W}ar{f}\left(a_f+ib_f\gamma_5
ight)fH$$

HVV:

$$\Gamma_{\mu\nu}^{\text{SM}} = -gM_V g_{\mu\nu}$$

$$\Gamma_{\mu\nu}^{\text{BSM}}(p,q) = \frac{g}{M_V} \left[\lambda \left(p \cdot q g_{\mu\nu} - p_{\nu} q_{\mu} \right) + \lambda' \epsilon_{\mu\nu\rho\sigma} p^{\rho} q^{\sigma} \right]$$

S. Biswal, R. Godbole, B.M. and a S. Raychaudhuri Phys.Rev.Lett. 109 (2012) 261801

Strong potential to exclude admixture of BSM physics in the HWW coupling

Very conservative systematics assumed

Double Higgs Production with a 50 TeV Proton Beam

In the light of the FCC kick-off meeting, we are evaluating feasibility of double Higgs production with a 50 TeV beam. Electron-proton collisions offer the advantage of reduced QCD backgrounds and negligible pile-up with the possibility of using the 4b final state.

Feynman rules for the interactions of the scalar boson with gauge bosons, fermions and self-interactions.

Gauge	Self-interaction	Fermion
$HW_{\mu}^{+}W_{ u}^{-}:(-ig_{\mu u})2rac{m_{W}^{2}}{2^{ u}}$	$HHH: (i)3\frac{m_{H}^{2}}{\nu}$	$Har{f}f:(i)rac{m_f}{ u}$
$HZ_{\mu}Z_{ u}:(-ig_{\mu u})2rac{m_Z^2}{ u}$	$HHHH: (i)3\frac{m_H^2}{\nu^2}$	
$HHW_{\mu}^{+}W_{ u}^{-}:(-ig_{\mu u})2rac{m_{W}^{2}}{ u^{2}}$		
$HHZ_{\mu}Z_{ u}:(-ig_{\mu u})2rac{m_{Z}^{2}}{ u^{2}}$		

Exploring the feasibility of the HHH coupling via double-Higgs boson production

HH and tHt in ep

New Tentative Studies

FCC-he unpolarised Cross section at 3.5 TeV:

Processes	E_e (GeV)	$\sigma(\mathrm{fb})$	$\sigma_{eff}({ m fb})$
	60	0.04	0.01
$e^-p ightarrow u_e hhj, h ightarrow bar{b}$	120	0.10	0.024
	150	0.14	0.034

Polarisation, max lumi, tuning cuts, bb and WW decays may provide O(10%) precision - tentative

total: 0.7 fb fiducial: 0.2 fb using pt(b,j)>20 GeV $\Delta R(j.b)>0.4$ $\eta(j)<5$

 $\eta(J) < 3$

Require time for reliable result (detector, analysis, backgrounds..)

Bruce Mellado, Uta Klein, Masahiro Khuze et a

Cross-sections for CC HH->4b (branching ratios included) For unpolarized electron beam

Processes	E_e (GeV)	$\sigma({ m fb})$	$\sigma_{eff}({ m fb})$
	60	0.04	0.01
$e^-p \rightarrow \nu_e hhj, h \rightarrow b\bar{b}$	120	0.10	0.024
	150	0.14	0.034

$$p_{T_{j,b}} > 20~GeV$$
, $E_T > 25~GeV$, $|\eta_j| < 5$, $\Delta R = 0.4$.

Cross-sections for CC backgrounds in fb for E_e =60,120,150 GeV

Processes	E_e =	= 60 GeV	$E_e = 120 \text{ GeV}$		$E_e = 150 \text{ GeV}$	
Tiocesses	$\sigma(\mathrm{fb})$	$\sigma_{eff}(\mathrm{fb})$	$\sigma(\mathrm{fb})$	$\sigma_{eff}(\mathrm{fb})$	$\sigma(\mathrm{fb})$	$\sigma_{eff}(\mathrm{fb})$
$e^-p \to \nu_e b \bar{b} b \bar{b} j$	0.086	0.022	0.14	0.036	0.15	0.038
$e^-p \to \nu_e b \bar{b} c \bar{c} j$	0.12	1.7×10^{-5}	0.36	1.8×10^{-3}	0.44	2.2×10^{-3}
$e^-p \to \nu_e c\bar{c}c\bar{c}j$	0.20	1.0×10^{-6}	0.24	3.4×10^{-5}	0.31	4.3×10^{-5}
$e^-p \to \nu_e b \bar{b} j j j$	26.1	3.9×10^{-3}	54.2	0.008	67.5	0.01
$e^-p \to \nu_e c\bar{c}jjj$	29.6	9.5×10^{-5}	66.9	2.0×10^{-4}	85.4	2.7×10^{-4}
$e^-p \to \nu_e j j j j j j$	823.6	4.1×10^{-5}	1986	9.9×10^{-5}	2586	1.3×10^{-4}

Results promising at parton level, giving comparable signal and background cross-sections even before topological requirements.

Looking forward to the particle-level study.

This is a important discriminator to distinguish EW from QCD multi-jet production

Scattered quark is more forward in signal

Lagrangian with generic HHH coupling. Implementing into Feynrules with MG5

M.Kumar, R.Islam

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} C_i \mathcal{O}_i^{(6)} = \mathcal{L}_{SM} + \mathcal{L}_{SILH}$$
 (2.5)

where

$$\mathcal{L}_{SILH} = \frac{C_H}{2v^2} \partial^{\mu}(\Phi^{\dagger}\Phi) \partial_{\mu}(\Phi^{\dagger}\Phi) + \frac{C_T}{2v^2} (\Phi^{\dagger} \overrightarrow{D}^{\mu}\Phi) (\Phi^{\dagger} \overrightarrow{D}_{\mu}\Phi) - \frac{C_6 \lambda}{v^2} (\Phi^{\dagger}\Phi)^3 \\
- \left[\frac{C_u}{v^2} y_u (\Phi^{\dagger}\Phi) \Phi^{\dagger} \cdot \overline{Q}_L u_R + \frac{C_d}{v^2} y_d (\Phi^{\dagger}\Phi) \Phi \overline{Q}_L d_R + \frac{C_l}{v^2} y_l (\Phi^{\dagger}\Phi) \Phi \overline{L}_L l_R + \text{h.c.} \right] \\
+ \frac{igC_W}{m_W^2} [\Phi^{\dagger} T_{2k} \overrightarrow{D}^{\mu}\Phi] D^{\nu} W_{\mu\nu}^k + \frac{ig'C_B}{2m_W^2} [\Phi^{\dagger} \overrightarrow{D}^{\mu}\Phi] D^{\nu} B_{\mu\nu} \\
+ \frac{2igC_{HW}}{m_W^2} [(D^{\mu}\Phi)^{\dagger} T_{2k} (D^{\nu}\Phi)] W_{\mu\nu}^k + \frac{ig'C_{HB}}{m_W^2} [(D^{\mu}\Phi)^{\dagger} (D^{\nu}\Phi)] B_{\mu\nu} \\
+ \frac{g'^2C_{\gamma}}{m_W^2} (\Phi^{\dagger}\Phi) B^{\mu\nu} B_{\mu\nu} + \frac{g_S^2C_g}{m_W^2} (\Phi^{\dagger}\Phi) G^{a\mu\nu} G_{\mu\nu}^a \tag{2.6}$$

In Eq. (2.6), we have used the following notations:

$$\Phi^{\dagger} \overrightarrow{D}^{\mu} \Phi = \Phi^{\dagger} (D^{\mu} \Phi) - (D^{\mu} \Phi)^{\dagger} \Phi, \tag{2.7}$$

$$Q_L \cdot \Phi = \epsilon_{ij} Q_L^i \Phi^j, \qquad \Phi^\dagger \cdot \bar{Q}_L = \epsilon^{ij} \Phi_i^\dagger \bar{Q}_{Lj}.$$
 (2.8)

Outlook and Conclusions

- □ LHeC displays strong complementarities with the LHC/e⁺e⁻ with regards to Higgs physics
- □ Forward jet tagging secures the feasibility of the Higgs search in CC and NC in ep collisions
- □With the isolation of the H→bb signal at the LHeC a window of opportunity opens for the exploration of the CP properties of the HWW and HZZ vertexes
 - □The latter is a unique feature of the ep collider absent in pp/e⁺e⁻ collisions
- □ Exploring high lumi scenarios → Higgs factory
- □ The LHeC removes the PDF/QCD uncertainties for pp: LHeC becomes precision Higgs facility
- □ Exploring double Higgs production in the contex of FCC. Promissing results at parton level to be evaluated at hadron level

Additional Slides

Study by Zeppenfeld et al:

Study in pp collisions

Left plot: VBF, CP even and CP odd refer to the dimension 5 operator.

For gluon fusion the angular distribution is decided by the CP property of the $t\bar{t}H$ coupling.

Case Study for M_H=120 GeV

 Measure deviation of the Higgs production with respect to the SM using the absolute rate of events

The ratio of the number of events in region B to that of region A in

the Δφ_{MET,J} spectrum

CP-odd case

- Assume Gaussian errors and the following systematics:
 - 10% on the background rate
 - 5% on the shape of the $\Delta \phi_{\text{MET,J}}$ in background
 - 5% on the rate of the SM Higgs
 - Evaluating theoretical error on Δφ_{MET,J} shape

Effect of PDF uncertainties and pdf choice

Kinematic Distributions (Ee = 60 GeV)

Despite large beam energy imbalance, jets are relatively central

This is a important discriminator to distinguish EW from QCD multi-jet production

Scattered quark is more forward in signal

