LHeC

LHeC ERL Test Facility & SC RF:

Fundamental Goals and Motivation:

- → Build up expertise in the design and operation for a facility with a fundamentally new operation mode:
 - → ERLs are circular machines with tolerances and timing requirements similar to linear accelerators (no 'automatic' longitudinal phase stability etc.)
- → Proof validity of fundamental design choices:
 - → Multi-turn recirculation (other existing ERLs have only two passages)
 - \rightarrow Implications of high current operation (3 * [6mA 12mA] > 30mA!!)
- → Verify and test machine and operation tolerances before designing a large scale facility
 - → Tolerances in terms of field quality of the arc magnets
 - → Required RF phase stability (RF power) and LLRF requirements

LHeC: Baseline Linac-Ring Option

Super Conducting Linac with Energy Recovery

& high current (> 6mA) tune-up dump comp. RF 10-GeV linac Two 1 km long SC injector 0.12 km lineag in CW operation 0.17 km 10³⁴ cm⁻² s⁻¹ Luminosity reach **PROTONS ELECTRONS PROTONS ELECTRONS** Beam Energy [GeV] 7000 60 7000 60

Luminosity [10 ³³ cm ⁻² s ⁻¹]	16	16	1	1
Normalized emittance $\gamma \epsilon_{x,y} [\mu m]$	2.5	20	3.75	50
Beta Funtion $\beta^*_{x,y}$ [m]	0.05	0.10	0.1	0.12
rms Beam size $\sigma^*_{x,y}[\mu m]$	4	4	7	7
rms Beam divergence $\sigma\Box^*_{x,y}[\mu rad]$	80	40	70	58
Beam Current [mA]	1112	25	430 (860)	6.6 (3.3)
Bunch Spacing [ns]	25	25	25 (50)	25 (50)
Bunch Population	2.2*10 ¹¹	4*10 ⁹	1.7*10 ¹¹	(1*10 ⁹) 2*10 ⁹
Bunch charge [nC]	35	0.64	27	(0.16) 0.32

LHeC ERL RF Choices:

LHeC SC RF choice:

- → Daresbury meeting on RF options January 2013:
 - → no existing SC RF technology (ILC & ESS) fits perfectly to the LHeC
 - → no synergy with existing RF power sources at CERN

→ 800 MHz:

- → minimization of RF power a la Marhauser
- → lower frequency advantageous for beam stability (Wakefields)
- → Synergy with existing RF power sources @ CERN
- → See presentation by Erk Jensen for more details

Validation of key LHeC Design Choices:

- → Three re-circulations with high beam current:
 - → Coherent Beam stability due to ions, and wake-fields when triggering transverse perturbations (a la beam-beam)
 - → Pulse stability and reproducibility of beam parameters (intensity, position and size)
 - → Energy spread and beam parameter stability at end of deceleration process
 - → Study of transient ERL dynamics during current ramp-up
- → SC RF Design validation via operation with beam
 - → SC RF behavior with beam
 - → Coupler validation
 - → HOM tolerances and required HOM damping
 - → Beam loading and implied RF controls

- → Injector and gun
 - → Choice of electron sources (Superconducting RF, DC High Voltage etc.)
 - → Injection energy and beam transfer, emittance requirements and preservation, etc.
- → Required beam diagnostics:
 - → Pulse by pulse diagnostics
 - → Single pass beam size measurements etc.
- → Injection line and beam dump tests
 - → Momentum acceptance requirements
 - → Beam extraction at different beam energies and machine protection aspects

Potential applications beyond an LHeC ERL Test Facility:

- → Magnet and cable quench facility:
 - → Vital for development of new cables and future high field SC magnets (e.g. FCC hh)
- → Test facility for SC RF with beam
 - → Very interesting for development of new SC RF components
 - → e.g. Crab Cavities, SC RF for FCC ee, etc.
- → Test beam for detector component developments
 - → Beam lines with beam energies higher than 100 MeV/c [Peter Kostka]
- → Dedicated Physics Facility
 - → similar to MESA program but at higher energy

- ERL Test Facility layout and parameters:
 - → Possibility for phased installation:
 - → Energy range for each option
 - → Overall floor foot print
 - → Requirements for ERL TF
 - → Requirements for auxiliary applications
 - → Parameter overview

Planning for each stage

Courtesy of Alessandra Valloni

Phase 1:

SC RF cavities, modules and e⁻ source tests

- Injection at 5 MeV
- 1 turn
- 75 MeV/linac
- Final energy 150 MeV

ARC	ENERGY
ARC 1	80 MeV
ARC 2	155 MeV

*4 SRF 5-cell cavities at 802 MHz

Planning for each stage

Courtesy of Alessandra Valloni

Phase 2:

Test the machine in Energy Recovery Mode

- Injection at 5 MeV
- 3 turns
- 75 MeV/linac
- Final energy 450 MeV

ARC	ENERGY
ARC 1	80 MeV
ARC 2	155 MeV
ARC 3	230 MeV
ARC 4	305 MeV
ARC 5	380 MeV
ARC 6	455 MeV

Recirculation realized with vertically stacked recirculation passes

Planning for each stage

Courtesy of Alessandra Valloni

Phase 3:

Additional SC RF modules test Full energy test in Energy Recovery Mode

- Injection at 5 MeV
- 3 turns
- 150 MeV/linac
- Final energy 900 MeV

ARC	ENERGY
ARC 1	150 MeV
ARC 2	300 MeV
ARC 3	450 MeV
ARC 4	600 MeV
ARC 5	750 MeV
ARC 6	900 MeV

Layout:

Courtesy of Alessandra Valloni

ARC I, III, IV Layout:

Courtesy of Alessandra Valloni

- Synchronous acceleration Isochronous arcs
- Achromatic arc
- > FMC optics

Total Arc length for Arc 1,2,3 34.5112 m 94 x λrf

For 6 arcs: 84 DIPOLES 114 QUADRUPOLES

Linac | Multi-pass optics: Courtesy of Alessandra Valloni

Linac II Multi-Pass Optics: Courtesy of Alessandra Valloni

FMC = Flexible Momentum Compaction

15

ptics Option I: ARC III:

Courtesy of Alessandra Valloni

9.8° bends

(1 rec. + 3 sec.)

Ldip = 90.58 cm

B = 6.58 kGauss

 $\rho = 230.66 \text{ cm}$

9.8° bends

(1 rec. + 3 sec.)

Optics Option I: ARC V:

Courtesy of Alessandra Valloni

Summary Option | Optics: Courtesy of Alessandra Valloni

FMC = Flexible Momentum Compaction

ARC Optics Option II:

Courtesy of Alessandra Valloni

SAME OPTICS LAYOUT FOR ALL THE ARCS 900/750/600/450/300/150 MeV

3 DIPOLES ON TOP OF **EACH OTHER**

*Attilio Milanese

Arc dipoles:

8×22.50 bends

Ldip = 100.6 cm

 $\rho = 256.3 \text{ cm}$

Arc quadrupoles

Lquads = 30 cm

	1GeV	750MeV	600MeV	450MeV	300MeV	150MeV
B FIELD	1.30 T	0.97 T	0.78 T	0.58 T	0.39 T	0.19 T
	Q1	Q	2	Q3	Q4	
Kq[m ⁻²]	-1.0	1 2.	91	2.09	1.19	

Synchrotron Radiation:

Courtesy of Alessandra Valloni

ARC	E [MeV]	ρ [cm]	∆E [keV]	σ Ε/Ε [%]
1	150	91.459	0.0280	1.17e-5
2	300	91.459	0.4191	6.42e-5
3	450	230.66	0.8230	8.13e-5
4	600	230.66	2.5726	1.53e-4
5	750	230.66	6.2394	2.73e-4
6	900	230.66	12.881	4.47e-4
7	750	230.66	6.2394	5.89e-6
8	600	230.66	2.5726	7.49e-6
9	450	230.66	0.8230	9.98e-6
10	300	91.459	0.4191	1.49e-6
11	150	91.459	0.0280	2.93e-3

← maximum

Beam Energy loss

$$\Delta E = \int P_{\gamma} dt = P_{\gamma} \frac{\pi \rho}{\beta c} \quad \Delta E(GeV) = C_{\gamma} \frac{E^4}{\rho} \frac{1}{2}$$

► Beam Energy Spread $\frac{\sigma_E}{E} = \sqrt{1.4397 * 10^{-27} \frac{\pi \gamma^5}{\rho^2}}$

Next Steps Towards CDR: Courtesy of Alessandra Valloni

Complete Step 2 and Step 1 configuration and optics layout

Floor Footprint:

Courtesy of Alessandra Valloni

ARCS

Total length for Arc 1,2,3 34.5112 m 94 x λrf (last cavity linac1 to first cavity linac 2)

Total length for Arc 4,5
34.2704 m
101 x λrf
(last cavity linac1 to first cavity linac 2)

Total length for Arc 6
34.4574 m
101.5 x λrf
(last cavity linac 1 to first cavity linac 2

LINAC

ONE CRYOMODULE: 8 RF CAVITIES

PARAMETER	VALUE
Frequency	801.58 MHz
Wavelength	37.4 cm
Lcavity= 5λ/2	93.5 cm
Grad	20.02 MeV/m
ΔΕ	18.71 MV per cavity

Total length ~ 13 m

CHICANE INJ/EXTR

Length ~ 1.75 m

TOTAL DIMENSIONS
42 m x 13.7 m

Auxiliary Applications: SC Magnet Quench Facility

Controlled quench tests of SC magnets

Study beam induced quenches (quench thresholds, quenchino thresholds) at different time scales for:

- SC cables and cable stacks in an adjustable external magnetic field
- Short sample magnets
- Full length LHC type SC magnets

Courtesy of Daniel Wollmann And Arijan Verweij

Quench limits of LHC dipole as expected from QP3 simulations for different pulse durations

Beam parameters to generate a given amount of energy deposition calculations and fluka simulations

Copper target
(no magnetic field)

Cylinder of copper

Radius = 50cm
Length = 100cm

Beam parameters

Energy, MeV	Emittance, m	Sigma, cm	FWHM, cm
150	1.70E-07	0.092	0.22
300	8.52E-08	0.065	0.15
450	5.68E-08	0.053	0.13
600	4.26E-08	0.046	0.11
750	3.41E-08	0.041	0.10
900	2.84E-08	0.038	0.09
1000	2.55E-08	0.036	0.08

Results are given for half of bulky target because of symmetry

Binning: 1 mm³ bins

Beam parameters to generate a given amount of energy deposition calculations and fluka simulations

Copper target
(no magnetic field)

Cylinder of copper

Radius = 50cm
Length = 100cm

Beam parameters

Energy, MeV	Emittance, m	Sigma, cm	FWHM, cm
150	1.70E-07	0.092	0.22
300	8.52E-08	0.065	0.15
450	5.68E-08	0.053	0.13
600	4.26E-08	0.046	0.11
750	3.41E-08	0.041	0.10
900	2.84E-08	0.038	0.09
1000	2.55E-08	0.036	0.08

Results are given for half of bulky target because of symmetry

Binning: 1 mm³ bins

Energy deposition, GeV/cm³/e⁻

Beam parameters to generate a given

amount of energy deposition

electrons
needed to
quench the
magnet

Quench threshold

Maximum value for the energy deposition

MB quench limit @ 3.5 TeV

$1 \text{ GeV} = 1.602 \times 10^{-7} \text{ mJ}$

MB quench limit 450 GeV is 140mJ/cm³ in 10ms:

~2.2 x 10⁹ e⁻ @ 1GeV necessary

MB quench limit 7 TeV is 16 mJ/cm³ in 10ms:

~2.6 x 108 e⁻ @ 1GeV necessary

Summary ERL Test Facility

LHeO

- Test facility for SCRF cavities and modules
- Test facility for multi-pass multiple cavity ERL
- > Test facility for controlled SC magnet quench tests
- > Injector studies: DC gun or SRF gun
- Study reliability issues, operational issues!
- Vacuum studies related to FCC
- Could it be foreseen as the injector to LHeC ERL and to FCC?

TARGET PARAMETER*	VALUE
Injection Energy [MeV]	5
Final Beam Energy [MeV]	900
Normalized emittance γε _{x,y} [μm]	50
Beam Current [mA]	10
Bunch Spacing [ns]	25 (50)
Passes	3

→ ERL TF CDR by end 2015

*in few stages

Site options:

- → Many site options presented @ January 2014 LHeC Workshop
- → In Point 2 @ ALICE apparently not really a viable option (tbc)
- **→** SM18:
 - → Existing cryogenic installation
 - → Existing powering infrastructure
 - → Next step should be site specific studies for the ERL TF and auxiliary applications in preparation for the ERL TF CDR

- B. 889 SPS Access point
- B. 897 Central Storage
- B. 867 Radioactive facility

- B. 888 COMPASS
- B. 887 North Hall
- B. 890 EN-CV for North Hall

Nuria Catalan

ERL-TF possible sites: ALICE

We have started to look into possible existing buildings suited to host the ERL test facility.

A suitable hall could be in **Building 2275, near LHC P2**

- Current use under investigation
- Power converters already in place
- Geographically perfect as injector for LHeC ERL
- Slightly narrower than required Can it be extended?

N. Catalan Lasheras

ERL-TF possible sites: SM18?

Reserve Transparencies:

ERL Test Facility worldwide (1/2)

Beam Energy	35 MeV
Beam Current	10 mA
Bunch charge	77 pC
RF frequency	1300 MHz
Passes	1
Beam Energy	50 MeV

100 mA
77 pC
1300 MHz
1

Beam Energy	12-26 MeV
Bunch charge	40-60-200 pC
RF frequency	1300 MHz
Passes	1

ERL Test Facility worldwide (2/2)

Beam Energy	35-125-250 MeV
Beam Current	10mA (100mA)

Bunch charge	7.7pC- 77pC
bunch charge	7.7pc-77pc

RF frequency	1300 MHz
--------------	----------

Passes	1- 2
--------	------

		→4(36)	-(P()0:		-[
	D.	20 M			118
SC RF Gun	DI DI	ookh SC 5 Cell cavity	aven	1	1 2 2 2 2 2
* 2 80	20 MeV	F. 0	ф он	-880-	11
CATHERE 1	3 MeV 2-3 MeV		6 6	20 MeV	

Beam Energy	20 MeV
Bunch charge	0.5-5 nC
Bunch current	300 mA
RF frequency	704 MHz
Passes	1