K(*) revisited

Marco Ciuchini

Three messages from this talk:

- i) typical predictions of factorization in the infinite mass limit for $K\pi$ amplitudes are off by ~-30-40% (Luca was almost right!)
- ii) $K\pi$ decays are not puzzling once subleading terms are included. Measured CP asymmetries are compatible with the Standard Model
- iii) $K^*\pi$ decays are a perfect playground for

QCD challenges

MC, Franco, Martinelli, Pierini, Silvestrini, in preparation

new physics in $K\pi$ CP asymmetries?

$$\mathcal{A}_{K^{\pm}\,\pi^{\mp}} \equiv \frac{N(\bar{B}^{0} \to K^{-}\,\pi^{+}\,) - N(B^{0} - K^{+}\,\pi^{-}\,)}{N(\bar{B}^{0} \to K^{-}\,\pi^{+}\,) + N(B^{0} \to K^{+}\,\pi^{-}\,)} = -\,0.094 \pm 0.018 \pm 0.008$$

$$A_{K^{\pm}\pi^{0}} = +0.07 \pm 0.03 \pm 0.01$$

Belle collaboration Nature 452,2008

$$\Delta A \equiv A_{K^{\pm}\pi^{0}} - A_{K^{\pm}\pi^{\mp}} = +0.164 \pm 0.037$$

4.4σ away from 0

Is this new physics?
It could be but SM
predictions depend on

 \bar{b} \bar{u} \bar{u}

Silvestrini hadronic models

arXiv:0705.1624

QCDF [50]

PQCD [54, 55]

SCET [58]

GP [92]

$$A_{\rm CP}(\pi^0 K^-)$$
 7.1 $^{+1.7}_{-1.8}$ $^{+2.0}_{-2.0}$ $^{+0.8}_{-0.6}$ $^{+9.0}_{-9.7}$

$$-1^{+3}_{-5}$$

$$-11 \pm 9 \pm 11 \pm 2$$

$$3.4 \pm 2.4$$

$$A_{\rm CP}(\pi^+K^-)$$

$$4.5^{\,+1.1\,+2.2\,+0.5\,+8.7}_{\,-1.1\,-2.5\,-0.6\,-9.5}$$

$$-9^{+6}_{-8}$$

$$-6 \pm 5 \pm 6 \pm 2$$

$$-8.9\pm1.6$$

Amplitude Parametrization

general parametrization
*one simplification only:
isospin breaking in the
hadronic ME neglected
can be reintroduced
if need be

$$A(B^{+} \to K^{0}\pi^{+}) = -V_{ts}V_{tb}^{*}P + V_{us}V_{ub}^{*}A,$$

$$A(B^{+} \to K^{+}\pi^{0}) = \frac{1}{\sqrt{2}} (V_{ts}V_{tb}^{*}(P + \Delta P_{1} + \Delta P_{2}) \cdot V_{us}V_{ub}^{*}(E_{1} + E_{2} + A)),$$

$$A(B^{0} \to K^{+}\pi^{-}) = V_{ts}V_{tb}^{*}(P + \Delta P_{1}) - V_{us}V_{ub}^{*}E_{1}$$

$$A(B^{0} \to K^{0}\pi^{0}) = -\frac{1}{\sqrt{2}} (V_{ts}V_{tb}^{*}(P - \Delta P_{2}) + V_{us}V_{ub}^{*}E_{2})$$

$$\begin{split} E_1 &= E_1^{\rm F} + F \left(r(E_1) e^{i\delta(E_1)} - r(P_1^{\rm GIM}) e^{i\delta(P_1^{\rm GIM})} \right) \\ &= E_1^{\rm F} + F \, R(E_1) e^{i\Delta(E_1)} \,, \\ E_2 &= E_2^{\rm F} + F \left(r(E_2) e^{i\delta(E_2)} + r(P_1^{\rm GIM}) e^{i\delta(P_1^{\rm GIM})} \right) \\ &= E_2^{\rm F} + F \, R(E_2) e^{i\Delta(E_2)} \,, \\ A &= A^{\rm F} + F \left(r(A) e^{i\delta(A)} - r(P_1^{\rm GIM}) e^{i\delta(P_1^{\rm GIM})} \right) \,, \\ &= A^{\rm F} + F \, R(A) e^{i\Delta(A)} \,, \\ P &= P^{\rm F} + F \, r(P) e^{i\delta(P)} \,, \\ \Delta P_1 &= \Delta P_1^{\rm F} + F \, \alpha_{\rm em} \, r(\Delta P_1) e^{i\delta(\Delta P_1)} \,, \\ \Delta P_2 &= \Delta P_2^{\rm F} + F \, \alpha_{\rm em} \, r(\Delta P_2) e^{i\delta(\Delta P_2)} \,, \end{split}$$

deviations from factorization: R(X) exp[i Δ (X)] in units of F= $\overline{A}_{K\pi}$

related to Buras, Silvestrini, hep-ph/9806278

$$E_{1} = E_{1}(s, q, q; B, K, \pi) - P_{1}^{GIM}(s, q; B, K, \pi)$$

$$E_{2} = E_{2}(q, q, s; B, \pi, K) + P_{1}^{GIM}(s, q; B, K, \pi)$$

$$A = A_{1}(s, q, q; B, K, \pi) - P_{1}^{GIM}(s, q; B, K, \pi)$$

$$P = P_{1}(s, d; B, K, \pi),$$

$$\Delta P_{1} = P_{1}(s, u; B, K, \pi) - P_{1}(s, d; B, K, \pi),$$

 $\Delta P_2 = P_2(s, u; B, \pi, K) - P_2(s, d; B, \pi, K).$

Step #0: try throwing away all these ugly parameters

Two non-contradictory statements:

- typical factorized $K\pi$ amplitudes are off by ~ -30-40%
- factorized amplitudes can reproduce the $K\pi$ data

Old method, new perspective

- * old idea: use data to determine the subleading terms, but 11 real unknowns 9 measurements
- too many parameters! One can:
 - reduce the parameter set

 (like in the good old charming-penguin days)
 - vary all the parameters in theoretically sensible ranges (we take $r \in [0,0.5]$, $\delta \in [-\pi,\pi]$)

Final goal: find "upper bounds" to the theoretical errors compatible with data and the $1/m_b$ expansion

Quick facts on charming penguins

- first appearance Colangelo, Nardulli, Paver, Riazuddin Z. Phys. C45 (1990) 575
- christening
 MC, Franco, Martinelli, Silvestrini
 hep-ph/9703353
- revisited (I)
 MC, Franco, Martinelli, Pierini,
 Silvestrini, hep-ph/0104126
- revisited (II)Bauer, Pirjol, Rothstein, Stewarthep-ph/0401188

Results of the fit to the $K\pi$ data

"global fit":

results obtained fitting the whole data set

"fit predictions":

results obtained fitting the whole data set but the "prediction"

	global fit	fit prediction
$BR(K^+\pi^-)\times 10^6$	19.6 ± 0.5	20.1 ± 1.0
$BR(K^+\pi^0) \times 10^6$	12.7 ± 0.5	12.4 ± 0.7
$\mathrm{BR}(K^0\pi^+)\times 10^6$	23.7 ± 0.8	24.6 ± 1.2
$\mathrm{BR}(K^{\scriptscriptstyle 0}\pi^{\scriptscriptstyle 0}) imes 10^6$	9.2 ± 0.4	8.6 ± 0.6
$\mathcal{A}_{\text{CP}}(K^+\pi^-)$	-0.095 ± 0.012	-0.01 ± 0.08
$\mathcal{A}_{ ext{CP}}(K^+\pi^0)$	0.043 ± 0.024	-0.02 ± 0.07
$\mathcal{A}_{ exttt{CP}}(K^0\pi^+)$	0.010 ± 0.023	0.02 ± 0.06
$C(K_S\pi^0)$	0.12 ± 0.04	0.12 ± 0.04
$S(K_S\pi^0)$	0.702 ± 0.067	0.74 ± 0.06

`	,		
Decay Mode	$\mathrm{BR^{exp}} \times 10^6$	$\mathcal{A}_{\text{CP}}^{\text{exp}} = -C$	S
$K^+\pi^-$	19.4 ± 0.6	-0.097 ± 0.012	_
$K^+\pi^0$	12.9 ± 0.6	0.050 ± 0.025	_
$K^0\pi^+$	23.1 ± 1.0	0.009 ± 0.025	_
$K^0\pi^0$	9.9 ± 0.6	-0.14 ± 0.11	0.38 ± 0.19

- BR's OK and fairly insensitive to the " Λ/m_b noise"
- A_{CP} can be reproduced thanks to the " Λ/m_b noise"
- $S(K_s\pi^0)$ cannot be "satisfactorily" reproduced

The K** playground for QCD challenges

- * 11 real hadronic parameters as in the $K\pi$ case
- * 11 observables ⇒ fully determined in the SM
- 1. K⁺ π⁻ π⁰ Dalitz plot: (3) |A(K*+ π⁻)|, |A(K*⁰ π⁰)|, argA(K*+ π⁻)-argA(K*⁰ π⁰)
- 2. $K^{-}\pi^{+}\pi^{0}$ Dalitz plot: (3) $|A(K^{*-}\pi^{+})|, |A(\overline{K}^{*0}\pi^{0})|,$ $argA(K^{*-}\pi^{+})-argA(\overline{K}^{*0}\pi^{0})$
- 3. K_s π⁻ π⁺ Dalitz plot: (1) |A(K*+ π⁻)|, |A(K*- π⁺)|, argA(K*+ π⁻)-argA(K*- π⁺)

```
4. K_S \pi^0 \pi^0 Dalitz plot: (0)
  |A(K^{*0}\pi^{0})|, |A(K^{*0}\pi^{0})|,
  argA(K^{*0}\pi^{0})-argA(K^{*0}\pi^{0})
5. K_S \pi^+ \pi^0 Dalitz plot: (3)
  |A(K^{*+}\pi^{0})|, |A(K^{*0}\pi^{+})|,
  argA(K^{*+}\pi^{0})-argA(K^{*0}\pi^{+})
6. K_s \pi^- \pi^0 Dalitz plot: (3)
  |A(K^{*-}\pi^{0})|, |A(K^{*0}\pi^{-})|,
  argA(K^{*-}\pi^{0})-argA(K^{*0}\pi^{-})
```

amplitudes satisfy 2 isospin quadrangular relations (-2)

Spare Slides

$$\begin{split} E_1^{\rm F} &= A_{\pi K} \bigg(-\alpha_1 - \alpha_4^u + \alpha_4^c - \alpha_{4,EW}^u + \alpha_{4,EW}^c \bigg) \\ E_2^{\rm F} &= A_{K\pi} \bigg(-\alpha_2 - \frac{3}{2} (\alpha_{3,EW}^u - \alpha_{3,EW}^c) \bigg) \\ &+ A_{\pi K} \bigg(\alpha_4^u - \alpha_4^c - \frac{1}{2} (\alpha_{4,EW}^u - \alpha_{4,EW}^c) \bigg) \,, \\ A^{\rm F} &= A_{\pi K} \bigg(-\alpha_4^u + \alpha_4^c + \frac{1}{2} (\alpha_{4,EW}^u - \alpha_{4,EW}^c) \bigg) \,, \\ P^{\rm F} &= A_{\pi K} \bigg(-\alpha_4^c + \frac{1}{2} \alpha_{4,EW}^c \bigg) \,, \\ \Delta P_1^{\rm F} &= -A_{\pi K} \frac{3}{2} \alpha_{4,EW}^c \,, \\ \Delta P_2^{\rm F} &= -A_{K\pi} \frac{3}{2} \alpha_{3,EW}^c \,, \end{split}$$

$+ m_s = (98 \pm 6 \pm 12) \text{ MeV}$

$$A_{\pi K} = G_F / \sqrt{2} m_B^2 f_k F_{\pi}(0)$$

 $A_{K\pi} = G_F / \sqrt{2} m_B^2 f_{\pi} F_k(0)$

f_{π}	$0.1307~\mathrm{GeV}$	f_K	$0.1598~\mathrm{GeV}$
$F^{B \to \pi}$	0.27 ± 0.08	$F^{B \to K}/F^{B \to \pi}$	1.20 ± 0.10
τ_{B^0}	$1.546 \cdot 10^{-12} \text{ ps}$	τ_{B^+}	$1.674 \cdot 10^{-12} \text{ ps}$
m_B	$5.2794 \; \mathrm{GeV/c^2}$	f_B	$0.189 \pm 0.027 \text{ GeV}$
m_{π}	$0.14~\mathrm{GeV/c^2}$	m_K	$0.493677~{ m GeV/c^2}$

Conclusions

Flavour physics is a unique tool for searching and studying NP complementary to the LHC There is a first evidence for NP in b<->s transitions. Confirmation in Summer From $\Delta F=2$ transitions, a pattern of flavour violation in NP emerges: 2 < -> 3: O(1), 1 < -> 3: < O(0.1), 1 < -> 2 strong suppr. The next 15 years of flavour physics are well motivated and clearly planned: exciting times ahead