QCD Challenges in Nonleptonic Decays: SCET Factorization Successes \& Open Questions

Iain Stewart MIT

Flavour as a Window to New Physics at the LHC CERN June 2008

Outline:

- Intro to Factorization
- Factorization vs. Data, successes
- Nonleptonic Predictions $\quad B \rightarrow P P, B \rightarrow P V$,
- Global fits \& uncertainties
$B \rightarrow V V$
- Penguin-ology
- Convolution Singularites (o bin)
- Outlook

Ideally we would compute nonleptonic amplitudes exactly using the standard model Lagrangian. They would all be "related" by SM parameters. but...

... Hadronic Uncertainties ...

In practice relations between SM amplitudes are approximate, and are always based on expansions of $\mathcal{L}^{\text {SM }}$

$$
\text { Observable }=O^{(0)}+\epsilon O^{(1)}+\epsilon^{2} O^{(2)}+\ldots
$$

$$
\epsilon \ll 1
$$

Expansion

Parameter

$\epsilon^{2}=\frac{m_{b}^{2}}{m_{W}^{2}} \sim 0.003$

- $\lambda^{2} \ll 1 \quad V=\left(\begin{array}{ccc}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right) \sim\left(\begin{array}{ccc}1 & \lambda & \lambda^{3} \\ \lambda & 1 & \lambda^{2} \\ \lambda^{3} & \lambda^{2} & 1\end{array}\right)$

$$
\epsilon^{2}=\lambda^{2} \sim 0.04
$$

- $\Lambda \gg m_{u, d}$
$S U(2)$ ie. isospin

$$
\epsilon=\frac{m_{u, d}}{\Lambda} \sim 0.02
$$

- $m_{b} \gg \Lambda$

Heavy Quark Effective Theory
$\epsilon=\frac{\Lambda}{m_{b}} \sim 0.1$

- $E_{\pi} \gg \Lambda$

Factorization for
Nonleptonic decays
(Soft Collinear Effective Theory)

- $\Lambda \gg m_{s, d, u} \quad \mathrm{SU}(3)$ or U-spin $\quad \epsilon=\frac{m_{s}}{\Lambda} \sim 0.3$

$$
\epsilon=\frac{\Lambda}{E_{\pi}} \sim 0.2
$$

$$
\epsilon=\frac{m_{s}}{\Lambda} \sim 0.3
$$

What precisely are we testing when we make measurements of β or γ with different methods?

- Using CKM unitarity of the standard model we can write:

$$
A^{S M}\left(\bar{B} \rightarrow M_{1} M_{2}\right)=S_{1}+S_{2} e^{-i \gamma}
$$

where $S_{1,2}$ are complex, CP even, "hadronic amplitudes".

- Consider an arbitrary new physics contribution to this channel, and write:

$$
\begin{array}{r}
A^{N P}\left(\bar{B} \rightarrow M_{1} M_{2}\right)=N e^{i \phi}=N_{1}+N_{2} e^{-i \gamma} \\
\& N e^{-i \phi}=N_{1}+N_{2} e^{i \gamma}
\end{array}
$$

$$
N_{1,2} \text { are complex and CP even. } \quad \text { eg. } \operatorname{Im} N_{1}=\frac{\sin (\gamma+\phi)}{\sin (\gamma)} \operatorname{Im}(N)
$$

- Thus new physics in the decay simply shifts hadronic amplitudes:

$$
S_{1} \rightarrow S_{1}+N_{1}, \quad S_{2} \rightarrow S_{2}+N_{2}
$$

Measurements test relations between SM amplitudes S_{i} which may be violated by new physics.

Counting parameters

	no expn.	$\mathrm{SU}(2)$	$\mathrm{SU}(3)$	SCET $+\mathrm{SU}(2)$	SCET $+\mathrm{SU}(3)$
$B \rightarrow \pi \pi$	11	$7(5)$	$15 / 13$	4	4
$B \rightarrow K \pi$	15	11			
$B \rightarrow K \bar{K}$	11	11	$+4 / 0$	$+3(4)$	+0

a/b remove small $O_{8,9}$
eg. Isospin Analysis

- tests small penguins in $B \rightarrow \pi^{0} \pi^{-}, B \rightarrow \rho^{0} \rho^{-}$
- can't see new physics in $I=0$ amplitudes

Baek, Botella, London, Silva
so we don't want to stop here!

Factorization at m_{b}
 $\mathrm{SCET}_{\mathrm{I}}$

expansion in $\alpha_{s}\left(m_{b}\right) \simeq 0.22$
all that is used in BPRS approach

hard-scale

intermediate-scale

hadronic-scale
treated as
hadronic parameters

Recently $\mathcal{O}\left(\alpha_{s}\left(m_{b}\right)\right)$ matching completed.

Beneke \& Jager (tree \& penguin)
Jain, Rothstein, I.S. (penguin)

Factorization at m_{b}

All the LO terms are factorized into two types of form factors

Nonleptonic $\quad B \rightarrow M_{1} M_{2}$
$A\left(B \rightarrow M_{1} M_{2}\right)=A^{c \bar{c}}+N\left\{f_{M_{2}} \zeta^{B M_{1}} \int d u T_{2 \zeta}(u) \delta^{M_{2}}(u)+f_{M_{2}} \int d u d z T_{2 J}(u, z) \zeta_{J}^{B M_{1}}(z) h^{M_{2}}(u)+(1 \leftrightarrow 2)\right\}$
no endpoint singularities here
hard form twist-2 factor distn.
$\begin{array}{ll}\text { Form Factors } \quad & B \rightarrow \text { pseudoscalar: } f_{+}, f_{0}, f_{T} \\ & B \rightarrow \text { vector: } V, A_{0}, A_{1}, A_{2}, T_{1}, T_{2}, T_{3}\end{array}$
Same form factors at large E

$$
\begin{array}{rlrl}
f(E)=\int d z T(z, E) \zeta_{J}^{B M}(z, E) & & B \rightarrow \pi \ell \bar{\nu} \\
& +C(E) \zeta^{B M}(E) & & B \rightarrow K^{*} \ell^{+} \ell^{-} \\
& & B \rightarrow \rho \gamma, \ldots
\end{array}
$$

Keum, Li, Sanda (pQCD); Lu et al.;
Beneke,Buchalla,Neubert, Sachrajda,(BBNS);

Chay, Kim;

Bauer, Pirjol, Rothstein, I.S. (BPRS)

Ciuchini et al

(charming penguin),
Key issues:

- Treatment of perturbation theory at scales
- Treatment of $1 / x^{2}$ endpoint singularities

$$
\int_{0}^{1} d x \frac{\phi_{\pi}(x)}{x^{2}} \sim \int_{0} \frac{d x}{x}=\infty
$$

- Treatment of charm loops
 NRQCD region
- Treatment of hadronic parameters appearing at LO in the expansion
- Treatment of annihilation

Checking SCET Factorization (Successes)
$\bar{B}^{0} \rightarrow D^{0} M^{0} \quad \frac{\Lambda}{E_{M}} \& \frac{1}{N_{c}} \quad$ suppressed

$$
A_{00}^{D^{(*)} \pi}=N_{0}^{(*)} \int d x d z d k_{1}^{+} d k_{2}^{+} T^{(i)}(z) J^{(i)}\left(z, x, k_{1}^{+}, k_{2}^{+}\right) S^{(i)}\left(k_{1}^{+}, k_{2}^{+}\right) \phi_{\pi}(x)+A_{\text {long }}^{D^{(*)}} \pi
$$

Predict

Mantry, Pirjol, I.S.
equal strong phases $\delta(D M)=\delta\left(D^{*} M\right)$ Blechman et al. equal amplitudes $A\left(D^{*} M\right)=A(D M)$

Find

$$
\begin{aligned}
\delta(D \pi) & =30.4 \pm 4.8^{\circ} \\
\delta\left(D^{*} \pi\right) & =31.0 \pm 5.0^{\circ}
\end{aligned}
$$

Without factorization
predictions spoiled by $\mathcal{O}\left(\frac{E_{M}}{m_{c}}\right)=\mathcal{O}(1)$ effects

$B \rightarrow X_{u} e \bar{\nu}$
in shape function region

$$
m_{b}^{2} \gg m_{b} \Lambda_{\mathrm{QCD}} \gg \Lambda_{\mathrm{QCD}}^{2}
$$

$$
d \Gamma=H\left(p^{-}, m_{b}\right) \int d \ell^{+} J\left(p^{-}\left(p^{+}-\ell^{+}\right)\right) S\left(\ell^{+}\right)
$$

same scales as in nonleptonic factorization theorems and no sign

+ factorization for power
corrections too in SCET of breakdown in power counting (eg. BLNP fits for Vub)
eg. Model Independent predictions even at subleading order
K. Lee, arXiv:0802.0873

A weighted integral of the triple diff. rate can be taken to give the same leading + subleading shape functions as in $B \rightarrow X_{s} \gamma$ (using su 3 for the $4^{\text {-quark operator shape functions). }}$

Thus, Vub can be extracted in a model independent way with corrections at $\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{2} / m_{b}^{2}\right)$ and $\mathcal{O}\left(m_{s} / m_{b}\right)$

In charmless nonleptonics:

I) small strong phase between color suppressed and tree amplitudes

$$
\operatorname{Im}\left(\frac{C}{T}\right) \sim \mathcal{O}\left(\alpha_{s}\left(m_{b}\right), \frac{\Lambda}{E_{\pi}}\right)
$$

$B \rightarrow \pi \pi \quad$ Can use this to do isospin analysis without $C_{\pi^{0} \pi^{0}}$ $\gamma^{\pi \pi}=\underbrace{\left.\left.73.9^{\circ+7.5}{ }_{-10.3}\right|_{\text {exp }} ^{+1.5}\right|_{\text {th }} ^{+1.0}}_{\text {there is a 2nd solution: }}$ (expt. and theory errors) $\quad \begin{gathered}\gamma_{2 \text { nd }}^{\pi \pi}=\left.\left.\left.27.7^{\circ+9.9}\right|_{-7.3}\right|_{\text {exp }}{ }^{+4.5}\right|_{\text {thy }} ^{+100}\end{gathered}$
$B \rightarrow \rho \rho \quad$ same analysis applies

$$
\begin{aligned}
1-\sigma \text { from } \gamma_{\text {global }}^{\text {CKMfit. }} & =67.6_{-4.5^{\circ}}^{\circ+2.8^{\circ}} \\
\gamma_{\text {global }}^{\text {UTfit }} & =66.7^{\circ} \pm 6.4^{\circ}
\end{aligned}
$$

2) Relations between semileptonic \& nonleptonic

nonleptonic $\quad B \rightarrow \pi \pi$

- $\left|V_{u b}\right| \zeta^{B \pi}=\frac{N_{\pi^{0} \pi^{-}}}{C_{1}^{2}-C_{2}^{2}}\left[\left(C_{1}+C_{2}\right) t_{c}^{\pi \pi}-C_{2}+\frac{4\left(C_{1}+C_{2}\right) t_{c}^{\pi \pi}-3 C_{1}-C_{2}}{\left\langle x^{-1}\right\rangle_{\phi_{\pi}}}\right]\left[1+\mathcal{O}\left(\alpha_{s}\left(m_{b}\right), \frac{\Lambda}{E}\right)\right]$
- $\quad\left|V_{u b}\right| \zeta_{J}^{B \pi}=\frac{N_{\pi^{0} \pi^{-}}}{C_{1}^{2}-C_{2}^{2}}\left[\frac{-4\left(C_{1}+C_{2}\right) t_{c}^{\pi \pi}+3 C_{1}+C_{2}}{\left\langle x^{-1}\right\rangle_{\phi_{\pi}}}\right]\left[1+\mathcal{O}\left(\alpha_{s}\left(m_{b}\right), \frac{\Lambda}{E}\right)\right] \quad$ from Jain et.al.

$$
\begin{aligned}
N_{\pi^{0} \pi^{-}} & =\left[\frac{64 \pi}{m_{B}^{3} f_{\pi}^{2}} \frac{B r\left(B^{-} \rightarrow \pi^{0} \pi^{-}\right)}{\tau_{B-}\left|V_{u d}\right|^{2} G_{F}^{2}}\right]^{1 / 2} \quad B_{\pi \pi}=\sqrt{1-C_{\pi^{+} \pi^{-}}^{2}-S_{\pi^{+} \pi^{-}}^{2}} \\
t_{c}^{\pi \pi} & =\left[\frac{B r\left(B^{-} \rightarrow \pi^{+} \pi^{-}\right) \tau_{B^{-}}}{B r\left(B^{-} \rightarrow \pi^{0} \pi^{-}\right) \tau_{B^{0}}} \frac{\left(1+B_{\pi \pi} \cos 2 \beta+S_{\pi^{+} \pi^{-}} \sin 2 \beta\right)}{4 \sin ^{2} \gamma}\right]^{1 / 2}=\frac{\left|T_{\pi \pi}\right|}{\left|T_{\pi \pi}+C_{\pi \pi}\right|}
\end{aligned}
$$

semileptonic $\quad B \rightarrow \pi \ell \bar{\nu}$

- $f_{+}(0)=\left(\zeta^{B \pi}+\zeta_{J}^{B \pi}\right)\left[1+\mathcal{O}\left(\alpha_{s}\left(m_{b}\right), \frac{\Lambda}{E}\right)\right]$
- $\delta \equiv 1-\frac{\left(m_{B}^{2}-m_{\pi}^{2}\right)}{f_{+}(0)}\left(\left.\frac{d f_{+}}{d q^{2}}\right|_{q^{2}=0}-\left.\frac{d f_{0}}{d q^{2}}\right|_{q^{2}=0}\right)=\frac{2 \zeta_{J}^{B \pi}}{\zeta_{J}^{B \pi}+\zeta^{B \pi}}\left[1+\mathcal{O}\left(\alpha_{s}\left(m_{b}\right), \frac{\Lambda}{E}\right)\right]$
shape parameter Hill
δ from expt. + lattice has large uncertainty currently

Nonleptonic data gives:

form factors of similar size with small expt. uncertainties $\quad \delta \approx 1$

$$
\left.f_{+}(0)=0.19 \pm\left. 0.01\right|_{\exp } \pm\left. 0.05\right|_{\text {thy }}\right)\left(\frac{3.8 \times 10^{-3}}{\left|V_{u b}\right|}\right)
$$

Semileptonic data (with dispersion fit \& lattice) gives:

At Super B

- we should use precision semileptonic data to determine hadronic parameters

$$
\text { from } B \rightarrow\left\{\pi, \rho, \eta, \omega, \eta^{\prime}\right\} \ell \bar{\nu} \quad \text { spectra }
$$

- plus get help from the Lattice, particularly for form factors that are difficult/impossible to measure

Counting parameters

Global Fit

	no expn.	$\mathrm{SU}(2)$	$\mathrm{SU}(3)$	SCET $+\mathrm{SU}(2)$	SCET $+\mathrm{SU}(3)$
$B \rightarrow \pi \pi$	11	$7 / 5$	$15 / 13$	4	4
	$+5(6)$	4			
$B \rightarrow K \pi$	15			$+5(4)$	+0

Extension to isosinglets $\pi \eta, \eta \eta, K \eta^{\prime}, \ldots$

Williamson \& Zupan

$$
+4
$$

(2 solutions)

Predictions

Branching Fraction Direct CP Asymmetry

Mode	Exp	Theory
$\bar{B}^{0} \rightarrow \pi^{-} \pi^{+}$	5.0 ± 0.4	$5.4 \pm 1.3 \pm 1.4 \pm 0.4$
	0.37 ± 0.23^{a}	$0.20 \pm 0.17 \pm 0.19 \pm 0.05$
$\bar{B}^{0} \rightarrow \pi^{0} \pi^{0}$	1.45 ± 0.52^{b}	$0.84 \pm 0.29 \pm 0.30 \pm 0.19$
	0.28 ± 0.40	$-0.58 \pm 0.39 \pm 0.39 \pm 0.13$
$B^{-} \rightarrow \pi^{0} \pi^{-}$	5.5 ± 0.6	$5.2 \pm 1.6 \pm 2.1 \pm 0.6$
	0.01 ± 0.06	<0.04
$B^{-} \rightarrow K^{0} K^{-}$	1.2 ± 0.3	$1.1 \pm 0.4 \pm 1.4 \pm 0.03$
	-	-
$\bar{B}^{0} \rightarrow K^{0} \bar{K}^{0}$	0.96 ± 0.25	$1.0 \pm 0.4 \pm 1.4 \pm 0.03$
	-	-
$\bar{B}^{0} \rightarrow \pi^{0} \bar{K}^{0}$	11.5 ± 1.0	$9.4 \pm 3.6 \pm 0.2 \pm 0.3$
$\bar{B}^{0} \rightarrow K^{-} \pi^{+}$	0.02 ± 0.13	$0.05 \pm 0.04 \pm 0.04 \pm 0.01$
	-0.115 ± 0.7	$20.1 \pm 7.4 \pm 1.3 \pm 0.6$
$B^{-} \rightarrow K^{-} \pi^{0}$	12.1 ± 0.8	$-0.06 \pm 0.05 \pm 0.06 \pm 0.02$
	0.04 ± 0.04	$-0.11 \pm 0.0 \pm 1.0 \pm 0.3$
$B^{-} \rightarrow \bar{K}^{0} \pi^{-}$	24.1 ± 1.8^{c}	$20.8 \pm 7.9 \pm 0.6 \pm 0.7$
	$-0.02 \pm 0.05{ }^{d}$	<0.05

Predictions (4 param. fit)

Branching Fraction Direct CP Asymmetry

Mode	Exp.	Theory I	Theory II
$B^{-} \rightarrow \pi^{-} \eta$	$4.3 \pm 0.5(S=1.3)$	$4.9 \pm 1.7 \pm 1.0 \pm 0.5$	$5.0 \pm 1.7 \pm 1.2 \pm 0.4$
	-0.11 ± 0.08	$0.05 \pm 0.19 \pm 0.21 \pm 0.05$	$0.37 \pm 0.19 \pm 0.21 \pm 0.05$
$B^{-} \rightarrow \pi^{-} \eta^{\prime}$	$2.53 \pm 0.79(S=1.5)$	$2.4 \pm 1.2 \pm 0.2 \pm 0.4$	$2.8 \pm 1.2 \pm 0.3 \pm 0.3$
$\bar{B}^{0} \rightarrow \pi^{0} \eta$	0.14 ± 0.15	$0.21 \pm 0.12 \pm 0.10 \pm 0.14$	$0.02 \pm 0.10 \pm 0.04 \pm 0.15$
	-	$0.88 \pm 0.54 \pm 0.06 \pm 0.42$	$0.68 \pm 0.46 \pm 0.03 \pm 0.41$
$\bar{B}^{0} \rightarrow \pi^{0} \eta^{\prime}$	-	$0.03 \pm 0.10 \pm 0.12 \pm 0.05$	$-0.07 \pm 0.16 \pm 0.04 \pm 0.90$
	-	$2.3 \pm 0.8 \pm 0.3 \pm 2.7$	$1.3 \pm 0.5 \pm 0.1 \pm 0.3$
$\bar{B}^{0} \rightarrow \eta \eta$	-	$-0.24 \pm 0.10 \pm 0.19 \pm 0.24$	-
	-	$0.69 \pm 0.38 \pm 0.13 \pm 0.58$	$1.0 \pm 0.4 \pm 0.3 \pm 1.4$
$\bar{B}^{0} \rightarrow \eta \eta^{\prime}$	-	$-0.09 \pm 0.24 \pm 0.21 \pm 0.04$	$0.48 \pm 0.22 \pm 0.20 \pm 0.13$
$\bar{B}^{0} \rightarrow \eta^{\prime} \eta^{\prime}$	-	$1.0 \pm 0.5 \pm 0.1 \pm 1.5$	$2.2 \pm 0.7 \pm 0.6 \pm 5.4$
	-	-	$0.70 \pm 0.13 \pm 0.20 \pm 0.04$
$\bar{B}^{0} \rightarrow \bar{K}^{0} \eta^{\prime}$	-	-	$1.2 \pm 0.4 \pm 0.3 \pm 3.7$
	$63.2 \pm 4.9(S=1.5)$	$63.2 \pm 24.7 \pm 4.2 \pm 8.1$	$0.60 \pm 0.11 \pm 0.22 \pm 0.29$
$\bar{B}^{0} \rightarrow \bar{K}^{0} \eta$	$0.07 \pm 0.10(S=1.5)$	$0.011 \pm 0.006 \pm 0.012 \pm 0.002$	$62.2 \pm 23.7 \pm 5.5 \pm 7.2$
	<1.9	$2.4 \pm 4.4 \pm 0.2 \pm 0.3$	$-0.027 \pm 0.007 \pm 0.008 \pm 0.005$
$B^{-} \rightarrow K^{-} \eta^{\prime}$	-	$0.21 \pm 0.20 \pm 0.04 \pm 0.03$	$2.3 \pm 4.4 \pm 0.2 \pm 0.5$
	69.4 ± 2.7	$69.5 \pm 27.0 \pm 4.3 \pm 7.7$	$-0.18 \pm 0.22 \pm 0.06 \pm 0.04$
$B^{-} \rightarrow K^{-} \eta$	0.031 ± 0.021	$-0.010 \pm 0.006 \pm 0.007 \pm 0.005$	$69.3 \pm 26.0 \pm 7.1 \pm 6.3$
	2.5 ± 0.3	$2.7 \pm 4.8 \pm 0.4 \pm 0.3$	$0.007 \pm 0.005 \pm 0.002 \pm 0.009$

Predictions

 $\gamma=59^{\circ}$
Branching Fraction Direct CP Asymmetry

Mode	Exp.	Theory I	Theory II
$\bar{B}^{0} \rightarrow \pi^{0} \eta$	-	$-0.90 \pm 0.08 \pm 0.03 \pm 0.22$	$-0.67 \pm 0.14 \pm 0.03 \pm 0.81$
$\bar{B}^{0} \rightarrow \pi^{0} \eta^{\prime}$	-	$-0.96 \pm 0.03 \pm 0.05 \pm 0.11$	$-0.60 \pm 0.08 \pm 0.08 \pm 1.30$
$\bar{B}^{0} \rightarrow \eta \eta$	-	$-0.98 \pm 0.06 \pm 0.03 \pm 0.09$	$-0.78 \pm 0.19 \pm 0.12 \pm 0.22$
$\bar{B}^{0} \rightarrow \eta \eta^{\prime}$	-	$-0.82 \pm 0.02 \pm 0.04 \pm 0.77$	$-0.71 \pm 0.14 \pm 0.19 \pm 0.29$
$\bar{B}^{0} \rightarrow \eta^{\prime} \eta^{\prime}$	-	$-0.59 \pm 0.05 \pm 0.08 \pm 1.10$	$-0.78 \pm 0.09 \pm 0.19 \pm 0.23$
$\bar{B}^{0} \rightarrow K_{S} \eta^{\prime}$	$0.50 \pm 0.13(S=1.4)$	$0.706 \pm 0.005 \pm 0.006 \pm 0.003$	$0.715 \pm 0.005 \pm 0.008 \pm 0.002$
$\bar{B}^{0} \rightarrow K_{S} \eta$	-	$0.69 \pm 0.15 \pm 0.05 \pm 0.01$	$0.79 \pm 0.14 \pm 0.04 \pm 0.01$

Mode	Exp	Theory I	Theory II
$\overline{\bar{B}_{s}^{0} \rightarrow \pi^{-} K^{+}}$	$<2.2 f_{d} / f_{s}{ }^{\text {a }}$	$4.9 \pm 1.2 \pm 1.3 \pm 0.3$	
	-	$0.20 \pm 0.17 \pm 0.19 \pm 0.05$	
$\bar{B}_{s}^{0} \rightarrow \pi^{0} K^{0}$	-	$0.76 \pm 0.26 \pm 0.27 \pm 0.17$	
	-	$-0.58 \pm 0.39 \pm 0.39 \pm 0.13$	
$\bar{B}_{s}^{0} \rightarrow \eta K^{0}$	-	$0.80 \pm 0.48 \pm 0.29 \pm 0.18$	$0.59 \pm 0.34 \pm 0.24 \pm 0.15$
$\bar{B}_{s}^{0} \rightarrow \eta^{\prime} K^{0}$	-	$-0.56 \pm 0.46 \pm 0.14 \pm 0.06$	$0.61 \pm 0.59 \pm 0.12 \pm 0.08$ $3.9 \pm 1.3 \pm 0.5 \pm 0.4$
	-	$\begin{aligned} & 4.5 \pm 1.5 \pm 0.4 \pm 0.5 \\ & -0.14 \pm 0.07 \pm 0.16 \pm 0.02 \end{aligned}$	$\begin{aligned} & 3.9 \pm 1.3 \pm 0.5 \pm 0.4 \\ & 0.37 \pm 0.08 \pm 0.14 \pm 0.04 \end{aligned}$
$\overline{\overline{B_{s}^{0}} \rightarrow K^{-} K^{+}}$	$(9.5 \pm 2.0) f_{d} / f_{s}{ }^{\text {a }}$	$18.2 \pm 6.7 \pm 1.1 \pm 0.5$	
	-	${ }^{-0.06 \pm 0.05} \pm 0.06 \pm 0.02$	
$\bar{B}_{s}^{0} \rightarrow K^{0} \bar{K}^{0}$	-	$17.7 \pm 6.6 \pm 0.5 \pm 0.6$	
$\bar{B}_{s}{ }_{s}^{0} \rightarrow \eta \pi^{0}$	-	$0.014 \pm 0.004 \pm 0.005 \pm 0.004$	$0.016 \pm 0.007 \pm 0.005 \pm 0.006$
$\bar{B}_{s}^{0} \rightarrow \eta^{\prime} \pi^{0}$	-	$\stackrel{-}{0.006 \pm \pm 0.003 \pm 0.002_{-0.0068}^{+0.064}}$	$\stackrel{-}{0.038 \pm 0.013 \pm 0.016-0.0 .850}$
	-	-	-
$\bar{B}_{s}^{0} \rightarrow \eta \eta$	-	$7.1 \pm 6.4 \pm 0.2 \pm 0.8$	$6.4 \pm 6.3 \pm 0.1 \pm 0.7$
	-	$0.079 \pm 0.049 \pm 0.027 \pm 0.015$ $24.0 \pm 13.6 \pm 1.4 \pm 2.7$	$-0.011 \pm 0.050 \pm 0.039 \pm 0.010$ $23.8 \pm 13.2 \pm 1.6 \pm 2.9$
	-	$0.0004+0.0014+0.0039+0.0043$	$2.82+0.009+0.008+0.076$
$\bar{B}_{s}^{0} \rightarrow \eta^{\prime} \eta^{\prime}$	-	$44.3 \pm 19.7 \pm 2.3 \pm 17.1$	$49.4 \pm 20.6 \pm 8.4 \pm 16.2$
	-	$0.009 \pm 0.004 \pm 0.006 \pm 0.019$	$-0.037 \pm 0.010 \pm 0.012 \pm 0.056$

$$
b \rightarrow c \bar{c} s \quad \text { vs. } \quad b \rightarrow q \bar{q} s
$$

Theory Uncertainty (from factorization)

$\sin \left(2 \beta^{\text {eff }}\right) \equiv \sin \left(2 \phi_{1}^{\text {eff }}\right) \underset{\substack{\frac{\text { LF }}{\text { PRELIMN }} \\ \hline \text { HFARY }}}{\text { HG }}$

Buchalla,Hiller Zupan,
Nir, Raz Williamson

$$
\begin{array}{lll}
+0.02_{-0.01}^{+0.01} & +0.02 & \\
+0.01_{-0.01}^{+0.01} & +0.01_{-0.02}^{+0.01} & -0.01 \pm 0.02 \\
& & \\
+0.07_{-0.04}^{+0.05} & +0.06_{-0.03}^{+0.04} & +0.07 \pm 0.03 \\
& & \\
+0.13_{-0.08}^{+0.08} & +0.19_{-0.14}^{+0.06} &
\end{array}
$$

- Constructive interference of penguins give a large $\operatorname{Br}\left(B \rightarrow \eta^{\prime} K^{0}\right)$ (to agree with data), and simultaneously a small uncertainty above
Determination of hadronic parameters dominates factorization uncertainties

Counting parameters VP, VV modes

	no expn.	$\mathrm{SU}(2)$	$\mathrm{SU}(3)$	SCET $+\mathrm{SU}(2)$	SCET $+\mathrm{SU}(3)$
$B \rightarrow \pi \pi$	11	$7 / 5$	$15 / 13$	4	4
$B \rightarrow K \pi$	15	11			
$B \rightarrow K \bar{K}$	11	11	$+4 / 0$	$+3(4)$	+0

PP, PV with isosinglets

$$
\begin{aligned}
& \pi \eta, \eta \eta, K \eta^{\prime}, \ldots \\
& \rho \pi, \omega \pi, K^{*} K, \rho \eta, \ldots
\end{aligned}
$$

Wang, Wang, Yang, Lu (arXiv:0801.3123)

$$
\begin{aligned}
& +4 \\
& +8
\end{aligned}
$$

(2 solutions)

Branching Ratios

Channel	Exp.	QCDF	PQCD	This work 1	This work 2
$B^{-} \rightarrow \rho^{-} \pi^{0}$	$10.9_{-1.5}^{+1.4}$	$14.0_{-5.5-4.3-0.6-0.7}^{+6.5+5.1+1.0+0.8}$	$6-9$	$8.8_{-0.1-1.0}^{+0.2+1.0}$	$11.0_{-0.6-0.9}^{+0.6+1.0}$
$B^{-} \rightarrow \rho^{0} \pi^{-}$	$8.7_{-1.1}^{+1.0}$	$11.9_{-5.0-3.1-1.2-1.1}^{+6.3+3.6+2.5+1.3}$	$10.4_{-3.4}^{+3.3} \pm 2.1$	$10.8_{-0.7-0.9}^{+0.7+1.0}$	$7.9_{-0.0-0.8}^{+0.1+0.8}$
$B^{-} \rightarrow \omega \pi^{-}$	6.9 ± 0.5	$8.8_{-3.5-2.2-0.9-0.9}^{+4.4+2.6+1.8+0.8}$	$11.3_{-2.9}^{+3.3} \pm 1.4$	$6.7_{-0.3-0.6}^{+0.4+0.7}$	$8.6_{-0.3-0.8}^{+0.4+0.8}$
$B^{-} \rightarrow K^{* 0} K^{-}$	<1.1	$0.30_{-0.09-0.10-0.09-0.19}^{+0.11+0.12+0.09+0.57}$	$0.31_{-0.08}^{+0.12}$	$0.48_{-0.20-0.08}^{+0.25+0.09}$	$0.51_{-0.15-0.06}^{+0.18+0.07}$
$B^{-} \rightarrow K^{*-} K^{0}$		$0.30_{-0.07-0.18-0.07-0.17}^{+0.08+0.41+0.08+0.58}$	$1.83_{-0.47}^{+0.68}$	$0.54_{-0.21-0.08}^{+0.26+0.10}$	$0.51_{-0.17-0.07}^{+0.21+0.08}$
$B^{-} \rightarrow \phi \pi^{-}$	<0.24	≈ 0.005		≈ 0.003	0.003
$B^{0} \rightarrow \rho^{-} \pi^{+}$					
$\left.\bar{B}^{0} \rightarrow \rho^{+} \pi^{-}\right\}$	24.0 ± 2.5	$36.5_{-14.7-8.6-3.5-2.9}^{+18.2+10.3+2.0+3.9}$		$18-45$	$13.1_{-0.5-1.2}^{+0.6+1.2}$

$B^{0} / \bar{B}^{0} \rightarrow \rho^{+} \pi^{-}$			24-34	$12.5{ }_{-1.7}^{+1.9+1.1}$	$16.0_{-1.5-1.4}^{+1.6+1.5}$
$B^{0} / \bar{B}^{0} \rightarrow \rho^{-} \pi^{+}$			24-34	$13.8{ }_{-1.8-1.2}^{+1.9+1.3}$	$17.7_{-1.7-1.5}^{+1.6+1.6}$
$\bar{B}^{0} \rightarrow \rho^{+} \pi^{-a}$	8.9 ± 2.5	$15.4{ }_{-6.4-4.7-1.3-1.3}^{+8.0+5.5+0.7+1.9}$		$5.7_{-0.5-0.5}^{+0.5+0.5}$	$6.7_{-0.1}^{+0.2+0.7}$
$\bar{B}^{0} \rightarrow \rho^{-} \pi^{+a}$	13.9 ± 2.7	$21.2_{-8.4-7.2-2.3-1.6}^{+10.3+8.7+1.3+2}$		$7.4_{-0.1-0.8}^{+0.2+0.8}$	$10.1_{-0.4-0.9}^{+0.4+0.9}$
$\bar{B}^{0} \rightarrow \rho^{0} \pi^{0}$	$1.8_{-0.5}^{+0.6}$	$0.4_{-0.2+0.1-0.3+0.3}^{+0.2+0.2+0.5}$	0.07-0.11	$2.6_{-0.1}^{+0.2+0.2}$	$1.4_{-0.1}^{+0.1+0.1}$
$\bar{B}^{0} \rightarrow \omega \pi^{0}$	<1.2	$0.01_{-0.00-0.00-0.00-0.00}^{+0.002+0.03}$	0.10-0.28	$0.003_{-0.000-0.000}^{+0.047+0.000}$	$0.025_{-0.004-0.002}^{+0.036+0.002}$
$\bar{B}^{0} \rightarrow K^{* 0} \bar{K}^{0}$		$0.26_{-0.07-0.09+0.08-0.15}^{+0.08+0.10+0.08+0.46}$		$0.45{ }_{-0.19}^{+0.24+0.09}$	$0.47_{-0.14-0.05}^{+0.17+0.06}$
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} K^{0}$	<1.9	$0.29_{-0.09-0.17-0.07}^{+0.10+0.69+0.08}+0.60$		$0.51{ }_{-0.20-0.08}^{+0.24+0.09}$	$0.48_{-0.16-0.06}^{+0.20+0.07}$
$\left.\begin{array}{l} \bar{B}^{0} \rightarrow K^{* 0} \bar{K}^{0} \\ \bar{B}^{0} \rightarrow \bar{K}^{* 0} K^{0} \end{array}\right\}$			≈ 1.96	$0.96{ }_{-0.27-0.15}^{+0.34+0.18}$	$0.955_{-0.22}^{+0.26+0.12}$
$B^{0} / \bar{B}^{0} \rightarrow K^{* 0} \bar{K}^{0}$				$0.96{ }_{-0.27}^{+0.34+0.18}$	$0.95_{-0.22-0.12}^{+0.26+0.14}$
$B^{0} / \bar{B}^{0} \rightarrow \bar{K}^{* 0} K^{0}$				$0.96{ }_{-0.27-0.15}^{+0.34+0.18}$	$0.95_{-0.22-0.12}^{+0.26+0.14}$
$\bar{B}^{0} \rightarrow \phi \pi^{0}$	<0.28	≈ 0.002		0.002	0.001
$B^{-} \rightarrow \rho^{-} \eta$	5.4 ± 1.2	$9.4{ }_{-3.7}^{+4.6+3.6+0.7+0.7}$	$8.5{ }_{-2.1}^{+3.0+0.8+0.4+1.2 ~}{ }^{\text {b }}$	$3.9{ }_{-1.7}^{+2.0+0.4}$	$3.0_{-1.5-0.3}^{+1.8+0.3}$
$B^{-} \rightarrow \rho^{-} \eta^{\prime}$	$9.1_{-2.8}^{+3.7}$	$6.3{ }_{-2.5-2.0}^{+3.1+2.4+0.5+0.5}$	$8.7{ }_{-2.2}^{+3.0+0.7}{ }_{-0.7}^{+0.5+0.3}{ }^{+1.1}$	$0.37_{-0.22-0.07}^{+2.51+0.08}$	$0.36{ }_{-0.18-0.05}^{+2.59+0.06}$
$\bar{B}^{0} \rightarrow \rho^{0} \eta$	<1.5	$0.03_{-0.01-0.10-0.01-0.02}^{+0.02+0.16+0.02+0.05}$	$0.024_{-0.007-0.002+0.002+0.005}^{+0.012+0.002+0.102 ~}$	$0.03_{-0.02-0.00}^{+0.18+0.00}$	$0.17_{-0.16-0.02}^{+0.36+0.02}$
$\bar{B}^{0} \rightarrow \rho^{0} \eta^{\prime}$	<1.3	$\left\lvert\, \begin{aligned} & 0.01_{-0.00-0.06-0.00-0.01}^{+0.01+0.11+0.02+0.03} \end{aligned}\right.$	$0.061_{-0.018-0.003-0.003-0.009}^{+0.030+0.004+0.003+0.114} b$	$0.37_{-0.11}^{+2.37+0.04}$	$1.3_{-1.1-0.1}^{+3.8+0.1}$
$\bar{B}^{0} \rightarrow \omega \eta$	<1.9	$0.31_{-0.12-0.11-0.14-0.16}^{+0.14+0.16+0.35+0.22}$	$0.27_{-0.10}^{+0.11}$	$0.98{ }_{-0.51-0.10}^{+0.69+0.10}$	$1.3_{-0.6-0.1}^{+0.8+0.1}$
$\bar{B}^{0} \rightarrow \omega \eta^{\prime}$	<2.2	$0.20_{-0.08-0.05-0.10-0.11}^{+0.10+0.15+0.25+0.15}$	$0.075_{-0.033}^{+0.037}$	$0.20_{-0.09}^{+1.46+0.04}$	$3.1{ }_{-2.6}^{+4.8+0.3}$
$\bar{B}^{0} \rightarrow \phi \eta$	<0.6	≈ 0.001	$0.0063_{-0.0019}^{+0.0033}$	0.0004	0.0008
$\bar{B}^{0} \rightarrow \phi \eta^{\prime}$	<0.5	≈ 0.001	$0.0073_{-0.0026}^{+0.0035}$	0.0001	0.0007

Branching Ratios

Chan	Exp		D	This work 1	This work 2
B^{-}	6.9 ± 2.3				
B	10.7 ± 0.8				
	$4.25_{-0.56}^{+0.85}$	$2.6{ }_{-0.9-1.4-0.6-1.2}^{+0.9+3.1+4.3}$	$5.1{ }_{-2.8}^{+4.1}$	$6.6_{-2.2-0.9}^{+2.7+1.0}$	$4.7_{-1.5-0.6}^{+1.8+0.7}$
B		5.8 ${ }_{-0.6-3.3-1.3-3.2}^{+0.6+7.0+10.3}$	$8.7_{-4.4}^{+6.8}$	$9.3{ }_{-3.7}^{+4.7+1.4}$	$10.0_{-3.3-1.3}^{+4.0+1.5}$
	6.	$3.5{ }_{-1.0-1.6-0.9-1.6}^{+1.0+3.3+4.7}$	10		
B	8.30 ± 0.65	$4.5_{-0.4-1.7-2.1-3.3}^{+0.5+1.8+1.9+11.8}$	7.8	9.7	$8.5_{-2.7-1.0}^{+3.2+1.2}$
\bar{B}				-1.8-0.7	$6_{-1.2-0.4}^{+1.4+0.5}$
\bar{B}	9.8 ± 1.1	$3.3{ }_{-1.1-1.2-0.8-1.6}^{+1.4+1.3+0.2}$	$6.0_{-2.6}^{+6.8}$	$8.3_{-3.4-1}^{+4.3+1}$	$5_{-2.7-1.1}^{+3.2+1.2}$
\bar{B}^{0}	5.4	$4.6_{-0.5-2.1-0.7-2 .}^{+0.5+4.0+0.7}$	$4.8{ }_{-2.3}^{+4.3}$	$3.5_{-1.5-0.6}^{+2.0+0.7}$	$5.8_{-1.8-0.7}^{+2.1+0.8}$
\bar{B}	$15.3_{-3.5}^{+3.7}$	7.4 ${ }^{+1.8+7.1+1.2+10.7}$	$8.8{ }_{-4.5}^{+6.8}$	$9.8_{-3.7-1.4}^{+4.5+1.7}$	$10.2_{-3.2-1.2}^{+3.8+1.5}$
$\bar{B}^{0} \rightarrow \omega \bar{K}^{0}$	5.0 ± 0.6	2.3	$9.8{ }_{-4.9}^{+8.6}$	$4.1_{-1.7}^{+2.1+0.6}$	0.7 0.6
$B^{0} \rightarrow$	8.3	$\begin{aligned} & 4.1_{-0.4-1.6-1.9-3.0}^{+0.4+1.7+1.8+10.6} \\ & \hline \end{aligned}$	$7.3_{-1.8}^{+5.9}$	$9.1_{-3.6-1.4}^{+4.5+1.7}$	$8.0_{-2.5-0.9}^{+2.9+1.1}$
B	19.3 ± 1.6	$\begin{aligned} & 10.8_{-1.7-4.4-1.3-5.5}^{+1.9+8.1+1.8+16.5} \end{aligned}$	$22.13_{-0.27}^{+0.26}$	$17.9_{-5.3-2.9}^{+5.4+3.5}$	$18.6{ }_{-4.6-2.2}^{+4.5+2.6}$
$B^{-} \rightarrow K^{*-} \eta^{\prime}$	$4.9{ }_{-1}^{+2}$	$5.1_{-1.0-3.8-3.0-3.3}^{+0.9+7.5+2.1+6.7}$	6.38 ± 0.26	$4.4_{-3.8-0.8}^{+6.5+0.9}$	$4.1_{-3.3-0.6}^{+4.9+0.7}$
\bar{B}^{0}	15	$\begin{aligned} & 10.7_{-1.0-4.3-1.2-5.5}^{+1.1+7.8+1.4+16.2} \end{aligned}$	$22.31_{-0.29}^{+0.28}$	$16.6_{-5.0-2.7}^{+5.1+3.2}$	$16.5_{-4.2-2.0}^{+4.1+2.3}$
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \eta^{\prime}$	3.8 ± 1.2	$3.9_{-0.4-3.3-2.5-2.9}^{+0.4+6.6+1.8+6.2}$	$3.35_{-0.27}^{+0.29}$	$4.1_{-3.6-0.7}^{+6.1+0.9}$	$3.8{ }_{-3.3}^{+4.8+0.6}$

Branching Ratios

Channel	Exp.	QCDF	PQCD	This work 1	This work 2
$B^{-} \rightarrow K^{*-} \pi^{0}$	6.9 ± 2.3	$3.3_{-1.0-0.9-0.6-1.4}^{+1.1+1.0+0.6+4.4}$	$4.3_{-2.2}^{+5.0}$	$4.1_{-1.7-0.7}^{+2.2+0.8}$	$6.5_{-1.6-0.7}^{+1.9+0.7}$
$B^{-} \rightarrow \bar{K}^{* 0} \pi^{-}$	10.7 ± 0.8	$3.6_{-0.3-1.4-1.2-2.3}^{+0.4+1.5+1.2+7.7}$	$6.0_{-1.5}^{+2.8}$	$8.5_{-3.6-1.4}^{+4.6+1.7}$	$9.9_{-2.9-1.1}^{+3.4+1.3}$
$B^{-} \rightarrow \rho^{0} K^{-}$	$4.25_{-0.56}^{+0.55}$	$2.6_{-0.9-1.4-0.6-1.2}^{+0.9+3.8+4.3}$	$5.1_{-2.8}^{+4.1}$	$6.6_{-2.2-0.9}^{+2.7+1.0}$	$4.7_{-1.5-0.6}^{+1.8+0.7}$
$B^{-} \rightarrow \rho^{-} \bar{K}^{0}$	$8.0_{-1.4}^{+1.5}$	$5.8_{-0.6-3.3-1.3-3.2}^{+0.6+7.0+1 .+10.3}$	$8.7_{-4.4}^{+6.8}$	$9.3_{-3.7-1.4}^{+4.7+1.7}$	$10.0_{-3.3-1.3}^{+4.0+1.5}$
$B^{-} \rightarrow \omega K^{-}$	6.7 ± 0.5	$3.5_{-1.0-1.6-0.9-1.6}^{+1.0+3.3+1.4+4.7}$	$10.6_{-5.8}^{+10.4}$	$5.1_{-1.9-0.8}^{+2.4+0.9}$	$5.9_{-1.7-0.7}^{+2.1+0.8}$
$B^{-} \rightarrow \phi K^{-}$	8.30 ± 0.65	$4.5_{-0.4-1.7-2.1-3.3}^{+0.5+1.8+1.9+11.8}$	$7.8_{-1.8}^{+5.9}$	$9.7_{-3.9-1.5}^{+4.9+1.8}$	$8.5_{-2.7-1.0}^{+3.2 .2}$
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \pi^{0}$	$0.0_{-0.1}^{+1.3}$	$0.7_{-0.1-0.4-0.3-0.5}^{+0.1+0 .+0.3+2.6}$	$2.0_{-0.6}^{+1.2}$	$4.6_{-1.8-0.7}^{+2.3+0.9}$	$3.6_{-1.2-0.4}^{+1.4+0.5}$
$\bar{B}^{0} \rightarrow \bar{K}^{*-} \pi^{+}$	9.8 ± 1.1	$3.3_{-1.1-1.2-0.8-1.6}^{+1.4+1.3+0.8+6.2}$	$6.0_{-2.6}^{+6.8}$	$8.3_{-3.4-1.3}^{+4.3+1.6}$	$9.5_{-2.7-1.1}^{+3.2+1.2}$
$\bar{B}^{0} \rightarrow \rho^{0} \bar{K}^{0}$	$5.4_{-1.0}^{+0.9}$	$4.6_{-0.5-2.1-0.7-2.1}^{+0.5+4.0+0.7+6.1}$	$4.8_{-2.3}^{+4.3}$	$3.5_{-1.5-0.6}^{+2.0+0.7}$	$5.8_{-1.8-0.7}^{+2.1+0.8}$
$\bar{B}^{0} \rightarrow \rho^{+} K^{-}$	$15.3_{-3.5}^{+3.7}$	$7.4_{-1.9-3.6-1.1-3.5}^{+1.8+7.1+1.2+10.7}$	$8.8_{-4.5}^{+6.8}$	$9.8_{-3.7-1.4}^{+4.5+1.7}$	$10.2_{-3.2-1.2}^{+3.8+1.5}$
$\bar{B}^{0} \rightarrow \omega \bar{K}^{0}$	5.0 ± 0.6	$2.3_{-0.3-1.3-0.8-1.3}^{+0.3+2.8+1.3+4.3}$	$9.8_{-4.9}^{+8.6}$	$4.1_{-1.7-0.6}^{+2.1+0.8}$	$4.9_{-1.6-0.6}^{+1.9+0.7}$
$\bar{B}^{0} \rightarrow \phi \bar{K}^{0}$	$8.3_{-1.0}^{+1.2}$	$4.1_{-0.4-1.6-1.9-3.0}^{+0.4+1.7+10+10.6}$	$7.3_{-1.8}^{+5.9}$	$9.1_{-3.6-1.4}^{+4.5+1.7}$	$8.0_{-2.5-0.9}^{+2.9+1.1}$
$B^{-} \rightarrow K^{*-} \eta$	19.3 ± 1.6	$10.8_{-1.7-4.4-1.3-5.5}^{+1.9+8.1+1.8+16.5}$	$22.13_{-0.27}^{+0.26}$	$17.9_{-5.3-2.9}^{+5.4+3.5}$	$18.6_{-4.6-2.2}^{+4.5+2.6}$
$B^{-} \rightarrow K^{*-} \eta^{\prime}$	$4.9_{-1.9}^{+2.1}$	$5.1_{-1.0-3.8-3.0-3.3}^{+0.9+7.5+2.1+6.7}$	6.38 ± 0.26	$4.4_{-3.8-0.8}^{+6.5+0.9}$	$4.1_{-3.3-0.6}^{+4.9+0.7}$
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \eta$	15.9 ± 1.0	$10.7_{-1.0-4.3-1.2-5.5}^{+1.1+7.8+4+1.2}$	$22.31_{-0.29}^{+0.28}$	$16.6_{-5.0-2.7}^{+5.1+3.2}$	$16.5_{-4.2-2.0}^{+4.1+2.3}$
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \eta^{\prime}$	3.8 ± 1.2	$3.9_{-0.4-3.3-2.5-2.9}^{+0.4+6.6+1.8+6.2}$	$3.35_{-0.27}^{+0.29}$	$4.1_{-3.6-0.7}^{+6.1+0.9}$	$3.8_{-3.3-0.5}^{+4.8+0.6}$

CP Asymmetries

Channel	Exp.	QCDF	PQCD	This work 1	This work 2
$B^{-} \rightarrow \rho^{-} \pi^{0}$	2 ± 11	$-4.0_{-1.2-2.2-0.4-17.7}^{+1.2+1.8+0.4+17.5}$	0-20	$8.3_{-18.9-0.8}^{+17.8+0.8}$	$5.4_{-10.0-0.5}^{+9.7+0.4}$
$B^{-} \rightarrow \rho^{0} \pi^{-}$	-7_{-13}^{+12}	$4.1_{-0.9-2.0-0.7-18.8}^{+1.3+2.2+0.6+19.0}$	-20-0	$-5.7_{-12.8-0.4}^{+13.0+0.5}$	$-8.4_{-14.5-0.8}^{+15.6+0.8}$
$B^{-} \rightarrow \omega \pi^{-}$	-4 ± 6	$-1.8{ }_{-0.5-3.3-0.7-2.2}^{+0.5+2.7+0.8+2.1}$	~ 0	$-5.0_{-19.3-0.5}^{+19.7+0.5}$	$-5.8_{-12.9-0.6}^{+13.7+0.5}$
$B^{-} \rightarrow K^{* 0} K^{-}$		$-23.5_{-5.7-9.0-6.5-36.8}^{+6.9+7.8+5.5+25.2}$	$-20 \pm 5 \pm 2$	$-0.8_{-5.6-0.1}^{+5.8+0.1}$	$-0.4_{-4.1-0.0}^{+4.1+0.0}$
$B^{-} \rightarrow K^{*-} K^{0}$...	$-13.4_{-3.0-3.5-4.7-36.7}^{+3.7+7.8+4.2+27.4}$	-49_{-3-7}^{+7+7}	$-1.3_{-2.4-0.1}^{+2.6+0.1}$	$-1.1_{-1.6-0.1}^{+1.7+0.1}$
$\bar{B}^{0} \rightarrow \rho^{+} \pi^{-}$	-53 ± 30	$0.6{ }_{-0.1}^{+0.2+1.6-0.1-11.7}$		$-8.6_{-17.0-0.6}^{+17.4+0.8}$	$-11.0_{-15.3-1.1}^{+17.4+1.0}$
$\bar{B}^{0} \rightarrow \rho^{-} \pi^{+}$	-15 ± 8	$-1.5_{-0.4-1.3-0.3-8.4}^{+0.4+1.2+0.2+8.5}$		$2.6{ }_{-19.7}^{+19.1+0.2}$	$0.9{ }_{-10.1-0.1}^{+10.0+0.1}$
$\bar{B}^{0} \rightarrow \rho^{0} \pi^{0}$	-30 ± 38	$-15.7_{-4.7-14.0-12.9-25.8}^{+4.8+12.3+11.0+19.8}$	-75-0	$5.5_{-21.8}^{+20.8+0.5}$	$9.7_{-22.5-0.9}^{+21.5+0.9}$
$\bar{B}^{0} \rightarrow \omega \pi^{0}$			-20-75	$-58.4{ }_{-0.0-4.1}^{+150.1+4.2}$	$-72.9_{-32.9-4.8}^{+179.1+4.7}$
$\bar{B}^{0} \rightarrow K^{* 0} \bar{K}^{0}$	\ldots	$-26.7_{-5.7-9.0-6.9-13.4}^{+7.4+7.2+5.7+10.9}$		$-0.8_{-5.6-0.1}^{+5.8+0.1}$	$-0.44_{-4.1}^{+4.1+0.0}$
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} K^{0}$		$\begin{aligned} & -13.1_{-3.0-2.9-5.2-7.4}^{+3.8+5.4+4.5+5.8} \\ & \hline \end{aligned}$		$-1.33_{-2.4-0.1}^{+2.6+0.1}$	$-1.1_{-1.6-0.1}^{+1.7+0.1}$
$B^{-} \rightarrow \rho^{-} \eta$	1 ± 16	$-2.4_{-0.7}^{+0.7+6.3+0.4+0.2}+{ }_{-0.2}^{+6+0.2}$	$-13_{-0.5-14}^{+1.2+2}$	$-11.7_{-21.0-1.2}^{+22.0+1.1}$	$9.1_{-17.3-0.9}^{+17.7+0.9}$
$B^{-} \rightarrow \rho^{-} \eta^{\prime}$	-4 ± 28	$4.1_{-1.1-69-0.8-7.0}^{+1.2+7.9+0.5+7.0}$	$-18_{-1.6-14}^{+3.0+1}$	$-18.0_{-44.1-2.9}^{+65.9+2.6}$	$6.6_{-119.9-0.9}^{+666+0.8}$
$\bar{B}^{0} \rightarrow \rho^{0} \eta$	\ldots	...	$-13_{-0.5-14}^{+1.2+2}$	$-76.0_{-33.3-4.5}^{+189.5+2.9}$	$-28.22_{-76.6-2.6}^{+55.0+2.4}$
$\bar{B}^{0} \rightarrow \rho^{0} \eta^{\prime}$		\ldots	$-18_{-1.6-14}^{+3.0+1}$	$-59.5_{-40.1-4.2}^{+12.2+3.4}$	$-57.5_{-16.1-4.6}^{+68.6+4.4}$
$\bar{B}^{0} \rightarrow \omega \eta$	\ldots	$\begin{aligned} & -33.4_{-9.5-55.8-21.4-20.8}^{+10.0+65.3+20.9+19.2} \end{aligned}$	$-69.1_{-13.4}^{+15.1}$	$-16.1_{-28.7-1.6}^{+30.2+1.5}$	$9.55_{-18.0-0.9}^{+18.3+0.9}$
$\bar{B}^{0} \rightarrow \omega \eta^{\prime}$...	$0.2_{-0.1-76.5-11.5-20.1}^{+0.1+53.0+19.6+19.2}$	$13.9{ }_{-3.5}^{+4.1}$	$-55.4_{-37.0-5.5}^{+104.1+4.9}$	$35.6_{-19.7-3.0}^{+38.9+2.9}$

CP Asymmetries

Channel	Exp.	QCDF	PQCD	This work 1	This work 2
$B^{-} \rightarrow K^{*-} \pi^{0}$	4 ± 29	$8.7{ }_{-2.6-4.3+3.4-44.2}^{+2.1+5.0+41.7}$	-32_{-28}^{+21}	$-4.0{ }_{-27.8}^{+29.2+0.5}$	$-1.1_{-11.8-0.1}^{+11.8+0.1}$
$B^{-} \rightarrow \bar{K}^{* 0} \pi^{-}$	-8.5 ± 5.7	$1.6{ }_{-0.5}^{+0.4+0.6+0.5+2.5}$	-1_{-0}^{+1}	0	0
$B^{-} \rightarrow \rho^{0} K^{-}$	31_{-10}^{+11}	$-13.6_{-5.7-4.4-3.1-55.4}^{+4.5+6.9+3.7+62.7}$	71_{-35}^{+25}	$8.0_{-16.1-0.6}^{+15.4+0.6}$	$14.3{ }_{-22.5-1.4}^{+20.8+1.1}$
$B^{-} \rightarrow \rho^{-} \bar{K}^{0}$	-12 ± 17	$0.3_{-0.1}^{+0.1+0.3+0.2+1.6}$	1 ± 1	0	0
$B^{-} \rightarrow \omega K^{-}$	2 ± 5	$-7.8_{-3.0-3.6-1.9-38.0}^{+2.6+5.9+2.4}$	32_{-17}^{+15}	$10.1_{-20.5-0.9}^{+18.5+1.0}$	$11.1_{-17.3}^{+16.8+1.0}$
$B^{-} \rightarrow \phi K^{-}$	3.4 ± 4.4	$1.6_{-0.5-0.5-0.3-1.2}^{+0.4+0.6+0.5+3.0}$	1_{-1}^{+0}	0	0
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \pi^{0}$		$-12.8{ }_{-3.2}^{+4.0+4.7+2.7+41.7}$	-11_{-5}^{+7}	$1.1_{-8.3-0.1}^{+8.0+0.1}$	$0.4_{-4.8-0.0}^{+4.8+0}$
$\bar{B}^{0} \rightarrow \bar{K}^{*-} \pi^{+}$	-5 ± 14	$2.1{ }_{-0.7}^{+0.6+8.2+5.1+52.5}$	-60_{-19}^{+32}	$-2.5{ }_{-17.8}^{+18.5+0.3}$	$-1.0{ }_{-11.4-0.1}^{+11.4+0.1}$
$\bar{B}^{0} \rightarrow \rho^{0} \bar{K}^{0}$	$-2 \pm 27 \pm 8 \pm 6$	$7.5{ }_{-2.1}^{+1.7+2.3+0.7+8.8}$	7_{-5}^{+8}	$-5.9_{-10.1}^{+11.9+0.7}$	$-3.1{ }_{-4.8-0.2}^{+4.9+0.2}$
$\bar{B}^{0} \rightarrow \rho^{+} K^{-}$	22 ± 23	$-3.8{ }_{-1.4-2.7-1.6-32.7}^{+1.3+4.4+1.9+3.5}$	64_{-30}^{+24}	$6.0_{-12.1-0.6}^{+11.1+0.6}$	$8.7_{-13.6-0.8}^{+13.1+0.6}$
$\bar{B}^{0} \rightarrow \omega \bar{K}^{0}$	21 ± 19	$-8.1_{-2.0-3.3-1.4-12.9}^{+2.5+3.0+1.7+11.8}$	-3_{-3}^{+2}	$4.7_{-9.5-0.5}^{+8.4+0.5}$	$3.4_{-5.4-0.3}^{+5.2+0.3}$
$\bar{B}^{0} \rightarrow \phi \bar{K}^{0}$	1 ± 12	$1.7_{-0.5-0.5-0.3-0.8}^{+0.4+0.6+0.5+1.4}$	3_{-2}^{+1}	0	0
$B^{-} \rightarrow K^{*-} \eta$	2 ± 6	$3.5_{-0.9-2.7-0.8-20.5}^{+0.9+1.9+0.8+20.7}$	$-24.57_{-0.27}^{+0.72}$	$-0.9_{-5.5-0.1}^{+5.3+0.1}$	$-4.6{ }_{-3.4-0.3}^{+3.4+0.3}$
$B^{-} \rightarrow K^{*-} \eta^{\prime}$	30_{-37}^{+33}	$\mid-14.2_{-4.2-13.8-14.6-26.1}^{+4.7+8.5+27.5}$	$4.60{ }_{-1.32}^{+1.16}$	$2.6_{-20.9}^{+29.1+0.3}$	$-0.7_{-34.5-0.1}^{+36.4+0.1}$
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \eta$	$19 \pm$	$3.8{ }_{-1.1}^{+0.9+1.1+8-0.2+3.8}$	0.57 ± 0.011	$-0.4_{-2.4-0.0}^{+2.3+0.0}$	$-1.6{ }_{-1.1}^{+1.1+0.1}$
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \eta^{\prime}$	-8 ± 25	$-5.5_{-1.3-5.1-5.9-7.0}^{+1.6+3.1+1.8+6.2}$	-1.30 ± 0.08	$10.2_{-10.3-1.3}^{+8.7+1.3}$	$-9.8{ }_{-6.4-0.9}^{+4.5+0.9}$

Branching Ratios

Modes	QCDF	PQCD	This work 1	This work 2
$\bar{B}_{s}^{0} \rightarrow K^{+} K^{*-}$	$4.1_{-1.5-1.3-0.9+2.3}^{+1.7+1.5}$	$6.0_{-1.5-1.2-0.3}^{+1.7+1.7+0.7}$	$8.3_{-3.4-1.3}^{+4.3+1.6}$	$9.5{ }_{-2.7-1.1}^{+3.2+1.2}$
$\bar{B}_{s}^{0} \rightarrow K^{*+} K^{-}$	$5.5_{-1.4-2.6-0.7-3.6}^{+1.3+5.0+0.8+14.2}$	$4.7{ }_{-0.8}^{+1.1+2.5+0.0}$	$9.8{ }_{-3.7}^{+4.6+1.4}$	$10.3_{-3.2-1.2}^{+3.8+1.5}$
$\bar{B}_{s}^{0} \rightarrow K^{0} \bar{K}^{* 0}$		$7.3_{-1.7-1.3-0.0}^{+2.5+2.1+0.0}$	$7.9_{-3.4-1.3}^{+4.3+1.6}$	$9.3_{-2.7-1.0}^{+3.2+1.2}$
$\bar{B}_{s}^{0} \rightarrow K^{* 0} \bar{K}^{0}$	$4.2{ }_{-0.4-2.2-0.9-3.2}^{+0.4+4.6+1.1+13.2}$	$4.3{ }_{-0.7-1.4}^{+0.7+2.0}$	$8.7_{-3.5-1.3}^{+4.4+1.6}$	$9.3_{-3.1-1.2}^{+3.7+1.4}$
$B_{s}^{0} / \bar{B}_{s}^{0} \rightarrow K^{+} K^{*-}$			$17.3{ }_{-5.1-2.7}^{+6.5+3.2}$	$18.8{ }_{-4.5-2.2}^{+5.1+2.5}$
$B_{s}^{0} / \bar{B}_{s}^{0} \rightarrow K^{*+} K^{-}$			$18.8{ }_{-5.4-2.8}^{+6.8+3.3}$	$20.8{ }_{-4.7}^{+5.3+2.7}$
$\left\{\begin{array}{l} \bar{B}_{s}^{0} \rightarrow K^{*+} K^{-} \\ \bar{B}_{s}^{0} \rightarrow K^{*-} K^{+} \end{array}\right\}$			$18.1{ }_{-5.0-2.7}^{+6.3+3.3}$	$19.8{ }_{-4.2-2.2}^{+4.9+2.6}$
$B_{s}^{0} / \bar{B}_{s}^{0} \rightarrow K^{0} \bar{K}^{* 0}$			$16.6{ }_{-4.8-2.7}^{+6.1+3.2}$	$18.6{ }_{-4.1-2.2}^{+4.9+2.6}$
$B_{s}^{0} / \bar{B}_{s}^{0} \rightarrow K^{* 0} \bar{K}^{0}$			$16.6_{-4.8-2.7}^{+6.1+3.2}$	$18.6{ }_{-4.1}^{+4.9+2.6}$
$\left.\begin{array}{rl} \bar{B}_{s}^{0} & \rightarrow K^{* 0} \bar{K}^{0} \\ \bar{B}_{s}^{0} \rightarrow \bar{K}^{* 0} K^{0} \end{array}\right\}$			$16.6{ }_{-4.8-2.7}^{+6.1+3.2}$	$18.6{ }_{-4.1}^{+4.9+2.6}$
$\bar{B}_{s}^{0} \rightarrow \pi^{0} \phi$	$\begin{aligned} & 0.12_{-0.02-0.04-0.01-0.01}^{+0.03+0.04+0.01+0.02} \end{aligned}$	$0.16_{-0.05-0.02-0.00}^{+0.06+0.02+0.00}$	$0.07_{-0.00}^{+0.00+0.01}$	$0.09_{-0.00}^{+0.00+0.01}$
$\bar{B}_{s}^{0} \rightarrow \pi^{-} K^{*+}$	$8.7{ }_{-3.7}^{+4.6+3.9+0.7+1.0-0.7}$	$7.6_{-2.2-0.5-0.3}^{+2.9+0.4}$	$5.8_{-0.5-0.5}^{+0.5+0.5}$	$6.8_{-0.1-0.7}^{+0.2+0.7}$
$\bar{B}_{s}^{0} \rightarrow \pi^{0} K^{* 0}$	$0.25_{-0.08-0.06-0.14-0.14}^{+0.08+0.10+0.32+0.30}$	$0.07_{-0.01}^{+0.02+0.04+0.01}{ }_{-0.01}$	$0.90_{-0.00-0.11}^{+0.07+0.10}$	$0.99_{-0.15-0.08}^{+0.16+0.10}$
$\bar{B}_{s}^{0} \rightarrow \rho^{-} K^{+}$	$24.5_{-9.7-7.8-3.0-1.6}^{+11.9+9.2+1.8+1.6}$	$17.8_{-5.6-1.6-0.9}^{+7.7+1.3+1.1}$	$7.4_{-0.1-0.8}^{+0.2+0.8}$	$10.1_{-0.4-0.9}^{+0.4+0.9}$
$\bar{B}_{s}^{0} \rightarrow \rho^{0} K^{0}$	$0.61_{-0.26-0.15-0.38-0.36}^{+0.33+0.21+1.06+0.56}$	$0.08_{-0.02}^{+0.02+0.07}+{ }_{-0.00}^{+0.01}$	$2.1_{-0.2}^{+0.2+0.2}$	$0.79_{-0.00-0.09}^{+0.02+0.08}$
$\bar{B}_{s}^{0} \rightarrow K^{0} \omega$	$0.51_{-0.18-0.11-0.23-0.25}^{+0.20+0.15+0.68+0.40}$	$0.15_{-0.04-0.03-0.01}^{+0.05+0.07+0.02}$	$0.94{ }_{-0.00}^{+0.05+0.11}$	$1.3_{-0.1}^{+0.1+0.1}$
$\bar{B}_{s}^{0} \rightarrow K^{0} \phi$	$0.27_{-0.08-0.14-0.06-0.18}^{+0.09+0.28+0.09+0.67}$	$0.16_{-0.03-0.04-0.01}^{+0.04+0.09+0.02}$	$0.44{ }_{-0.18-0.07}^{+0.23+0.08}$	$0.54_{-0.17}^{+0.21+0.07}$
$\bar{B}_{s}^{0} \rightarrow \rho^{0} \eta$	$0.17{ }_{-0.03-0.06-0.02-0.01}^{+0.03+0.07+0.02+0.02 ~}$	$0.06{ }_{-0.02}^{+0.03+0.01+0.00}$	$0.08_{-0.03-0.01}^{+0.04+0.01}$	$0.06{ }_{-0.02-0.00}^{+0.03+0.00}$
$\bar{B}_{s}^{0} \rightarrow \rho^{0} \eta^{\prime}$	$0.25_{-0.05-0.08-0.02+0.02}^{+0.06+0.10+0.02+0.02}$	$0.13_{-0.04-0.02-0.01}^{+0.06+0.02+0.00}$	$0.003_{-0.000}^{+0.089+0.000}$	$0.15{ }_{-0.12}^{+0.24+0.01}$
$\bar{B}_{s}^{0} \rightarrow \omega \eta$	$0.012_{-0.004-0.003+0.006+0.006}^{+0.05+0.010+0.025}$	$0.04{ }_{-0.01-0.02-0.00}^{+0.03+0.05+0.00}$	$0.04{ }_{-0.02}^{+0.04+0.00}$	$0.007_{-0.002-0.001}^{+0.010+0.001}$
$\bar{B}_{s}^{0} \rightarrow \omega \eta^{\prime}$	$0.024_{-0.009}^{+0.011+0.006-0.010-0.015}+0.077+0.042$	$0.44_{-0.13}^{+0.18+0.15+0.00}{ }_{-0.01}^{+0.00}$	$0.002_{-0.000-0.000}^{+0.108+0.000}$	$0.22_{-0.18-0.02}^{+0.35+0.02}$
$\bar{B}_{s}^{0} \rightarrow \phi \eta$	$0.12_{-0.02-0.14-0.12-0.13}^{+0.02+0.95+0.34+0.32}$	$3.6{ }_{-1.0-0.6+0.0}^{+1.5+0.8+0.0}$	$0.40_{-0.51-0.07}^{+1.40+0.08}$	$1.2_{-1.2-0.2}^{+2.1+0.2}$
$\bar{B}_{s}^{0} \rightarrow \phi \eta^{\prime}$	$\begin{aligned} & 0.05_{-0.01-0.17-0.08-0.04}^{+0.01+1.10+0.18+0.40} \\ & \hline \end{aligned}$	$0.19_{-0.01-0.13-0.00}^{+0.06+0.19+0.00}$	$7.7_{-5.5-1.3}^{+7.8+1.6}$	$4.2_{-3.5-0.6}^{+5.2+0.7}$
$\bar{B}_{s}^{0} \rightarrow K^{* 0} \eta$	$0.26_{-0.13-0.22-0.05-0.15}^{+0.15+0.49+0.15+0.57}$	$0.17_{-0.04-0.06-0.01}^{+0.04+0.10+0.03}$	$1.7_{-0.3-0.1}^{+0.3+0.2}$	$0.55_{-0.12+0.07}^{+0.13+0.07}$
$\bar{B}_{s}^{0} \rightarrow K^{* 0} \eta^{\prime}$	$0.28_{-0.04-0.24-0.10-0.15}^{+0.04+0.46+0.23+0.29}$	$0.09_{-0.02{ }_{-0.02}^{+0.02+0.01}}$	$0.66{ }_{-0.26-0.11}^{+0.34+0.12}$	$0.77_{-0.30-0.08}^{+0.33+0.09}$

$\mathrm{B} \rightarrow K \pi$

There is an interesting correlation in the CP-asymmetries:
(BBNS or BPRS or Williamson et.al. or Pierini et.al.)

LO: $\quad \mathrm{A}_{K^{+} \pi^{0}}<A_{K^{+} \pi^{-}}$
$\sim 1.5-2.5 \sigma$ deviation
(with theory error estimate from hadronic parameters and power corr.)

HFAG'08

$$
\begin{aligned}
\mathrm{A}_{K^{+} \pi^{-}} & =-0.097 \pm 0.012 \\
\mathrm{~A}_{K^{+} \pi^{0}} & =0.050 \pm 0.025
\end{aligned}
$$

The usual "largest" power corrections that people include (chiral enhanced annihilation, chiral enhanced amplitudes, charming penguins) do not explain this, since they contribute equally to both amplitudes.

Sizeable power corrections can shift things towards the data, but an explicit power suppressed amplitude with a suitably large numerical coefficient (in SCET) has not yet been derived.

Br are reproduced IF penguin is reproduced

Penguin ology

$$
A\left(B \rightarrow M_{1} M_{2}\right)=T^{M_{1} M_{2}} V_{u b} V_{u f}^{*}+P^{M_{1} M_{2}} V_{c b} V_{c f}^{*}
$$

How well can we reproduce the experimentally observed penguin amplitudes?

Penguin Phenomenology

Beneke, Jager; Jain et.al.

$$
\begin{aligned}
& \text { theory: } \quad \alpha_{s} \equiv \alpha_{s}\left(m_{b}\right) \\
& \hat{P}_{0} \sim\left(C_{3,4}+\frac{\alpha_{s}\left(m_{b}\right) C_{1,2,8 g}}{\pi}\right) \zeta^{B M} \phi^{M^{\prime}}+\left(C_{3,4}+\frac{\alpha_{s}\left(m_{b}\right) C_{1,2,8 g}}{\pi}\right) \zeta_{J}^{B M} \phi^{M^{\prime}} \quad \mathrm{LO} \\
& +C_{1,2} \alpha_{s}\left(2 m_{c}\right) v \hat{A}_{c c}^{B M M^{\prime}} \quad \text { Non.Pert. Charm Penguin } \\
& \text { Ciuchini et al, } \\
& \text { Colangelo et al } \\
& +\left(C_{5,6}+\frac{\alpha_{s}\left(m_{b}\right) C_{1,2,8 g}}{\pi}\right)\left[\frac{\mu_{M^{\prime}}}{m_{b}} \zeta^{B M} \phi_{p p}^{M^{\prime}}+\frac{\mu_{M^{\prime}}}{m_{b}} \zeta_{J}^{B M} \phi_{p p}^{M^{\prime}}\right]+\left(C_{3,4}+\frac{\alpha_{s}\left(m_{b}\right) C_{1,2,8 g}}{\pi}\right) \frac{\mu_{M}}{m_{b}} \zeta_{\chi}^{B M} \phi^{M^{\prime}} \\
& +\frac{\alpha_{s}\left(m_{b}\right)}{m_{b}}\left(C_{3,4} f_{B} \phi^{M} \phi^{M^{\prime}}+C_{5,6} f_{B} \phi_{B}^{+} \phi^{3 M} \phi^{M^{\prime}}\right) \\
& +C_{5,6} \frac{\alpha_{s}\left(m_{b}\right) \mu_{M}}{m_{b}^{2}} f_{B} \phi_{p p}^{M} \phi^{M^{\prime}}, \\
& +\ldots \\
& \text { Arnesen et al. } \\
& \hat{P}_{\pi \pi}^{\zeta_{J}}+\left.\hat{P}_{\pi \pi}^{\chi \zeta_{J}}\right|_{C_{3-10}} \sim f_{\pi} \zeta_{J}^{B \pi}\left(28+215 \frac{\mu_{\pi}}{3 m_{B}}\right) \\
& \int_{0} \frac{d x}{x}=\text { ? } \\
& +P^{\text {new }- \text { physics }} \\
& \text { terms BBNS } \\
& \text { terms } \\
& \text { Keum, Li, } \\
& \text { Sanda }
\end{aligned}
$$

	$\hat{P}^{\mathrm{LO}} \times 10^{4}$	$\hat{P}^{\chi} \times 10^{4}$	$\hat{P}^{\mathrm{ann}} \times 10^{4}$	$\hat{P}^{\text {total }} \times 10^{4}$	$\hat{P}_{\text {ispin }}^{\text {expt }} \times 10^{4}$ $\left(\gamma=59^{\circ}\right)$	$\hat{P}_{\text {ispin }}^{\text {expt }} \times 10^{4}$ $\left(\gamma=74^{\circ}\right)$	$\hat{P}_{\mathrm{TF}}^{\text {expt }} \times 10^{4}$ $\left(\gamma=59^{\circ}-74^{\circ}\right)$
$B \rightarrow \pi \pi$	(8.10 ± 0.63)	(10.2 ± 2.9)	-1.31 ± 5.08	(16.9 ± 5.9)	(18 ± 9)	(44 ± 6)	
	$+i(1.61 \pm 0.21)$	$+i(1.10 \pm 0.39)$		$+i(2.71 \pm 0.45)$	$-i(29 \pm 6)$	$-i(29 \pm 6)$	
$B \rightarrow K \pi$	(9.34 ± 1.00)	(13.8 ± 3.9)	0.46 ± 8.03	(23.6 ± 9.0)			$\pm(48 \pm 4 \pm 10)$
	$+i(2.08 \pm 0.25)$	$+i(1.49 \pm 0.57)$		$+i(3.57 \pm 0.62)$			$-i(22 \pm 7 \pm 4)$
$B \rightarrow \rho \rho$	$22.4_{-2.3}^{+3.7}$	-	$0.87_{-0.29}^{+0.67}$	$23.3_{-2.4}^{+3.7}$	$-(29 \pm 26)$	(38 ± 23)	
	$+i 5.68_{-1.07}^{+2.45}$	-		$+i 5.68_{-1.07}^{+2.45}$	$-i(8 \pm 18)$	$-i(8 \pm 18)$	

All terms above have SMALL imaginary parts
phase
relative to
$T^{M_{1}^{+} M_{2}^{-}}$

Possible Imaginary contributions:

- new physics without long-distance penguins?
very unlikely. A large imaginary part requires that the new physics have a large strong phase

$$
\left|\operatorname{Im}\left(N_{1,2}\right)\right| \leq \frac{|\operatorname{Im}(N)|}{\sin \gamma} \quad N e^{-i \phi}=N_{1}+N_{2} e^{i \gamma}
$$

- complex annihilation
- complex charm penguins

Does Annihilation produce the Imaginary term?

c)

d)
 singular

$$
\begin{gathered}
\bar{x} \longrightarrow 0 \\
\int_{0}^{1} d x \frac{\phi_{\pi}(x)}{\bar{x}^{2}}
\end{gathered}
$$

This singularity has to do with a potential double counting in SCET

Same QCD topology appears twice.
In SCET there must be a cutoff to distinguish these two terms (\& dim.reg. alone does not suffice)

Rapidity Fact. in SCET distinguishes

 the collinear and soft d.o.f.zero-bin
subtraction

Can use cutoff or
dim.reg. type regulators Can use cutoff or
dim.reg. type regulators
nonpert. functions

Manohar \& I.S.

$$
\begin{array}{ll}
\text { get } & \phi\left(x, \mu, p^{-} / a\right) \\
& \phi\left(x, \mu, p^{-} / \mu^{-}\right)
\end{array}
$$

$\sum_{p_{1} \neq 0} \int d p_{1}^{r} F\left(p_{1}\right)=\int d p_{1}\left[F\left(p_{1}\right)-F_{\text {subt }}\left(p_{1}\right)\right]$
collinear integrand in soft region and visa-versa

This hard scattering term is real.

Naive counting:

$$
\sim \alpha_{s}\left(m_{b}\right) \frac{\Lambda}{m_{b}}
$$

This soft rescattering term is complex.
$\sim \alpha_{s}^{2}(\sqrt{m \Lambda}) \frac{\Lambda}{m_{b}} \quad \begin{gathered}\text { "Annihilation } \\ \text { is real" }\end{gathered}$
Proper: the two graphs are factored at a high scale where all alphas' are equal. To determine the dominance one needs an RGE (which has not been derived for these rapidity cutoff amplitudes).

Path to finding New Physics in the presence of

 Hadronic Parameters/Expansions (best we can do?)I) use as much form factor information from semileptonic decays as possible (synergy is like $B \rightarrow X_{s} \gamma$ with $B \rightarrow X_{u} e \bar{\nu} \quad$)
II) use global fits which combine Factorization and $\mathrm{SU}(3)$ to look for interesting channels with large deviations
III) use Factorization and $\operatorname{SU}(2)$ for individual channels, to obtain more precise predictions (at the expense of additional fit parameters)
IV) use $\mathrm{SU}(3)$ fits as a cross-check on the hadronic uncertainties (supplementing II and III)
V) include THEORY uncertainty when discussing any deviations (power corrections, model parameters, etc.)
VI) build a new-physics model that correlates and explains the deviations in several channels

