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B → V V

, ,



In practice relations between SM amplitudes are 
  approximate, and are always based on expansions of 

Ideally we would compute nonleptonic amplitudes
  exactly using the standard model Lagrangian. 
  They would all be “related” by SM parameters.
  but...

B

!

!
Weak

Observable = O(0) + ε O(1) + ε2O(2) + . . .

... Hadronic Uncertainties ...

LSM

ε! 1



Expansion

• mW ,mt ! mb Hweak =
GF√

2

∑

i

λiCi(µ)Oi(µ) ε2 =
m2

b

m2
W

∼ 0.003

 Parameter

• Heavy Quark Effective Theory

• SU(3) or U-spin

• Factorization for 
Nonleptonic decays

(Soft Collinear Effective Theory)

ε =
Λ
mb

∼ 0.1

ε =
Λ
Eπ

∼ 0.2

ε =
ms

Λ
∼ 0.3

mb ! Λ

Eπ ! Λ

Λ! ms,d,u

• SU(2) ie. isospin ε =
mu,d

Λ
∼ 0.02Λ! mu,d

• λ2 ! 1
V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 ε2 = λ2 ∼ 0.04∼




1 λ λ3

λ 1 λ2

λ3 λ2 1







What precisely are we testing when we make 
measurements of     or     with different methods?

Using CKM unitarity of the standard model we can write:

where          are complex, CP even,  “hadronic amplitudes”.
Consider an arbitrary new physics contribution to this channel, 
 and write:

ASM (B̄ →M1M2) = S1 + S2e
−iγ

S1,2

ANP (B̄ →M1M2) = Neiφ = N1 + N2e
−iγ Botella 

& Silva

S1 → S1 + N1

N1,2 are complex and CP even. ImN1 =
sin(γ + φ)

sin(γ)
Im(N)eg.

•

•

• Thus new physics in the decay simply shifts hadronic amplitudes:
, S2 → S2 + N2

Measurements test relations between SM amplitudes       which
may be violated by new physics.

Si

β γ

Ne−iφ = N1 + N2e
iγ&



More 
Relations

More 
Expansion 
Parameters

More tests for 
new physics

Larger SM
uncertainties
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no SCET SCET
expn.

SU(2) SU(3)
+SU(2) +SU(3)

B → ππ 11 7/5 4

B → Kπ 15 11
15/13

+5(6)
4

B → KK̄ 11 11 +4/0 +3(4) +0

TABLE II: Number of real hadronic parameters from differ-
ent expansions in QCD. The first column shows the number of
theory inputs with no approximations, while the next columns
show the number of parameters using only SU(2), using only
SU(3), using SU(2) and SCET, and using SU(3) with SCET.
For the cases with two numbers, #/#, the second follows
from the first after neglecting the small penguin coefficients,
ie setting C7,8 = 0. In SU(2) + SCET B → Kπ has 6 pa-
rameters, but 1 appears already in B → ππ, hence the +5(6).
The notation is analogous for the +3(4) for B → KK̄.

ruled out by Bose symmetry). This leaves 2 reduced
matrix elements for each CKM structure, 〈0||1/2||1/2〉
and 〈2||3/2||1/2〉. For B → Kπ decays the electroweak
Hamiltonian has either ∆I = 0 or ∆I = 1. The Kπ
system is either in an I = 1/2 or I = 3/2 state thus
there are three reduced matrix elements per CKM struc-
ture, 〈3/2||1||1/2〉, 〈1/2||1||1/2〉 and 〈1/2||0||1/2〉. Fi-
nally, KK̄ is either an I = 0 or I = 1, and there are
again three reduced matrix elements per CKM structure,
〈0||1/2||1/2〉, 〈1||1/2||1/2〉, and 〈1||3/2||1/2〉.

The SU(3) flavor symmetry relates not only the decays
B → ππ and B → Kπ, B → KK, but also B → πη8,
B → η8K and Bs decays to two light mesons. The de-
composition of the amplitudes in terms of SU(3) reduced
matrix elements can be obtained from [50, 51, 52]. The
Hamiltonian can transform either as a 3

s
, 3

a
, 6 or 15.

Thus, there are 7 reduced matrix elements per CKM
structure, 〈1||3s||3〉, 〈1||3a||3〉, 〈8||3s||3〉, 〈8||3a||3〉,
〈8||6s||3〉, 〈8||15

s||3〉 and 〈27||15
s||3〉. The 3

a
and 3

s

come in a single linear combination so this leaves 20
hadronic parameters to describe all these decays minus 1
overall phase (plus additional parameters for singlets and
mixing to properly describe η and η′). Of these hadronic
parameters, only 15 are required to describe B → ππ
and B → Kπ decays (16 minus an overall phase). If we
add B → KK decays then 4 more paramaters are needed
(which are solely due to electroweak penguins). This is
discussed further in section II D.

The number of parameters that occur at leading order
in different expansions of QCD are summarized in Ta-
ble II, including the SCET expansion. Here by SCET
we mean after factorization at mb but without using any
information about the factorization at

√
EΛ. The SCET

results are discussed further in section III, but we sum-
marize them here. The parameters with isospin+SCET
are

ππ : {ζBπ+ζBπ
J , βπζBπ

J , Pππ} , (11)

Kπ : {ζBπ+ζBπ
J , βK̄ζBπ

J , ζBK̄ + ζBK̄
J , βπζBK̄

J , PKπ} ,

KK̄ : {ζBK̄ + ζBK̄
J , βKζBK̄

J , PKK̄} .

Here PM1M2
are complex penguin amplitudes and the re-

maining parameters are real.1 In B → ππ the moment
parameter βπ is not linearly independent from the pa-
rameters ζBπ and ζBπ

J , and only the product βπζBπ
J was

counted as a parameter. In any case it is fairly well known
from fits to γ∗γ → π0 [53] 3βπ ≡ 〈x−1〉π & 3.2 ± 0.2. In
isospin + SCET B → Kπ has 6 parameters, but the first
one listed in (11) appears already in B → ππ, hence the
+5 in Table II. If the ratio βK/βπ was known from else-
where then one more parameter can be removed for Kπ
(leaving +4). For B → KK̄ we have 4 SCET parame-
ters. One of these appears already in B → Kπ, hence
the +3, and if βK/βK̄ is known from other processes it
would become +2.

Taking SCET + SU(3) we have the additional relations
ζBπ = ζBK = ζBK̄ , ζBπ

J = ζBK
J = ζBK̄

J , βπ = βK = βK̄ ,
and Aππ

cc = AKπ
cc = AKK̄

cc which reduces the number of
parameters considerably.

Note that there are good indications that the param-
eters ζBM and ζBM

J are positive numbers in the SCET
factorization theorem. (βK , βπ, βK̄ are also positive.)
This follows from: i) the fact that ζBM +ζBM

J are related
to form factors for heavy-to-light transitions which with
a suitable phase convention one expects are positive for
all q2, ii) that ζBM

J is positive (from the relatively safe as-
sumption that radiative corrections at the scale

√
EΛ do

not change the sign of ζM1M2

J and that ζJ ∝ βπλB > 0),
and finally iii) that the fit to B → ππ data gives
ζBπ, ζBπ

J > 0 so that SU(3) implies ζBK , ζBK
J > 0. We

will see that this allows some interesting predictions to
be made even without knowing the exact values of the
parameters.

In using the expansions in (3) it is important to keep
in mind the hierarchy of CKM elements, and the rough
hierarchy of the Wilson coefficients

C1
>∼ C2 ) C3−6 ) C9,10

>∼ C7,8 . (12)

Some authors attempt to exploit the numerical values of
the Wilson coefficients in the electroweak Hamiltonian
to further reduce the number of parameters. A common
example is the neglect of the coefficients C7,8 relative to
C9,10. In Eq. (10) the electroweak penguin operators O9

and O10 were written as linear combinations of O1−4.
This implies that if one neglects the electroweak penguin
operators Q7 and Q8, then no new operators are required
to describe the EW penguin effects. In some cases this
leads to additional simplifications. One can show that for
B → ππ decays the ∆I = 3/2 amplitudes multiplying the
CKM structures λu and λc are identical [23, 24]. Thus,

1 The penguin amplitudes are kept to all orders in Λ/mb since so
far there is no proof that the charm mass mc does not spoil fac-
torization, with large αs(2mc)v contributions competing with
αs(mb) hard-charm loop corrections [32]. This is controver-
sial [34, 35]. Our analysis treats these contributions in the most
conservative possible manner.

Counting parameters 

remove small O8,9a/b

eg. Isospin Analysis
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• tests small penguins in B → π0π− B → ρ0ρ−,
       can’t see new physics in             amplitudesI = 0

Baek, Botella, London, Silva
•

so we don’t want to stop here!



mW

?

mb

ΛQCD

mc

ms

mu,d

E

√
ΛE

}
Q hard-scale

intermediate-scale

hadronic-scale

}
treated as 
hadronic 

parameters

SCETIFactorization at mb

expansion in αs(mb) ! 0.22

all that is used in BPRS approach

Beneke & Jager (tree & penguin)
Jain, Rothstein, I.S. (penguin)

Recently O(αs(mb))
matching completed.



B

!

!

Factorization at mb

Nonleptonic

A(B →M1M2) = Acc̄+N

{
fM2ζ

BM1

∫
duT2ζ(u)φM2(u)+fM2

∫
dudzT2J(u, z)ζBM1

J (z)φM2(u)+(1↔ 2)
}

B →M1M2

All the LO terms are factorized into
two types of form factors

hard form 
factor

soft form 
factor

twist-2
distn.

twist-2
distn.

pseudoscalar: f+, f0, fT

vector: V , A0, A1, A2, T1, T2, T3

B →
B →Form Factors

f(E) =
∫

dz T (z,E) ζBM
J (z,E)

+ C(E) ζBM (E)

B → π"ν̄

B → K
∗
!
+
!
−

B → ργ

,
,

, ...

Same form factors
at large E

no endpoint 
singularities here



mW

?

mb

ΛQCD

mc

ms

mu,d

E

√
ΛE

}
Q hard-scale

intermediate-scale

hadronic-scale
}

treated as 
hadronic 

parameters

SCETIIFactorization at
√

EΛ

used in BBNS & pQCD approaches



BPRS (SCET)

BBNS 
(QCDF) pQCD

Key issues:

• Treatment of hadronic parameters appearing at LO in the expansion

• Treatment of annihilation

Beneke,Buchalla,Neubert,
  Sachrajda,(BBNS);

Chay, Kim;

Bauer, Pirjol, Rothstein, I.S.
(BPRS)

Keum, Li, Sanda (pQCD);
Lu et al.;

Ciuchini et al 
               (charming penguin),

charming
penguins

Treatment of perturbation theory at scales•
!! Λ2EΛQ2

} }αs(Q2) αs(EΛ)

• Treatment of         endpoint singularities1/x2

∫ 1

0
dx

φπ(x)
x2

∼
∫

0

dx

x
=∞

Treatment of charm loops•
!s(q )2

c

c

b
d,s

q

q

....
q µ

!s (mv)
threshold 

NRQCD region

M1M2 H(x, y)

π−K(∗)+, ρ−K(∗)+ −ãd
4(y, x)

π0K(∗)0, ρ0K(∗)0 1√
2

ãd
4(y, x)

π−π+, π−ρ+, ρ−π+, ρ−ρ+ −ãs
1(x, y) − ãs

3(x, y) − ãs
3(y, x)

π0π0, π0ρ0, ρ0ρ0
[

1
2 ãs

1(x, y) + ãs
3(x, y)

]

+
[

x ↔ y
]

K(∗)−K(∗)+ −ãs
1(x, y) − ãs

4(y, x) − ãs
3(x, y) − ãs

3(y, x)

K̄(∗)0K(∗)0 ãs
3(x, y) + ãs

3(y, x) + ãs
4(y, x)

TABLE III: Hard functions for B̄s decays for the annihilation amplitude A(1)
Lann in Eq. (23).

n

na) b) c) d)

soft

x
x

y
y

FIG. 2: Tree level annihilation graphs for B → M1M2 decays. Here soft, n, n̄ denote quarks that
are soft, n-collinear, and n̄-collinear respectively.

where the ø-notation and term involving the Wilson coefficient d(µ±) are discussed below.

Note that the coefficients a3u,3c,4u,4c,7,8 are polluted in the sense of Ref. [5], meaning that

O(α2
s) matching results proportional to the large coefficients C1,2 could compete numerically.

The others are not polluted: a1u,2u involve C1,2 at O(αs), while a1c,2c,5,6 only get contributions

from electroweak penguins. Our results for the diagrams in Fig. 2 agree with Refs. [7, 10].

This includes the appearance of the combinations of momentum fractions in the functions

F (x, y) and F (ȳ, x̄), up to ø-distribution and d-term. For later convenience we define moment

parameters which convolute the hard coefficients with the distributions

βM1M2

iu =

∫ 1

0

dx dy [aiu(x, y)+κai+4(x, y)] φM1(y)φM2(x) ,

βM1M2

ic =

∫ 1

0

dx dy [aic(x, y)+κai+4(x, y)] φM1(y)φM2(x) . (26)

In Eq. (25) the subscript ø denotes the fact that singular terms in convolution integrals

are finite in SCET due to the MS-factorization which involves convolution integrals such as

∑

x, x′ $=0

∫

dxr dx′
r δ(1−x−x′)

φM(x, x′, µ)

x̄2
, (27)

where x(′) and x(′)
r correspond to label and residual momenta [18]. Implementing x $= 0 and

x′ $= 0 requires zero-bin subtractions and divergences in the rapidity must also be regulated.

14

∼ Λ
mb



Checking SCET Factorization (Successes) 



B̄0 → D0M0

Mantry, Pirjol, I.S.

1
Nc

Λ
EM

& suppressed
"Color suppressed"

"Exchange"

DB

b c

u

d , u d

B

D

b

d

c

u

u ,d

u, d

!

!+AD(∗)π
longAD(∗)π

00 = N (∗)
0

∫
dx dz dk+

1 dk+
2 T (i)(z) J (i)(z, x, k+

1 , k+
2 ) S(i)(k+

1 , k+
2 ) φπ(x)

Blechman et al.

Without factorization
O

(EM

mc

)
= O(1)predictions spoiled by effects

D
0!0 0"

0 0
K

0"'

0#

D

D D

D

D
0$0

D
+!-

D
0!-

D
+
$-

D
0
$-D

+
%-

D
0 -
%

A(D*M)

A(D M)

0.0

0.5

1.0

1.5

2.0
color allowed

color suppressed

LO  SCET  prediction

*

* # + #

δ(Dπ) = 30.4± 4.8◦

δ(D∗π) = 31.0± 5.0◦
Find

and

Predict
equal strong phases δ(DM) = δ(D∗M)
equal amplitudes A(D∗M) = A(DM)



B → Xueν̄ in shape function region

m2
b ! mbΛQCD ! Λ2

QCD

same scales as in nonleptonic 
factorization theorems and no sign 
of breakdown in power counting

(eg. BLNP fits for Vub)

dΓ = H(p−,mb)
∫

d!+J
(
p−(p+ − !+)

)
S(!+)

Bigi et. al.; Neubert; 
Mannel, ...

+ factorization for power 
corrections too in SCET

eg.  Model Independent predictions even at subleading order

A weighted integral of the triple diff. rate can be taken to 
give the same leading + subleading shape functions as in                     
(using su3 for the 4-quark operator shape functions). 

Thus, Vub can be extracted in a model independent way 
with corrections at 

K. Lee, arXiv:0802.0873

B → Xsγ

O(Λ2
QCD/m2

b) and O(ms/mb)



Im
(C

T

)

∼ O

(

αs(mb),
Λ

Eπ

)

small strong phase between 
color suppressed and tree amplitudes 

1)

Can use this to do isospin analysis without                Cπ0π0

Bauer et.al.
(2008 updated)(expt. and theory errors)

1-σ from

B → ππ

B → ρρ same analysis applies
γππ
2nd = 27.7◦+9.9

−7.3

∣∣∣
exp

+10
−4.5

∣∣∣
thy

there is a 2nd solution:

γππ = 73.9◦+7.5
−10.3

∣∣∣
exp

+1.0
−2.5

∣∣∣
thy

(overlaps)γρρ = 77.5◦+7.4
−28

∣∣∣
exp

+1.0
−5.2

∣∣∣
thy

γρρ
2nd = 57.3◦+28

−7.5

∣∣∣
exp

+6.7
−4.1

∣∣∣
thy

γCKMfit.
global = 67.6◦+2.8◦

−4.5◦

γUTfit.
global = 66.7◦ ± 6.4◦ from

Jan.08

In charmless nonleptonics:



2) Relations between semileptonic & nonleptonic 

|Vub|ζBπ =
Nπ0π−

C2
1−C2

2

[
(C1 + C2)tππ

c − C2 +
4(C1 + C2)tππ

c − 3C1 − C2

〈x−1〉φπ

][
1 + O

(
αs(mb),

Λ
E

)]

|Vub|ζBπ
J =

Nπ0π−

C2
1−C2

2

[
−4(C1 + C2)tππ

c + 3C1 + C2

〈x−1〉φπ

][
1 + O

(
αs(mb),

Λ
E

)]

Nπ0π− =
[

64π

m3
Bf2

π

Br(B− → π0π−)
τB− |Vud|2G2

F

]1/2

Bππ =
√

1− C2
π+π− − S2

π+π−

•

•

• f+(0) = (ζBπ + ζBπ
J )

[
1 +O

(
αs(mb),

Λ
E

)]

nonleptonic

semileptonic

• δ ≡ 1− (m2
B −m2

π)
f+(0)

(
df+

dq2

∣∣∣∣
q2=0

− df0

dq2

∣∣∣∣
q2=0

)
=

2ζBπ
J

ζBπ
J + ζBπ

[
1 +O

(
αs(mb),

Λ
E

)]

=
|Tππ|

|Tππ + Cππ|
tππ
c =

[
Br(B− → π+π−)τB−

Br(B− → π0π−)τB0

(1+Bππ cos 2β + Sπ+π− sin 2β)
4 sin2 γ

]1/2

 shape parameter  Hill

B → ππ

B → π"ν̄

from Jain et.al.

δ from expt. + lattice has large uncertainty currently



Nonleptonic data gives:

f+(0) =
(
0.19 ± 0.01

∣∣
exp

± 0.05
∣∣
thy

)(3.8× 10−3

|Vub|

)

form factors of similar size with small 
expt. uncertainties

Semileptonic data (with dispersion fit & lattice) gives:

δ ≈ 1

plus get help from the Lattice, particularly for form factors that are 
  difficult/impossible to measure 

•

• we should use precision semileptonic data to determine hadronic parameters 
At Super B

B → {π, ρ, η, ω, η′}%ν̄ spectrafrom

Arnesen et.al.
(2008 update)

fHPQCD
+ (0) = 0.25± 0.03fFNAL

+ (0) = 0.23± 0.03
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no SCET SCET
expn.

SU(2) SU(3)
+SU(2) +SU(3)

B → ππ 11 7/5 4

B → Kπ 15 11
15/13

+5(6)
4

B → KK̄ 11 11 +4/0 +3(4) +0

TABLE II: Number of real hadronic parameters from differ-
ent expansions in QCD. The first column shows the number of
theory inputs with no approximations, while the next columns
show the number of parameters using only SU(2), using only
SU(3), using SU(2) and SCET, and using SU(3) with SCET.
For the cases with two numbers, #/#, the second follows
from the first after neglecting the small penguin coefficients,
ie setting C7,8 = 0. In SU(2) + SCET B → Kπ has 6 pa-
rameters, but 1 appears already in B → ππ, hence the +5(6).
The notation is analogous for the +3(4) for B → KK̄.

ruled out by Bose symmetry). This leaves 2 reduced
matrix elements for each CKM structure, 〈0||1/2||1/2〉
and 〈2||3/2||1/2〉. For B → Kπ decays the electroweak
Hamiltonian has either ∆I = 0 or ∆I = 1. The Kπ
system is either in an I = 1/2 or I = 3/2 state thus
there are three reduced matrix elements per CKM struc-
ture, 〈3/2||1||1/2〉, 〈1/2||1||1/2〉 and 〈1/2||0||1/2〉. Fi-
nally, KK̄ is either an I = 0 or I = 1, and there are
again three reduced matrix elements per CKM structure,
〈0||1/2||1/2〉, 〈1||1/2||1/2〉, and 〈1||3/2||1/2〉.

The SU(3) flavor symmetry relates not only the decays
B → ππ and B → Kπ, B → KK, but also B → πη8,
B → η8K and Bs decays to two light mesons. The de-
composition of the amplitudes in terms of SU(3) reduced
matrix elements can be obtained from [50, 51, 52]. The
Hamiltonian can transform either as a 3

s
, 3

a
, 6 or 15.

Thus, there are 7 reduced matrix elements per CKM
structure, 〈1||3s||3〉, 〈1||3a||3〉, 〈8||3s||3〉, 〈8||3a||3〉,
〈8||6s||3〉, 〈8||15

s||3〉 and 〈27||15
s||3〉. The 3

a
and 3

s

come in a single linear combination so this leaves 20
hadronic parameters to describe all these decays minus 1
overall phase (plus additional parameters for singlets and
mixing to properly describe η and η′). Of these hadronic
parameters, only 15 are required to describe B → ππ
and B → Kπ decays (16 minus an overall phase). If we
add B → KK decays then 4 more paramaters are needed
(which are solely due to electroweak penguins). This is
discussed further in section II D.

The number of parameters that occur at leading order
in different expansions of QCD are summarized in Ta-
ble II, including the SCET expansion. Here by SCET
we mean after factorization at mb but without using any
information about the factorization at

√
EΛ. The SCET

results are discussed further in section III, but we sum-
marize them here. The parameters with isospin+SCET
are

ππ : {ζBπ+ζBπ
J , βπζBπ

J , Pππ} , (11)

Kπ : {ζBπ+ζBπ
J , βK̄ζBπ

J , ζBK̄ + ζBK̄
J , βπζBK̄

J , PKπ} ,

KK̄ : {ζBK̄ + ζBK̄
J , βKζBK̄

J , PKK̄} .

Here PM1M2
are complex penguin amplitudes and the re-

maining parameters are real.1 In B → ππ the moment
parameter βπ is not linearly independent from the pa-
rameters ζBπ and ζBπ

J , and only the product βπζBπ
J was

counted as a parameter. In any case it is fairly well known
from fits to γ∗γ → π0 [53] 3βπ ≡ 〈x−1〉π & 3.2 ± 0.2. In
isospin + SCET B → Kπ has 6 parameters, but the first
one listed in (11) appears already in B → ππ, hence the
+5 in Table II. If the ratio βK/βπ was known from else-
where then one more parameter can be removed for Kπ
(leaving +4). For B → KK̄ we have 4 SCET parame-
ters. One of these appears already in B → Kπ, hence
the +3, and if βK/βK̄ is known from other processes it
would become +2.

Taking SCET + SU(3) we have the additional relations
ζBπ = ζBK = ζBK̄ , ζBπ

J = ζBK
J = ζBK̄

J , βπ = βK = βK̄ ,
and Aππ

cc = AKπ
cc = AKK̄

cc which reduces the number of
parameters considerably.

Note that there are good indications that the param-
eters ζBM and ζBM

J are positive numbers in the SCET
factorization theorem. (βK , βπ, βK̄ are also positive.)
This follows from: i) the fact that ζBM +ζBM

J are related
to form factors for heavy-to-light transitions which with
a suitable phase convention one expects are positive for
all q2, ii) that ζBM

J is positive (from the relatively safe as-
sumption that radiative corrections at the scale

√
EΛ do

not change the sign of ζM1M2

J and that ζJ ∝ βπλB > 0),
and finally iii) that the fit to B → ππ data gives
ζBπ, ζBπ

J > 0 so that SU(3) implies ζBK , ζBK
J > 0. We

will see that this allows some interesting predictions to
be made even without knowing the exact values of the
parameters.

In using the expansions in (3) it is important to keep
in mind the hierarchy of CKM elements, and the rough
hierarchy of the Wilson coefficients

C1
>∼ C2 ) C3−6 ) C9,10

>∼ C7,8 . (12)

Some authors attempt to exploit the numerical values of
the Wilson coefficients in the electroweak Hamiltonian
to further reduce the number of parameters. A common
example is the neglect of the coefficients C7,8 relative to
C9,10. In Eq. (10) the electroweak penguin operators O9

and O10 were written as linear combinations of O1−4.
This implies that if one neglects the electroweak penguin
operators Q7 and Q8, then no new operators are required
to describe the EW penguin effects. In some cases this
leads to additional simplifications. One can show that for
B → ππ decays the ∆I = 3/2 amplitudes multiplying the
CKM structures λu and λc are identical [23, 24]. Thus,

1 The penguin amplitudes are kept to all orders in Λ/mb since so
far there is no proof that the charm mass mc does not spoil fac-
torization, with large αs(2mc)v contributions competing with
αs(mb) hard-charm loop corrections [32]. This is controver-
sial [34, 35]. Our analysis treats these contributions in the most
conservative possible manner.

Counting parameters

Williamson & ZupanExtension to isosinglets
+4πη, ηη, Kη′, . . .
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FIG. 6: The gluonic charming penguin contributions with
intermediate on-shell charm quarks annihilating into two
collinear quarks going in the opposite directions, with n
collinear quark annihilating with spectator quark and pro-
ducing two n collinear gluons (compare also with diagrams b)
and d) of Fig. 4).

Similar relations for Acc will be given below.
Using SU(3) symmetry further relations are possible.

In the exact SU(3) limit only two ζ functions are needed
for the decays without isosinglet mesons

ζ(J) ≡ ζBπ
(J) = ζBK

(J) = ζBsK
(J) . (45)

Furthermore, to describe all the decays into isosinglet
mesons only the two new functions ζ(J)g defined in (43),
are needed. Namely, in exact SU(3) one has (cf. Eq.
(33))

ζ
Bsηq

(J) = 2ζ(J)g, ζBsηs

(J) = ζ(J) + ζ(J)g, (46)

in addition to the relations (43), (44).
Let us now discuss the nonperturbative charming pen-

guin contributions AM1M2
cc (37) in the isospin limit assum-

ing FKS mixing along with relation (42). The charming
penguins in B̄0, B− decays into πηq, πηs and ππ final
states are parameterized in terms of four complex pa-
rameters

Aππ
cc ≡ Aπ+π−

cc = Aπ0π0

cc ,

Aπηs
cc,g ≡ Aπ−ηs

cc = −
√

2Aπ0ηs
cc =

√
2Aηqηs

cc , (47)

and Aπη
cc , A

πηq
cc,g in terms of which

Aπ−ηq
cc =

√
2
(

Aπη
cc + Aπηq

cc,g

)

,

Aπ0ηq
cc = −Aπη

cc − Aπηq
cc,g,

Aηqηq
cc = Aππ

cc + 2Aπηq
cc,g, (48)

and Aπ−π0

cc = 0. Here A
πηq,s
cc,g describes the charming pen-

guin contributions, where the n collinear quark coming
from the annihilation of charm quarks annihilates the
spectator quark and produces two n collinear gluons, Fig.
6. At LO in 1/mb there is one additional relation

Aππ
cc = Aπη

cc . (49)

The amplitude Aππ
cc receives contributions from SCET

operators of higher order in 1/mb, where the spectator
quark directly attaches to the weak vertex. These higher
order corrections correspond to penguin annihilation in
the diagrammatic language and do not contribute to Aπη

cc .
At LO in 1/mb one further parameter is introduced for

∆S = 0 decays into two kaons

AKK
cc ≡ AK0K−

cc = AK0K̄0

cc , (50)

while higher order penguin annihilation contributions to
AK0K̄0

cc distinguish between the two amplitudes.
Three additional complex parameters describe charm-

ing penguins in ∆S = 1 decays of B̄0, B−

AKπ
cc ≡ AK−π+

cc = AK̄0π−

cc = −
√

2AK̄0π0

cc =
√

2AK−π0

cc ,
√

2AKηq
cc,g +

1√
2
AKπ

cc ≡ AK̄0ηq
cc = AK−ηq

cc ,

AKηs
cc,g + AKηs

cc ≡ AK−ηs
cc = AK̄0ηs

cc , (51)

where the gluonic component AKηs
cc,g has been pulled out

for later convenience. An additional six complex param-
eters describe charming penguin contributions in B̄0

s de-
cays

AπK
cc (s) ≡ A

B̄0
s→π−K+

cc = −
√

2A
B̄0

s→π0K0

cc

AKK
cc (s) ≡ A

B̄0
s→K−K+

cc = A
B̄0

s→K0K̄0

cc ,
√

2Aηsηq
ccg (s) ≡ A

B̄0
s→ηsηq

cc ,

2Aηsηs
cc (s) + 2Aηsηs

ccg (s) ≡ A
B̄0

s→ηsηs
cc ,

1√
2
AπK

cc (s) +
√

2AKηq
ccg (s) ≡ A

B̄0
s→K0ηq

cc ,

AKηs
cc (s) + AKηs

ccg (s) ≡ A
B̄0

s→K0ηs
cc , (52)

where the subscript g again denotes gluonic contributions
as before. Note that the above relations are valid to all
orders in the αS(mb) and 1/mb expansions, under the
assumptions leading to FKS mixing along with relation
(42).

In the limit of exact SU(3) and at LO in 1/mb the
above seventeen complex parameters in (47)-(52) are re-
lated to only two complex parameters

Acc = Aππ
cc = Aπη

cc = AKπ
cc = AKηs

cc = AKK
cc =

= AπK
cc (s) = AKK

cc (s) = Aηsηs
cc (s) = AKηs

cc (s),
(53)

and

Accg = Aπηq
cc,g = Aπηs

cc,g = AKηq
cc,g = AKηs

cc,g

= Aηsηq
ccg (s) = Aηsηs

ccg (s) = AKηq
ccg (s) = AKηs

ccg (s),
(54)

The same relations also apply to B decays into two vec-
tor mesons, with the replacements ηq → ω, ηs → φ,
π → ρ, K → K∗, but with additional simplification since

(2 solutions)

Global Fit
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TABLE V: Predicted CP averaged branching ratios (×10−6,
first row) and direct CP asymmetries (second row in each
mode) for ∆S = 0 and ∆S = 1 B decays (separated by hori-
zontal line) to two nonisosinglet pseudoscalar mesons. The er-
rors on the predictions are estimates of SU(3) breaking, 1/mb

corrections and due to errors on SCET parameters, respec-
tively.

Mode Exp Theory

B̄0 → π−π+ 5.0 ± 0.4 5.4 ± 1.3 ± 1.4 ± 0.4

0.37 ± 0.23 a 0.20 ± 0.17 ± 0.19 ± 0.05

B̄0 → π0π0 1.45 ± 0.52 b 0.84 ± 0.29 ± 0.30 ± 0.19

0.28 ± 0.40 −0.58 ± 0.39 ± 0.39 ± 0.13

B− → π0π− 5.5 ± 0.6 5.2 ± 1.6 ± 2.1 ± 0.6

0.01 ± 0.06 < 0.04

B− → K0K− 1.2 ± 0.3 1.1 ± 0.4 ± 1.4 ± 0.03

− −
B̄0 → K0K̄0 0.96 ± 0.25 1.0 ± 0.4 ± 1.4 ± 0.03

− −
B̄0 → π0K̄0 11.5 ± 1.0 9.4 ± 3.6 ± 0.2 ± 0.3

0.02 ± 0.13 0.05 ± 0.04 ± 0.04 ± 0.01

B̄0 → K−π+ 18.9 ± 0.7 20.1 ± 7.4 ± 1.3 ± 0.6

−0.115 ± 0.018 −0.06 ± 0.05 ± 0.06 ± 0.02

B− → K−π0 12.1 ± 0.8 11.3 ± 4.1 ± 1.0 ± 0.3

0.04 ± 0.04 −0.11 ± 0.09 ± 0.11 ± 0.02

B− → K̄0π− 24.1 ± 1.8 c 20.8 ± 7.9 ± 0.6 ± 0.7

−0.02 ± 0.05 d < 0.05

PDG scaled errors a(S = 2.3), b(S = 1.8), c(S = 1.4),
d(S = 1.5).

discuss the ratio R00 = R/Rn proposed in [14]

R00 = 2
Γ̄(B̄0 → K̄0π0)

Γ̄(B− → K̄0π−)
Exp.
= 1.03 ± 0.12. (85)

The deviations from 1 are experimentally only at the
level of at most 2σ. Also, of the CP asymmetries only
ACP

K−π+ is well measured, so that the values of the SCET
parameters ζBK

(J) , ζBπ
(J) and the phase of AπK

cc cannot at
present be reliably extracted from B → Kπ experi-
mental data alone. We thus impose SU(3) symmetry
Acc = Aππ

cc = AπK
cc , ζ(J) = ζBK

(J) = ζBπ
(J) and construct χ2

from observables in B → ππ and B → πK decays.
In B → ππ decays there is experimental information

on seven observables: the time dependent CP asymme-
try Sπ+π− , the three CP averaged decay widths Γ̄(B →
π+π−), Γ̄(B → π0π0), Γ̄(B → π−π0) and three direct
CP asymmetries ACP

π+π− ,ACP
π0π0 ACP

π−π0 . This latter is not
used in the fit since B− → π−π0 is a ∆I = 3/2 pro-
cess and thus does not receive QCD or charming penguin
contributions, so that strong phases are generated only
at NLO in αS(mb), while at LO the asymmetry is zero
irrespective of the SCET parameters.

In addition, the following observables in B → Kπ

TABLE VI: Predictions for the CP violating S parameters.
The errors on the predictions are estimates of SU(3) break-
ing, 1/mb corrections and errors due to SCET parameters,
respectively.

Mode Exp Theory

B̄0 → π−π+ −0.50 ± 0.19a −0.86 ± 0.07 ± 0.07 ± 0.02

B̄0 → π0π0 − 0.71 ± 0.34 ± 0.33 ± 0.10

B̄0 → π0KS 0.31 ± 0.26 0.80 ± 0.02 ± 0.02 ± 0.01

aError scaled according to PDG (S=1.5).

decays are used in the χ2-fit: the four CP averaged
decay widths Γ̄(B → K̄0π0), Γ̄(B → K−π+), Γ̄(B →
K−π0), Γ̄(B → K̄0π−), but only three direct CP asym-
metries ACP

K̄0π0 ,ACP
K−π+ ,ACP

K−π0 . The prediction for the
remaining direct CP asymmetry ACP

K̄0π− can receive large
corrections at NLO in αS(mb) from terms of the form

λ(s)
u C1,2αS(mb). These can be comparable in size to LO

terms proportional to λ(s)
u which come entirely from QCD

penguin operators. Also, the experimental information
on SKSπ0 is not used in the χ2-fit, and will be discussed
separately in Section III C.

From the χ2-fit to the B → ππ, Kπ data we then ob-
tain

ζ = (7.3 ± 1.8) × 10−2,

ζJ = (10.3 ± 1.6) × 10−2,
(86)

and

|Acc| = (46.8 ± 0.8) × 10−4 GeV,

arg(Acc) = 156◦ ± 6◦,
(87)

with χ2/d.o.f. = 44.6/(13−4), where the largest discrep-
ancies are in ACP

π0K− , ACP
π−K+ as can be seen from Table V.

This very high value of χ2 predominantly reflects the fact
that the expected theory errors coming from NLO 1/mb

and αS(mb) terms and from SU(3) breaking are larger
than experimental errors. If the estimates for these er-
rors, to be discussed below, that are given as first and
second errors on the theoretical values in Table V, are
added quadratically to experimental errors in the defini-
tion of χ2, the resulting value is χ2/d.o.f. = 8.9/(13− 4)
(χ2/d.o.f. = 15.3/(13 − 4) if SU(3) breaking errors are
taken to be correlated). The extracted values of SCET
parameters (86), (87) agree within errors with similar ex-
tractions from only ππ data or a combination of ππ and
πK data without modes that depend on ζBK

(J) that were

performed in Ref. [10].
Using the above values for the SCET parameters one

can predict CP averaged decay widths and direct CP
asymmetries with the results listed in Tables V and
VI. These results were obtained in the limit of ex-
act SU(3) and as such an error of 20% is introduced
as an estimate of SU(3) breaking effects in the relation
ζ(J) = ζBK

(J) = ζBπ
(J) . Similarly an additional 20% error on
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TABLE VII: Predicted CP averaged branching ratios (×10−6, first row) and direct CP asymmetries (second row for each mode)
for ∆S = 0 and ∆S = 1 B decays (separated by horizontal line) to isosinglet pseudoscalar mesons. The Theory I and Theory II
columns give predictions corresponding to Solution I,II sets of SCET parameters. The errors on the predictions are estimates
of SU(3) breaking, 1/mb corrections and errors due to SCET parameters, respectively. No prediction on CP asymmetries is
given, if [−1, 1] range is allowed at 1σ.

Mode Exp. Theory I Theory II

B− → π−η 4.3 ± 0.5 (S = 1.3) 4.9 ± 1.7 ± 1.0 ± 0.5 5.0 ± 1.7 ± 1.2 ± 0.4

−0.11 ± 0.08 0.05 ± 0.19 ± 0.21 ± 0.05 0.37 ± 0.19 ± 0.21 ± 0.05

B− → π−η′ 2.53 ± 0.79 (S = 1.5) 2.4 ± 1.2 ± 0.2 ± 0.4 2.8 ± 1.2 ± 0.3 ± 0.3

0.14 ± 0.15 0.21 ± 0.12 ± 0.10 ± 0.14 0.02 ± 0.10 ± 0.04 ± 0.15

B̄0 → π0η − 0.88 ± 0.54 ± 0.06 ± 0.42 0.68 ± 0.46 ± 0.03 ± 0.41

− 0.03 ± 0.10 ± 0.12 ± 0.05 −0.07 ± 0.16 ± 0.04 ± 0.90

B̄0 → π0η′ − 2.3 ± 0.8 ± 0.3 ± 2.7 1.3 ± 0.5 ± 0.1 ± 0.3

− −0.24 ± 0.10 ± 0.19 ± 0.24 −
B̄0 → ηη − 0.69 ± 0.38 ± 0.13 ± 0.58 1.0 ± 0.4 ± 0.3 ± 1.4

− −0.09 ± 0.24 ± 0.21 ± 0.04 0.48 ± 0.22 ± 0.20 ± 0.13

B̄0 → ηη′ − 1.0 ± 0.5 ± 0.1 ± 1.5 2.2 ± 0.7 ± 0.6 ± 5.4

− − 0.70 ± 0.13 ± 0.20 ± 0.04

B̄0 → η′η′ − 0.57 ± 0.23 ± 0.03 ± 0.69 1.2 ± 0.4 ± 0.3 ± 3.7

− − 0.60 ± 0.11 ± 0.22 ± 0.29

B̄0 → K̄0η′ 63.2 ± 4.9 (S = 1.5) 63.2 ± 24.7 ± 4.2 ± 8.1 62.2 ± 23.7 ± 5.5 ± 7.2

0.07 ± 0.10 (S = 1.5) 0.011 ± 0.006 ± 0.012 ± 0.002 −0.027 ± 0.007 ± 0.008 ± 0.005

B̄0 → K̄0η < 1.9 2.4 ± 4.4 ± 0.2 ± 0.3 2.3 ± 4.4 ± 0.2 ± 0.5

− 0.21 ± 0.20 ± 0.04 ± 0.03 −0.18 ± 0.22 ± 0.06 ± 0.04

B− → K−η′ 69.4 ± 2.7 69.5 ± 27.0 ± 4.3 ± 7.7 69.3 ± 26.0 ± 7.1 ± 6.3

0.031 ± 0.021 −0.010 ± 0.006 ± 0.007 ± 0.005 0.007 ± 0.005 ± 0.002 ± 0.009

B− → K−η 2.5 ± 0.3 2.7 ± 4.8 ± 0.4 ± 0.3 2.3 ± 4.5 ± 0.4 ± 0.3

−0.33 ± 0.17 (S = 1.4) 0.33 ± 0.30 ± 0.07 ± 0.03 −0.33 ± 0.39 ± 0.10 ± 0.04

has χ2/d.o.f. = 40.8/(10−4) or χ2/d.o.f. = 5.4/(10−4),
if theoretical errors are added in the definition of χ2. The
largest discrepancies with experimental data in this case
is in ACP

ηπ− while the prediction for ACP
ηK− agrees well with

data in contrast to Solution I.
The strong phases of the gluonic charming penguin

in the two solutions lie in opposite quadrants, while the
values of |Acc,g| and ζ±g agree between the two solutions.

The gluonic contribution to the B → η(′) form factors,
ζg + ζJg, is similar in size to ζ and ζJ in (83) as expected
from SCET counting, Using Eq. (60) we find in the SU(3)
limit and at LO in 1/mb and αS(mb)

f
Bηq

+ (0) =

{

(−2.3 ± 4.8)× 10−2,

(4.5 ± 8.6) × 10−2,
(111)

fBηs

+ (0) =

{

(−9.9 ± 2.4)× 10−2,

(−6.6 ± 4.3)× 10−2,
(112)

to be compared with fBπ
+ (0) = 0.176± 0.007, that is ob-

tained using the results of ππ, πK fit (83). The upper
(lower) rows in (111), (112) correspond to values in Solu-
tion I (Solution II), where only experimental errors due
to the extracted SCET parameters are shown. Because of

the large experimental uncertainties, the gluonic contri-
butions to the form factors are still consistent with zero
at a little above the 1σ level in Solution II. The gluonic
charming penguin Accg on the other hand is shown to be
nonzero in both sets of solutions and is of similar size to
Acc in (84) in agreement with SCET counting. The pre-
dicted branching ratios and direct CP asymmetries using
the above values are compiled in Table VII. The errors
due to SU(3) breaking and 1/mb or αS(mb) corrections
are estimated in the same way as in previous subsection.
An error of 20% and a variation on charming penguin
strong phase of 20◦ is assigned to relations (43)-(46) and
(53), (54) giving the first error estimate in the Table VII.
The remaining 1/mb and αS(mb) errors, listed as second
error estimates in Table VII, are obtained by varying the
size and strong phase of leading order amplitudes pro-

portional to λ(f)
u or λ(f)

t by 20% and 20◦ respectively.

A prominent feature of B → Kη(′) decays is the large
disparity between the branching ratios for B → Kη′ and
B → Kη decays. In the SCET framework this is quite
naturally explained through a constructive and destruc-
tive interference of different terms in the amplitudes as
has been first suggested in [94, 95]. Specifically, the am-
plitudes AB→Kη(′) are related to AB→Kηq and AB→Kηs

Branching Fraction 
Direct CP Asymmetry

errors:  su3,  1/mb, fit

Predictions
(4 param. fit)
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TABLE VIII: Predictions for the CP violating S parameters. The errors on the predictions are estimates of SU(3) breaking,
1/mb corrections and errors due to SCET parameters, respectively.

Mode Exp. Theory I Theory II

B̄0 → π0η − −0.90 ± 0.08 ± 0.03 ± 0.22 −0.67 ± 0.14 ± 0.03 ± 0.81

B̄0 → π0η′ − −0.96 ± 0.03 ± 0.05 ± 0.11 −0.60 ± 0.08 ± 0.08 ± 1.30

B̄0 → ηη − −0.98 ± 0.06 ± 0.03 ± 0.09 −0.78 ± 0.19 ± 0.12 ± 0.22

B̄0 → ηη′ − −0.82 ± 0.02 ± 0.04 ± 0.77 −0.71 ± 0.14 ± 0.19 ± 0.29

B̄0 → η′η′ − −0.59 ± 0.05 ± 0.08 ± 1.10 −0.78 ± 0.09 ± 0.19 ± 0.23

B̄0 → KSη′ 0.50 ± 0.13 (S = 1.4) 0.706 ± 0.005 ± 0.006 ± 0.003 0.715 ± 0.005 ± 0.008 ± 0.002

B̄0 → KSη − 0.69 ± 0.15 ± 0.05 ± 0.01 0.79 ± 0.14 ± 0.04 ± 0.01

AB−→η′K−

AB̄0→π+K−

!
(

cosφ +
sin φ√

2

)Acc

Acc

+
(

cosφ +
√

2 sin φ
)Accg

Acc
+ · · ·

! 1.22 + 1.67
Accg

Acc
,

(122)

where ellipses denote numerically smaller terms. In the
limit Accg → 0 thus Br(B → Kη′) and Br(B → πK)
would be of similar size, while in SCET we expect Accg ∼
Acc which provides the observed enhancement.

In QCD factorization, Accg is perturbative and is pro-

portional to the F2 contribution in the FB→η,η′

0 form
factors of Ref. [13]. As previously discussed, F2 is not
known from other sources and the authors of [13] as-
sume the arbitrary values F2 = 0, 0.1. Other mech-
anisms that were proposed in the literature to explain
the large Br(B → Kη′) are found to be either αS(mb)
or 1/mb suppressed in SCET. The contributions due to
b → sgg → sη′ coupling that would arise from integrating
out the charm loop, Fig. 3, [13, 96, 97] and could be inter-
preted as effective charm content of η′ meson [13, 98, 99],
lead to a 1/m2

b suppressed operator (14) once matching to
SCETII is performed. A mechanism in which one gluon
is emitted from b or s quarks, with the other gluon com-
ing from charm loop or from O8g insertion, Fig. 2, leads
to either αS(mb) or 1/mb suppressed contributions as al-
ready discussed below Eq. (13). The hard spectator con-
tribution b → sg∗g∗ → sη′ discussed in [100], where one
of the hard off-shell gluons is emitted from the spectator
quark, matches onto power suppressed SCETI operators
with additional soft and collinear spectator quark fields
obtained by integrating out the hard gluon (and other
hard degrees of freedom). Similarly, the gluon conden-
sate mechanism of Ref. [101] corresponds to a match-
ing onto power suppressed operators with additional soft
gluon fields once the intermediate hard-collinear gluon is
integrated out.

Since the smallness of Br(B → ηK) arises from two
large numbers cancelling, the predictions for this mode
are rather uncertain, with modest variations on input
parameters leading to larger relative variations on the

observables. This could be used in the future to better
constrain the SCET parameters ζ(J)g, Accg. Of special
interest are the direct CP asymmetries in B− → ηK−

and B̄0 → ηK̄0 that can resolve between the two solu-
tions (cf. Table VII). Defining the “tree” and “penguin”
amplitudes as in (72), one has

TB̄0→ηqK̄0 =
GF√

2
m2

B

fηq√
2

[

ζBK
(

C2 +
1

N
C1

)

+ ζBK
J

(

C2 +
1

N

(

1 + 〈x−1〉ηq

)

C1

)

]

+ · · · ,

(123)

TB−→ηqK− =TB̄0→ηqK̄0 +
GF√

2
m2

B
fK√

2

[

ζBηq
(

C1 +
1

N
C2

)

+ ζ
Bηq

J

(

C1 +
1

N

(

1 + 〈x−1
q 〉K

)

C2

)

]

+ · · · ,

(124)

where ellipses denote smaller terms coming from inser-
tions of QCD penguin and EWP operators. The “tree”
amplitude TB−→ηqK− receives contributions from con-
figurations with two n-collinear gluons, Fig. 4, that are
part of ζ

Bηq

(J) SCET parameters (43). In the diagrammatic
approach these terms correspond to often neglected an-
nihilation amplitudes as shown in appendix C. We find
them to be of LO in 1/mb and should be kept in the
analysis (in ∆S = 1 decays they are CKM suppressed
and are thus numerically significant only for direct CP
asymmetries).

At LO in αS(mb) the “tree” amplitudes TB̄0→ηsK̄0 and
TB−→ηsK− do not receive contributions from tree opera-
tors Ou

1,2, so that

TB̄0→ηsK̄0 ' TB̄0→ηqK̄0 , TB−→ηsK− ' TB−→ηqK− ,
(125)

from which one obtains an approximate relation

TB̄→ηK̄

cosφ
!

TB̄→η′K̄

sin φ
, (126)

where B̄ (K̄) can be either B−(K−) or B̄0 (K̄0). No
such simple relation exists between PB̄→ηK̄ and PB̄→η′K̄ .
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TABLE X: Predicted CP averaged branching ratios (×10−6, first row) and direct CP asymmetries (second row for each mode)
for ∆S = 0 and ∆S = 1 B0

s decays (separated by horizontal line). The columns Theory I (II) correspond to two sets of
SCET parameters (106)-(113). Since the decays into nonisosinglet mesons do not depend on parameters in (106)-(113) only one
prediction is given. The errors on the predictions are estimates of SU(3) breaking, 1/mb corrections and errors due to SCET
parameters, respectively.

Mode Exp Theory I Theory II

B̄0
s → π−K+ < 2.2fd/fs

a 4.9 ± 1.2 ± 1.3 ± 0.3

− 0.20 ± 0.17 ± 0.19 ± 0.05

B̄0
s → π0K0 − 0.76 ± 0.26 ± 0.27 ± 0.17

− −0.58 ± 0.39 ± 0.39 ± 0.13

B̄0
s → ηK0 − 0.80 ± 0.48 ± 0.29 ± 0.18 0.59 ± 0.34 ± 0.24 ± 0.15

− −0.56 ± 0.46 ± 0.14 ± 0.06 0.61 ± 0.59 ± 0.12 ± 0.08

B̄0
s → η′K0 − 4.5 ± 1.5 ± 0.4 ± 0.5 3.9 ± 1.3 ± 0.5 ± 0.4

− −0.14 ± 0.07 ± 0.16 ± 0.02 0.37 ± 0.08 ± 0.14 ± 0.04

B̄0
s → K−K+ (9.5 ± 2.0)fd/fs

a 18.2 ± 6.7 ± 1.1 ± 0.5

− −0.06 ± 0.05 ± 0.06 ± 0.02

B̄0
s → K0K̄0 − 17.7 ± 6.6 ± 0.5 ± 0.6

− < 0.1

B̄0
s → ηπ0 − 0.014 ± 0.004 ± 0.005 ± 0.004 0.016 ± 0.007 ± 0.005 ± 0.006

− − −
B̄0

s → η′π0 − 0.006 ± 0.003 ± 0.002+0.064
−0.006 0.038 ± 0.013 ± 0.016+0.260

−0.036

− − −
B̄0

s → ηη − 7.1 ± 6.4 ± 0.2 ± 0.8 6.4 ± 6.3 ± 0.1 ± 0.7

− 0.079 ± 0.049 ± 0.027 ± 0.015 −0.011 ± 0.050 ± 0.039 ± 0.010

B̄0
s → ηη′ − 24.0 ± 13.6 ± 1.4 ± 2.7 23.8 ± 13.2 ± 1.6 ± 2.9

− 0.0004 ± 0.0014 ± 0.0039 ± 0.0043 0.023 ± 0.009 ± 0.008 ± 0.076

B̄0
s → η′η′ − 44.3 ± 19.7 ± 2.3 ± 17.1 49.4 ± 20.6 ± 8.4 ± 16.2

− 0.009 ± 0.004 ± 0.006 ± 0.019 −0.037 ± 0.010 ± 0.012 ± 0.056

aThe production fraction ratio of B0
d,s mesons is fd/fs ≈ 4 [60].

D. Bs decays

Using SU(3) symmetry allows us to make predictions
for B0

s decays as well. Predictions made with the values
of SCET parameters (86), (87), and (106)-(113) for CP
averaged branching ratios and direct CP asymmetries are
collected in Table X, while the predictions for the observ-
ables (Sf )Bs (69) and (Hf )Bs (70) are given in Table XI.
The SU(3) breaking on the SCET parameters relations
(43)-(46) and (53) was assumed to be 20% with a 20◦

variation on the charming penguin’s strong phases. The
second errors in Tables X, XI, estimate the remaining
order 1/mb and αS(mb) corrections. These are obtained
from a 20% variation on the size and a 20◦ variation on
the strong phase of the leading order amplitudes propor-

tional to λ(f)
u or λ(f)

t .

Many observations made about B̄0 and B− decays
hold also for B̄0

s decays. For instance ∆S = 1 decays
B̄0

s → KK̄ and B̄0
s → η(′)η(′) are dominated by nonper-

turbative charming penguins due to a CKM hierarchy
just like B → πK, B → Kη(′) decays. Expanding in the
CKM suppressed “tree” over “penguin” ratio rf (127)

the observables from time dependent decays (69), (70)

(Sf )Bs = ηCP
f sin 2ε− ηCP

f rf cos δf cos 2ε+O(r2
f ), (142)

and

(Hf )Bs = ηCP
f cos 2ε

(

1 −
r2
f

2

)

+ ηCP
f sin 2ε

[

rf cos δf

+ r2
f

Re
(

λ(s)
u /λ(s)

c

)

Im
(

λ(s)
u /λ(s)

c

)

(

cos2 δf −
1

2

)]

+ O(r3
f ),

(143)

while the expression for direct CP asymmetry to first
order in rf is given in (128). Since ε ∼ 1◦ in the Stan-
dard Model, (Hf )Bs for the penguin dominated decays
B̄0

s → KK̄ and B̄0
s → η(′)η(′) is expected to be very close

to 1. In the Standard Model sin 2ε ∼ 0.035 and thus
sin 2ε ∼ rf , so that the deviations of (Hf )Bs from unity
are numerically of order O(r2

f ). For 1 $ rf > 2 sin 2ε,

the r2
f correction in the first term in (143) is actually

larger than the second term in (143) which starts at lin-
ear order in rf . In this case ηCP

f (Hf )Bs is smaller than
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b→ cc̄s ψKS < 0.01 +0.687± 0.032
b→ sq̄q η′K0 < 0.05 +0.01+0.01

−0.02 +0.01+0.01
−0.01 +0.48± 0.09

φK0 < 0.05 +0.02+0.01 +0.02+0.01
−0.01 +0.47± 0.19

K+K−KS ∼ 0.15 +0.51± 0.17
KSKSKS ∼ 0.15 +0.61± 0.23

π0KS ∼ 0.15 +0.06+0.04
−0.03 +0.07+0.05

−0.04 +0.31± 0.26
f0KS ∼ 0.25 +0.75± 0.24
ωKS ∼ 0.25 +0.19+0.06

−0.14 +0.13+0.08
−0.08 +0.63± 0.30
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fCP
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fCP

SM predictions for (−ηfCP SfCP − sin 2β)
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b→ cc̄s ψKS < 0.01 +0.687± 0.032
b→ sq̄q η′K0 < 0.05 +0.01+0.01

−0.02 +0.01+0.01
−0.01 +0.48± 0.09

φK0 < 0.05 +0.02+0.01 +0.02+0.01
−0.01 +0.47± 0.19

K+K−KS ∼ 0.15 +0.51± 0.17
KSKSKS ∼ 0.15 +0.61± 0.23

π0KS ∼ 0.15 +0.06+0.04
−0.03 +0.07+0.05

−0.04 +0.31± 0.26
f0KS ∼ 0.25 +0.75± 0.24
ωKS ∼ 0.25 +0.19+0.06

−0.14 +0.13+0.08
−0.08 +0.63± 0.30

Dominant
fCP

SM predictions for (−ηfCP SfCP − sin 2β)
sin 2βeffprocess estimates∗ B.H.N.R. Beneke

b→ cc̄s ψKS < 0.01 +0.687± 0.032
b→ sq̄q η′K0 < 0.05 +0.01+0.01

−0.02 +0.01+0.01
−0.01 +0.48± 0.09

φK0 < 0.05 +0.02+0.01 +0.02+0.01
−0.01 +0.47± 0.19

K+K−KS ∼ 0.15 +0.51± 0.17
KSKSKS ∼ 0.15 +0.61± 0.23

π0KS ∼ 0.15 +0.06+0.04
−0.03 +0.07+0.05

−0.04 +0.31± 0.26
f0KS ∼ 0.25 +0.75± 0.24
ωKS ∼ 0.25 +0.19+0.06

−0.14 +0.13+0.08
−0.08 +0.63± 0.30

Dominant
fCP

SM predictions for (−ηfCP SfCP − sin 2β)
sin 2βeffprocess estimates∗ B.H.N.R. Beneke

b→ cc̄s ψKS < 0.01 +0.687± 0.032
b→ sq̄q η′K0 < 0.05 +0.01+0.01

−0.02 +0.01+0.01
−0.01 +0.48± 0.09

φK0 < 0.05 +0.02+0.01 +0.02+0.01
−0.01 +0.47± 0.19

K+K−KS ∼ 0.15 +0.51± 0.17
KSKSKS ∼ 0.15 +0.61± 0.23

π0KS ∼ 0.15 +0.06+0.04
−0.03 +0.07+0.05

−0.04 +0.31± 0.26
f0KS ∼ 0.25 +0.75± 0.24
ωKS ∼ 0.25 +0.19+0.06

−0.14 +0.13+0.08
−0.08 +0.63± 0.30

Dominant
fCP

SM predictions for (−ηfCP SfCP − sin 2β)
sin 2βeffprocess estimates∗ B.H.N.R. Beneke

b→ cc̄s ψKS < 0.01 +0.687± 0.032
b→ sq̄q η′K0 < 0.05 +0.01+0.01

−0.02 +0.01+0.01
−0.01 +0.48± 0.09

φK0 < 0.05 +0.02+0.01 +0.02+0.01
−0.01 +0.47± 0.19

K+K−KS ∼ 0.15 +0.51± 0.17
KSKSKS ∼ 0.15 +0.61± 0.23

π0KS ∼ 0.15 +0.06+0.04
−0.03 +0.07+0.05

−0.04 +0.31± 0.26
f0KS ∼ 0.25 +0.75± 0.24
ωKS ∼ 0.25 +0.19+0.06

−0.14 +0.13+0.08
−0.08 +0.63± 0.30

Dominant
fCP

SM predictions for (−ηfCP SfCP − sin 2β)
sin 2βeffprocess estimates∗ B.H.N.R. Beneke

b→ cc̄s ψKS < 0.01 +0.687± 0.032
b→ sq̄q η′K0 < 0.05 +0.01+0.01

−0.02 +0.01+0.01
−0.01 +0.48± 0.09

φK0 < 0.05 +0.02+0.01 +0.02+0.01
−0.01 +0.47± 0.19

K+K−KS ∼ 0.15 +0.51± 0.17
KSKSKS ∼ 0.15 +0.61± 0.23

π0KS ∼ 0.15 +0.06+0.04
−0.03 +0.07+0.05

−0.04 +0.31± 0.26
f0KS ∼ 0.25 +0.75± 0.24
ωKS ∼ 0.25 +0.19+0.06

−0.14 +0.13+0.08
−0.08 +0.63± 0.30

−0.01± 0.02

+0.07± 0.03

Constructive interference of penguins give a large • Br(B → η′K0)
(to agree with data), and simultaneously a small uncertainty above

• Determination of hadronic parameters dominates factorization uncertainties
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no SCET SCET
expn.

SU(2) SU(3)
+SU(2) +SU(3)

B → ππ 11 7/5 4

B → Kπ 15 11
15/13

+5(6)
4

B → KK̄ 11 11 +4/0 +3(4) +0

TABLE II: Number of real hadronic parameters from differ-
ent expansions in QCD. The first column shows the number of
theory inputs with no approximations, while the next columns
show the number of parameters using only SU(2), using only
SU(3), using SU(2) and SCET, and using SU(3) with SCET.
For the cases with two numbers, #/#, the second follows
from the first after neglecting the small penguin coefficients,
ie setting C7,8 = 0. In SU(2) + SCET B → Kπ has 6 pa-
rameters, but 1 appears already in B → ππ, hence the +5(6).
The notation is analogous for the +3(4) for B → KK̄.

ruled out by Bose symmetry). This leaves 2 reduced
matrix elements for each CKM structure, 〈0||1/2||1/2〉
and 〈2||3/2||1/2〉. For B → Kπ decays the electroweak
Hamiltonian has either ∆I = 0 or ∆I = 1. The Kπ
system is either in an I = 1/2 or I = 3/2 state thus
there are three reduced matrix elements per CKM struc-
ture, 〈3/2||1||1/2〉, 〈1/2||1||1/2〉 and 〈1/2||0||1/2〉. Fi-
nally, KK̄ is either an I = 0 or I = 1, and there are
again three reduced matrix elements per CKM structure,
〈0||1/2||1/2〉, 〈1||1/2||1/2〉, and 〈1||3/2||1/2〉.

The SU(3) flavor symmetry relates not only the decays
B → ππ and B → Kπ, B → KK, but also B → πη8,
B → η8K and Bs decays to two light mesons. The de-
composition of the amplitudes in terms of SU(3) reduced
matrix elements can be obtained from [50, 51, 52]. The
Hamiltonian can transform either as a 3

s
, 3

a
, 6 or 15.

Thus, there are 7 reduced matrix elements per CKM
structure, 〈1||3s||3〉, 〈1||3a||3〉, 〈8||3s||3〉, 〈8||3a||3〉,
〈8||6s||3〉, 〈8||15

s||3〉 and 〈27||15
s||3〉. The 3

a
and 3

s

come in a single linear combination so this leaves 20
hadronic parameters to describe all these decays minus 1
overall phase (plus additional parameters for singlets and
mixing to properly describe η and η′). Of these hadronic
parameters, only 15 are required to describe B → ππ
and B → Kπ decays (16 minus an overall phase). If we
add B → KK decays then 4 more paramaters are needed
(which are solely due to electroweak penguins). This is
discussed further in section II D.

The number of parameters that occur at leading order
in different expansions of QCD are summarized in Ta-
ble II, including the SCET expansion. Here by SCET
we mean after factorization at mb but without using any
information about the factorization at

√
EΛ. The SCET

results are discussed further in section III, but we sum-
marize them here. The parameters with isospin+SCET
are

ππ : {ζBπ+ζBπ
J , βπζBπ

J , Pππ} , (11)

Kπ : {ζBπ+ζBπ
J , βK̄ζBπ

J , ζBK̄ + ζBK̄
J , βπζBK̄

J , PKπ} ,

KK̄ : {ζBK̄ + ζBK̄
J , βKζBK̄

J , PKK̄} .

Here PM1M2
are complex penguin amplitudes and the re-

maining parameters are real.1 In B → ππ the moment
parameter βπ is not linearly independent from the pa-
rameters ζBπ and ζBπ

J , and only the product βπζBπ
J was

counted as a parameter. In any case it is fairly well known
from fits to γ∗γ → π0 [53] 3βπ ≡ 〈x−1〉π & 3.2 ± 0.2. In
isospin + SCET B → Kπ has 6 parameters, but the first
one listed in (11) appears already in B → ππ, hence the
+5 in Table II. If the ratio βK/βπ was known from else-
where then one more parameter can be removed for Kπ
(leaving +4). For B → KK̄ we have 4 SCET parame-
ters. One of these appears already in B → Kπ, hence
the +3, and if βK/βK̄ is known from other processes it
would become +2.

Taking SCET + SU(3) we have the additional relations
ζBπ = ζBK = ζBK̄ , ζBπ

J = ζBK
J = ζBK̄

J , βπ = βK = βK̄ ,
and Aππ

cc = AKπ
cc = AKK̄

cc which reduces the number of
parameters considerably.

Note that there are good indications that the param-
eters ζBM and ζBM

J are positive numbers in the SCET
factorization theorem. (βK , βπ, βK̄ are also positive.)
This follows from: i) the fact that ζBM +ζBM

J are related
to form factors for heavy-to-light transitions which with
a suitable phase convention one expects are positive for
all q2, ii) that ζBM

J is positive (from the relatively safe as-
sumption that radiative corrections at the scale

√
EΛ do

not change the sign of ζM1M2

J and that ζJ ∝ βπλB > 0),
and finally iii) that the fit to B → ππ data gives
ζBπ, ζBπ

J > 0 so that SU(3) implies ζBK , ζBK
J > 0. We

will see that this allows some interesting predictions to
be made even without knowing the exact values of the
parameters.

In using the expansions in (3) it is important to keep
in mind the hierarchy of CKM elements, and the rough
hierarchy of the Wilson coefficients

C1
>∼ C2 ) C3−6 ) C9,10

>∼ C7,8 . (12)

Some authors attempt to exploit the numerical values of
the Wilson coefficients in the electroweak Hamiltonian
to further reduce the number of parameters. A common
example is the neglect of the coefficients C7,8 relative to
C9,10. In Eq. (10) the electroweak penguin operators O9

and O10 were written as linear combinations of O1−4.
This implies that if one neglects the electroweak penguin
operators Q7 and Q8, then no new operators are required
to describe the EW penguin effects. In some cases this
leads to additional simplifications. One can show that for
B → ππ decays the ∆I = 3/2 amplitudes multiplying the
CKM structures λu and λc are identical [23, 24]. Thus,

1 The penguin amplitudes are kept to all orders in Λ/mb since so
far there is no proof that the charm mass mc does not spoil fac-
torization, with large αs(2mc)v contributions competing with
αs(mb) hard-charm loop corrections [32]. This is controver-
sial [34, 35]. Our analysis treats these contributions in the most
conservative possible manner.

Counting parameters   VP,  VV  modes 

Wang, Wang, Yang, Lu
(arXiv:0801.3123)PP, PV with isosinglets

+4πη, ηη, Kη′, . . .

(2 solutions)

ρπ,ωπ,K∗K, ρη, . . . +8

Global Fit
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TABLE I: Branching ratios (in units of 10−6) of B → V P decays induced by the b → d (∆S = 0) transition: the first solution

(This work 1) and the second solution (This work 2). In both cases, we have included the chiraly enhanced penguin in B → V P

decay amplitudes. We also cite the experimental data and theoretical results given in QCDF [10] and PQCD [46, 52, 54, 57]

approach to make a comparison.

Channel Exp. QCDF PQCD This work 1 This work 2

B−
→ ρ−π0 10.9+1.4

−1.5 14.0+6.5+5.1+1.0+0.8
−5.5−4.3−0.6−0.7 6-9 8.8+0.2+1.0

−0.1−1.0 11.0+0.6+1.0
−0.6−0.9

B−
→ ρ0π− 8.7+1.0

−1.1 11.9+6.3+3.6+2.5+1.3
−5.0−3.1−1.2−1.1 10.4+3.3

−3.4 ± 2.1 10.8+0.7+1.0
−0.7−0.9 7.9+0.1+0.8

−0.0−0.8

B−
→ ωπ− 6.9 ± 0.5 8.8+4.4+2.6+1.8+0.8

−3.5−2.2−0.9−0.9 11.3+3.3
−2.9 ± 1.4 6.7+0.4+0.7

−0.3−0.6 8.6+0.4+0.8
−0.3−0.8

B−
→ K∗0K− < 1.1 0.30+0.11+0.12+0.09+0.57

−0.09−0.10−0.09−0.19 0.31+0.12
−0.08 0.48+0.25+0.09

−0.20−0.08 0.51+0.18+0.07
−0.15−0.06

B−
→ K∗−K0 0.30+0.08+0.41+0.08+0.58

−0.07−0.18−0.07−0.17 1.83+0.68
−0.47 0.54+0.26+0.10

−0.21−0.08 0.51+0.21+0.08
−0.17−0.07

B−
→ φπ− < 0.24 ≈ 0.005 ≈ 0.003 0.003

B̄0
→ ρ−π+

B̄0
→ ρ+π−

o

24.0 ± 2.5 36.5+18.2+10.3+2.0+3.9
−14.7− 8.6−3.5−2.9 18-45 13.1+0.6+1.2

−0.5−1.2 16.8+0.5+1.6
−0.4−1.5

B0/B̄0
→ ρ+π− 24-34 12.5+1.9+1.2

−1.7−1.1 16.0+1.6+1.5
−1.5−1.4

B0/B̄0
→ ρ−π+ 24-34 13.8+1.9+1.3

−1.8−1.2 17.7+1.6+1.6
−1.7−1.5

B̄0
→ ρ+π−a 8.9 ± 2.5 15.4+8.0+5.5+0.7+1.9

−6.4−4.7−1.3−1.3 5.7+0.5+0.5
−0.5−0.5 6.7+0.2+0.7

−0.1−0.7

B̄0
→ ρ−π+a 13.9 ± 2.7 21.2+10.3+8.7+1.3+2.0

− 8.4−7.2−2.3−1.6 7.4+0.2+0.8
−0.1−0.8 10.1+0.4+0.9

−0.4−0.9

B̄0
→ ρ0π0 1.8+0.6

−0.5 0.4+0.2+0.2+0.9+0.5
−0.2−0.1−0.3−0.3 0.07-0.11 2.6+0.2+0.2

−0.1−0.2 1.4+0.1+0.1
−0.1−0.1

B̄0
→ ωπ0 < 1.2 0.01+0.00+0.02+0.02+0.03

−0.00−0.00−0.00−0.00 0.10-0.28 0.003+0.047+0.000
−0.000−0.000 0.025+0.036+0.002

−0.004−0.002

B̄0
→ K∗0K̄0 0.26+0.08+0.10+0.08+0.46

−0.07−0.09−0.08−0.15 0.45+0.24+0.09
−0.19−0.07 0.47+0.17+0.06

−0.14−0.05

B̄0
→ K̄∗0K0 < 1.9 0.29+0.10+0.39+0.08+0.60

−0.09−0.17−0.07−0.17 0.51+0.24+0.09
−0.20−0.08 0.48+0.20+0.07

−0.16−0.06

B̄0
→ K∗0K̄0

B̄0
→ K̄∗0K0

o

≈ 1.96 0.96+0.34+0.18
−0.27−0.15 0.95+0.26+0.14

−0.22−0.12

B0/B̄0
→ K∗0K̄0 0.96+0.34+0.18

−0.27−0.15 0.95+0.26+0.14
−0.22−0.12

B0/B̄0
→ K̄∗0K0 0.96+0.34+0.18

−0.27−0.15 0.95+0.26+0.14
−0.22−0.12

B̄0
→ φπ0 < 0.28 ≈ 0.002 0.002 0.001

B−
→ ρ−η 5.4 ± 1.2 9.4+4.6+3.6+0.7+0.7

−3.7−3.0−0.4−0.7 8.5+3.0+0.8+0.4+1.2
−2.1−0.7−0.4−0.2

b 3.9+2.0+0.4
−1.7−0.4 3.0+1.8+0.3

−1.5−0.3

B−
→ ρ−η′ 9.1+3.7

−2.8 6.3+3.1+2.4+0.5+0.5
−2.5−2.0−0.3−0.5 8.7+3.0+0.7+0.5+1.1

−2.2−0.9−0.7−0.3
b 0.37+2.51+0.08

−0.22−0.07 0.36+2.59+0.06
−0.18−0.05

B̄0
→ ρ0η < 1.5 0.03+0.02+0.16+0.02+0.05

−0.01−0.10−0.01−0.02 0.024+0.012+0.004+0.002+0.102
−0.007−0.002−0.002−0.005

b 0.03+0.18+0.00
−0.02−0.00 0.17+0.36+0.02

−0.16−0.02

B̄0
→ ρ0η′ < 1.3 0.01+0.01+0.11+0.02+0.03

−0.00−0.06−0.00−0.01 0.061+0.030+0.004+0.003+0.114
−0.018−0.003−0.003−0.009

b 0.37+2.37+0.04
−0.11−0.05 1.3+3.8+0.1

−1.1−0.1

B̄0
→ ωη < 1.9 0.31+0.14+0.16+0.35+0.22

−0.12−0.11−0.14−0.16 0.27+0.11
−0.10 0.98+0.69+0.10

−0.51−0.10 1.3+0.8+0.1
−0.6−0.1

B̄0
→ ωη′ < 2.2 0.20+0.10+0.15+0.25+0.15

−0.08−0.05−0.10−0.11 0.075+0.037
−0.033 0.20+1.46+0.04

−0.09−0.03 3.1+4.8+0.3
−2.6−0.3

B̄0
→ φη < 0.6 ≈ 0.001 0.0063+0.0033

−0.0019 0.0004 0.0008

B̄0
→ φη′ < 0.5 ≈ 0.001 0.0073+0.0035

−0.0026 0.0001 0.0007

aWe quote the branching ratios for B̄0
→ ρ+π− and B̄0

→ ρ+π− from Ref. [59].
bFor B → ρη decays, there are two different predictions given in Ref. [52] according to the different mixing angles between η and η′. We

quote the results in which θP = −10◦ is used. There are not too many changes for the other predictions as the value for the mixing angle

θP = −17◦ is very close to the first one.

where Ac is from the charming penguin term. The decomposition is over complete since the unitarity property of

CKM matrix can be used to eliminate one of the three combinations of CKM matrix elements. We keep all of them

according to the different dynamics in the corresponding amplitudes. The values for CKM matrix elements:

|VubV
∗
ud| = 3.48 × 10−3, |VcbV

∗
cd| = 9.17 × 10−3, |VtbV

∗
td| = 8.60 × 10−3 (57)
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TABLE III: Branching ratios (in units of 10−6) for ∆s = 1 processes: the first solution (This work 1) and the second solution

(This work 2). In both solutions, we have included the chiraly enhanced penguin in B → V P decay amplitudes. We also cite

the experimental data and theoretical results given in QCDF [10] and PQCD [51, 55] to make a comparison.

Channel Exp. QCDF PQCD This work 1 This work 2

B−
→ K∗−π0 6.9 ± 2.3 3.3+1.1+1.0+0.6+4.4

−1.0−0.9−0.6−1.4 4.3+5.0
−2.2 4.1+2.2+0.8

−1.7−0.7 6.5+1.9+0.7
−1.6−0.7

B−
→ K̄∗0π− 10.7 ± 0.8 3.6+0.4+1.5+1.2+7.7

−0.3−1.4−1.2−2.3 6.0+2.8
−1.5 8.5+4.6+1.7

−3.6−1.4 9.9+3.4+1.3
−2.9−1.1

B−
→ ρ0K− 4.25+0.55

−0.56 2.6+0.9+3.1+0.8+4.3
−0.9−1.4−0.6−1.2 5.1+4.1

−2.8 6.6+2.7+1.0
−2.2−0.9 4.7+1.8+0.7

−1.5−0.6

B−
→ ρ−K̄0 8.0+1.5

−1.4 5.8+0.6+7.0+1.5+10.3
−0.6−3.3−1.3− 3.2 8.7+6.8

−4.4 9.3+4.7+1.7
−3.7−1.4 10.0+4.0+1.5

−3.3−1.3

B−
→ ωK− 6.7 ± 0.5 3.5+1.0+3.3+1.4+4.7

−1.0−1.6−0.9−1.6 10.6+10.4
−5.8 5.1+2.4+0.9

−1.9−0.8 5.9+2.1+0.8
−1.7−0.7

B−
→ φK− 8.30 ± 0.65 4.5+0.5+1.8+1.9+11.8

−0.4−1.7−2.1− 3.3 7.8+5.9
−1.8 9.7+4.9+1.8

−3.9−1.5 8.5+3.2+1.2
−2.7−1.0

B̄0
→ K̄∗0π0 0.0+1.3

−0.1 0.7+0.1+0.5+0.3+2.6
−0.1−0.4−0.3−0.5 2.0+1.2

−0.6 4.6+2.3+0.9
−1.8−0.7 3.6+1.4+0.5

−1.2−0.4

B̄0
→ K̄∗−π+ 9.8 ± 1.1 3.3+1.4+1.3+0.8+6.2

−1.1−1.2−0.8−1.6 6.0+6.8
−2.6 8.3+4.3+1.6

−3.4−1.3 9.5+3.2+1.2
−2.7−1.1

B̄0
→ ρ0K̄0 5.4+0.9

−1.0 4.6+0.5+4.0+0.7+6.1
−0.5−2.1−0.7−2.1 4.8+4.3

−2.3 3.5+2.0+0.7
−1.5−0.6 5.8+2.1+0.8

−1.8−0.7

B̄0
→ ρ+K− 15.3+3.7

−3.5 7.4+1.8+7.1+1.2+10.7
−1.9−3.6−1.1− 3.5 8.8+6.8

−4.5 9.8+4.5+1.7
−3.7−1.4 10.2+3.8+1.5

−3.2−1.2

B̄0
→ ωK̄0 5.0 ± 0.6 2.3+0.3+2.8+1.3+4.3

−0.3−1.3−0.8−1.3 9.8+8.6
−4.9 4.1+2.1+0.8

−1.7−0.6 4.9+1.9+0.7
−1.6−0.6

B̄0
→ φK̄0 8.3+1.2

−1.0 4.1+0.4+1.7+1.8+10.6
−0.4−1.6−1.9− 3.0 7.3+5.9

−1.8 9.1+4.5+1.7
−3.6−1.4 8.0+2.9+1.1

−2.5−0.9

B−
→ K∗−η 19.3 ± 1.6 10.8+1.9+8.1+1.8+16.5

−1.7−4.4−1.3− 5.5 22.13+0.26
−0.27 17.9+5.4+3.5

−5.3−2.9 18.6+4.5+2.6
−4.6−2.2

B−
→ K∗−η′ 4.9+2.1

−1.9 5.1+0.9+7.5+2.1+6.7
−1.0−3.8−3.0−3.3 6.38 ± 0.26 4.4+6.5+0.9

−3.8−0.8 4.1+4.9+0.7
−3.3−0.6

B̄0
→ K̄∗0η 15.9 ± 1.0 10.7+1.1+7.8+1.4+16.2

−1.0−4.3−1.2− 5.5 22.31+0.28
−0.29 16.6+5.1+3.2

−5.0−2.7 16.5+4.1+2.3
−4.2−2.0

B̄0
→ K̄∗0η′ 3.8 ± 1.2 3.9+0.4+6.6+1.8+6.2

−0.4−3.3−2.5−2.9 3.35+0.29
−0.27 4.1+6.1+0.9

−3.6−0.7 3.8+4.8+0.6
−3.3−0.5

Compared with the results given in Eq. (50) and Eq. (54), we find penguin operators are smaller than charming

penguins. According to the size of charming penguins, we expect the relation BR(B− → ρ−K̄0) ∼ BR(B− → π−K̄∗0).

This is well consistent with the experimental data.

From table IV, we can see the direct CP asymmetries of B− → K̄∗0π−, B− → K̄0ρ−, B− → K−φ and B− → K̄0φ

are zero. In these channels, tree operators do not contribute. The weak phases for penguin operators and charming

penguins are equal to each other, which can not induce any direct CP violations. CP asymmetries in other channels

are not large, because the strong phases of charming penguins are either close to 0◦ or 180◦ and imaginary parts are

accordingly small. The PQCD results for most B → K∗π and B → ρK channels are much larger than ours, since

they have more large imaginary part from annihilation diagrams. The QCDF results are small and comparable with

ours but with a relative minus sign. We have to wait for the experiment data to resolve this disagreements.

D. B Decays involving η or η′

As we can see from table I, there is about 3.1σ deviation for our prediction on the branching ratio of B− → ρ−η′

from the experimental data. Contributions from penguin operators are suppressed by the CKM matrix elements

as given in Eq. (57) and the dominant contribution is from the tree operator. This kind of contribution is either

proportional to B → ηq or B → ηs form factor. Utilizing results given in Eq. (50) and Eq. (54), we obtain B → ηq

and B → ηs form factors as follows:

FB→ηq = (ζP + ζP
J + 2ζg + 2ζJg) = (0.053± 0.015) [(0.095 ± 0.018)] ,

FB→ηs = (ζg + ζJg) = (−0.076± 0.007)[(−0.050± 0.006)], (61)

Wang et.al.
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TABLE III: Branching ratios (in units of 10−6) for ∆s = 1 processes: the first solution (This work 1) and the second solution

(This work 2). In both solutions, we have included the chiraly enhanced penguin in B → V P decay amplitudes. We also cite

the experimental data and theoretical results given in QCDF [10] and PQCD [51, 55] to make a comparison.

Channel Exp. QCDF PQCD This work 1 This work 2

B−
→ K∗−π0 6.9 ± 2.3 3.3+1.1+1.0+0.6+4.4

−1.0−0.9−0.6−1.4 4.3+5.0
−2.2 4.1+2.2+0.8

−1.7−0.7 6.5+1.9+0.7
−1.6−0.7

B−
→ K̄∗0π− 10.7 ± 0.8 3.6+0.4+1.5+1.2+7.7

−0.3−1.4−1.2−2.3 6.0+2.8
−1.5 8.5+4.6+1.7

−3.6−1.4 9.9+3.4+1.3
−2.9−1.1

B−
→ ρ0K− 4.25+0.55

−0.56 2.6+0.9+3.1+0.8+4.3
−0.9−1.4−0.6−1.2 5.1+4.1

−2.8 6.6+2.7+1.0
−2.2−0.9 4.7+1.8+0.7

−1.5−0.6

B−
→ ρ−K̄0 8.0+1.5

−1.4 5.8+0.6+7.0+1.5+10.3
−0.6−3.3−1.3− 3.2 8.7+6.8

−4.4 9.3+4.7+1.7
−3.7−1.4 10.0+4.0+1.5

−3.3−1.3

B−
→ ωK− 6.7 ± 0.5 3.5+1.0+3.3+1.4+4.7

−1.0−1.6−0.9−1.6 10.6+10.4
−5.8 5.1+2.4+0.9

−1.9−0.8 5.9+2.1+0.8
−1.7−0.7

B−
→ φK− 8.30 ± 0.65 4.5+0.5+1.8+1.9+11.8

−0.4−1.7−2.1− 3.3 7.8+5.9
−1.8 9.7+4.9+1.8

−3.9−1.5 8.5+3.2+1.2
−2.7−1.0

B̄0
→ K̄∗0π0 0.0+1.3

−0.1 0.7+0.1+0.5+0.3+2.6
−0.1−0.4−0.3−0.5 2.0+1.2

−0.6 4.6+2.3+0.9
−1.8−0.7 3.6+1.4+0.5

−1.2−0.4

B̄0
→ K̄∗−π+ 9.8 ± 1.1 3.3+1.4+1.3+0.8+6.2

−1.1−1.2−0.8−1.6 6.0+6.8
−2.6 8.3+4.3+1.6

−3.4−1.3 9.5+3.2+1.2
−2.7−1.1

B̄0
→ ρ0K̄0 5.4+0.9

−1.0 4.6+0.5+4.0+0.7+6.1
−0.5−2.1−0.7−2.1 4.8+4.3

−2.3 3.5+2.0+0.7
−1.5−0.6 5.8+2.1+0.8

−1.8−0.7

B̄0
→ ρ+K− 15.3+3.7

−3.5 7.4+1.8+7.1+1.2+10.7
−1.9−3.6−1.1− 3.5 8.8+6.8

−4.5 9.8+4.5+1.7
−3.7−1.4 10.2+3.8+1.5

−3.2−1.2

B̄0
→ ωK̄0 5.0 ± 0.6 2.3+0.3+2.8+1.3+4.3

−0.3−1.3−0.8−1.3 9.8+8.6
−4.9 4.1+2.1+0.8

−1.7−0.6 4.9+1.9+0.7
−1.6−0.6

B̄0
→ φK̄0 8.3+1.2

−1.0 4.1+0.4+1.7+1.8+10.6
−0.4−1.6−1.9− 3.0 7.3+5.9

−1.8 9.1+4.5+1.7
−3.6−1.4 8.0+2.9+1.1

−2.5−0.9

B−
→ K∗−η 19.3 ± 1.6 10.8+1.9+8.1+1.8+16.5

−1.7−4.4−1.3− 5.5 22.13+0.26
−0.27 17.9+5.4+3.5

−5.3−2.9 18.6+4.5+2.6
−4.6−2.2

B−
→ K∗−η′ 4.9+2.1

−1.9 5.1+0.9+7.5+2.1+6.7
−1.0−3.8−3.0−3.3 6.38 ± 0.26 4.4+6.5+0.9

−3.8−0.8 4.1+4.9+0.7
−3.3−0.6

B̄0
→ K̄∗0η 15.9 ± 1.0 10.7+1.1+7.8+1.4+16.2

−1.0−4.3−1.2− 5.5 22.31+0.28
−0.29 16.6+5.1+3.2

−5.0−2.7 16.5+4.1+2.3
−4.2−2.0

B̄0
→ K̄∗0η′ 3.8 ± 1.2 3.9+0.4+6.6+1.8+6.2

−0.4−3.3−2.5−2.9 3.35+0.29
−0.27 4.1+6.1+0.9

−3.6−0.7 3.8+4.8+0.6
−3.3−0.5

Compared with the results given in Eq. (50) and Eq. (54), we find penguin operators are smaller than charming

penguins. According to the size of charming penguins, we expect the relation BR(B− → ρ−K̄0) ∼ BR(B− → π−K̄∗0).

This is well consistent with the experimental data.

From table IV, we can see the direct CP asymmetries of B− → K̄∗0π−, B− → K̄0ρ−, B− → K−φ and B− → K̄0φ

are zero. In these channels, tree operators do not contribute. The weak phases for penguin operators and charming

penguins are equal to each other, which can not induce any direct CP violations. CP asymmetries in other channels

are not large, because the strong phases of charming penguins are either close to 0◦ or 180◦ and imaginary parts are

accordingly small. The PQCD results for most B → K∗π and B → ρK channels are much larger than ours, since

they have more large imaginary part from annihilation diagrams. The QCDF results are small and comparable with

ours but with a relative minus sign. We have to wait for the experiment data to resolve this disagreements.

D. B Decays involving η or η′

As we can see from table I, there is about 3.1σ deviation for our prediction on the branching ratio of B− → ρ−η′

from the experimental data. Contributions from penguin operators are suppressed by the CKM matrix elements

as given in Eq. (57) and the dominant contribution is from the tree operator. This kind of contribution is either

proportional to B → ηq or B → ηs form factor. Utilizing results given in Eq. (50) and Eq. (54), we obtain B → ηq

and B → ηs form factors as follows:

FB→ηq = (ζP + ζP
J + 2ζg + 2ζJg) = (0.053± 0.015) [(0.095 ± 0.018)] ,

FB→ηs = (ζg + ζJg) = (−0.076± 0.007)[(−0.050± 0.006)], (61)

Wang et.al.
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TABLE II: Direct CP asymmetries involving b → d (∆S = 0) transitions: the first solution (This work 1) and the second

solution (This work 2). In both solutions, we have included the chiraly enhanced penguin in B → V P decay amplitudes. We

also cite the experimental data and theoretical results given in QCDF [10] and PQCD [46, 52, 54, 57] approach to make a

comparison.

Channel Exp. QCDF PQCD This work 1 This work 2

B−
→ ρ−π0 2 ± 11 −4.0+1.2+1.8+0.4+17.5

−1.2−2.2−0.4−17.7 0-20 8.3+17.8+0.8
−18.9−0.8 5.4+9.7+0.4

−10.0−0.5

B−
→ ρ0π−

−7+12
−13 4.1+1.3+2.2+0.6+19.0

−0.9−2.0−0.7−18.8 −20-0 −5.7+13.0+0.5
−12.8−0.4 −8.4+15.6+0.8

−14.5−0.8

B−
→ ωπ−

−4 ± 6 −1.8+0.5+2.7+0.8+2.1
−0.5−3.3−0.7−2.2 ∼ 0 −5.0+19.7+0.5

−19.3−0.5 −5.8+13.7+0.5
−12.9−0.6

B−
→ K∗0K− ... −23.5+6.9+7.8+5.5+25.2

−5.7−9.0−6.5−36.8 −20 ± 5 ± 2 −0.8+5.8+0.1
−5.6−0.1 −0.4+4.1+0.0

−4.1−0.0

B−
→ K∗−K0 ... −13.4+3.7+7.8+4.2+27.4

−3.0−3.5−4.7−36.7 −49+7+7
−3−7 −1.3+2.6+0.1

−2.4−0.1 −1.1+1.7+0.1
−1.6−0.1

B̄0
→ ρ+π−

−53 ± 30 0.6+0.2+1.3+0.1+11.5
−0.1−1.6−0.1−11.7 −8.6+17.4+0.8

−17.0−0.6 −11.0+17.4+1.0
−15.3−1.1

B̄0
→ ρ−π+

−15 ± 8 −1.5+0.4+1.2+0.2+8.5
−0.4−1.3−0.3−8.4 2.6+19.1+0.3

−19.7−0.2 0.9+10.0+0.1
−10.1−0.1

B̄0
→ ρ0π0

−30 ± 38 −15.7+4.8+12.3+11.0+19.8
−4.7−14.0−12.9−25.8 −75-0 5.5+20.8+0.5

−21.8−0.5 9.7+21.5+0.9
−22.5−0.9

B̄0
→ ωπ0 ... ... −20-75 −58.4+150.1+4.2

−0.0−4.1 −72.9+179.1+4.7
−32.9−4.8

B̄0
→ K∗0K̄0 ... −26.7+7.4+7.2+5.7+10.9

−5.7−9.0−6.9−13.4 −0.8+5.8+0.1
−5.6−0.1 −0.4+4.1+0.0

−4.1−0.0

B̄0
→ K̄∗0K0 ... −13.1+3.8+5.4+4.5+5.8

−3.0−2.9−5.2−7.4 −1.3+2.6+0.1
−2.4−0.1 −1.1+1.7+0.1

−1.6−0.1

B−
→ ρ−η 1 ± 16 −2.4+0.7+6.3+0.4+0.2

−0.7−6.3−0.4−0.2 −13+1.2+2
−0.5−14 −11.7+22.0+1.1

−21.0−1.2 9.1+17.7+0.9
−17.3−0.9

B−
→ ρ−η′

−4 ± 28 4.1+1.2+7.9+0.5+7.0
−1.1−6.9−0.8−7.0 −18+3.0+1

−1.6−14 −18.0+65.9+2.6
−44.1−2.9 6.6+66.6+0.8

−119.9−0.9

B̄0
→ ρ0η ... ... −13+1.2+2

−0.5−14 −76.0+189.5+2.9
−33.3−4.5 −28.2+55.0+2.4

−76.6−2.6

B̄0
→ ρ0η′ ... ... −18+3.0+1

−1.6−14 −59.5+112.2+3.4
−40.1−4.2 −57.5+68.6+4.4

−16.1−4.6

B̄0
→ ωη ... −33.4+10.0+65.3+20.9+19.2

− 9.5−55.8−21.4−20.8 −69.1+15.1
−13.4 −16.1+30.2+1.5

−28.7−1.6 9.5+18.3+0.9
−18.0−0.9

B̄0
→ ωη′ ... 0.2+0.1+53.0+11.6+19.2

−0.1−76.5−11.5−20.1 13.9+4.1
−3.5 −55.4+104.1+4.9

−37.0−5.5 35.6+38.9+2.9
−19.7−3.0

will definitely character the branching fractions and CP asymmetries.

B̄0 → π±ρ∓ are dominated by tree operators which has the CKM matrix elements: VubV ∗
ud. To illustrate the

situation, we will use the second kind of inputs given in Eq. (54) and take B̄0 → ρ+π− as an example (in units of

GeV):

|Au(B̄0 → ρ+π−)| = 0.131× (1.03ζV + 0.77ζV
J ) ∼ 260 × 10−4,

|Ac(B̄
0 → ρ+π−)| = |APV

cc | ∼ (30 ∼ 40) × 10−4,

|At(B̄
0 → ρ+π−)| = |0.131(−0.0015ζV − 0.007ζV

J )| ∼ 5 × 10−4. (58)

Our predictions on branching fractions of B̄0 → π±ρ∓ decays are smaller than those in QCDF [10]. Neglecting

the small terms, the main reason is our smaller B → P and B → V form factors: QCDF uses much larger form

factors FB→π = 0.28 ± 0.05 and AB→ρ
0 = 0.37 ± 0.06. In the present framework, BR(B̄0 → ρ+π−) is smaller than

BR(B̄0 → ρ−π+). In the first solution, the fitted B → V form factor A0 = 0.229 is almost equal with the B → P

form factor F = 0.206. Since the decay constant of ρ meson is much larger than that of π: 0.209/0.131 ∼ 1.5, we

expect BR(B̄0 → ρ+π−) is only one half of BR(B̄0 → ρ−π+). Charming penguins AV P
cc and APV

cc can slightly change

the ratio: the charming penguin APV
cc in B̄0 → ρ+π− gives a destructive contribution, while AV P

cc in B̄0 → ρ−π+

gives a constructive contribution. In the second solution, contributions proportional to form factors are almost equal

with each other, as the B → V form factor AB→V
0 = 0.293 is much larger than FB→P = 0.196 which can compensate

differences caused by decay constants. But unlike in the first solution, the role of charming penguin totally changes: the

charming penguin in B̄0 → ρ+π− gives a constructive contribution, while AV P
cc in B̄0 → ρ−π+ can give a destructive

CP Asymmetries
Wang et.al.
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TABLE IV: Direct CP asymmetries (in %) for ∆s = 1 processes: the first solution (This work 1) and the second solution (This

work 2). In both solutions, we have included the chiraly enhanced penguin in B → V P decay amplitudes. We also cite the

experimental data and theoretical results given in QCDF [10] and PQCD [51, 55] to make a comparison.

Channel Exp. QCDF PQCD This work 1 This work 2

B−
→ K∗−π0 4 ± 29 8.7+2.1+5.0+2.9+41.7

−2.6−4.3−3.4−44.2 −32+21
−28 −4.0+29.2+0.5

−27.8−0.5 −1.1+11.8+0.1
−11.8−0.1

B−
→ K̄∗0π−

−8.5 ± 5.7 1.6+0.4+0.6+0.5+2.5
−0.5−0.5−0.4−1.0 −1+1

−0 0 0

B−
→ ρ0K− 31+11

−10 −13.6+4.5+6.9+3.7+62.7
−5.7−4.4−3.1−55.4 71+25

−35 8.0+15.4+0.6
−16.1−0.6 14.3+20.8+1.1

−22.5−1.4

B−
→ ρ−K̄0

−12 ± 17 0.3+0.1+0.3+0.2+1.6
−0.1−0.4−0.1−1.3 1 ± 1 0 0

B−
→ ωK− 2 ± 5 −7.8+2.6+5.9+2.4+39.8

−3.0−3.6−1.9−38.0 32+15
−17 10.1+18.5+1.0

−20.5−0.9 11.1+16.8+0.8
−17.3−1.0

B−
→ φK− 3.4 ± 4.4 1.6+0.4+0.6+0.5+3.0

−0.5−0.5−0.3−1.2 1+0
−1 0 0

B̄0
→ K̄∗0π0 ... −12.8+4.0+4.7+2.7+31.7

−3.2−7.0−4.0−35.3 −11+7
−5 1.1+8.0+0.1

−8.3−0.1 0.4+4.8+0.0
−4.8−0.0

B̄0
→ K̄∗−π+

−5 ± 14 2.1+0.6+8.2+5.1+62.5
−0.7−7.9−5.8−64.2 −60+32

−19 −2.5+18.5+0.3
−17.8−0.3 −1.0+11.4+0.1

−11.4−0.1

B̄0
→ ρ0K̄0

−2 ± 27 ± 8 ± 6 7.5+1.7+2.3+0.7+8.8
−2.1−2.0−0.4−8.7 7+8

−5 −5.9+11.9+0.7
−10.1−0.8 −3.1+4.9+0.2

−4.8−0.2

B̄0
→ ρ+K− 22 ± 23 −3.8+1.3+4.4+1.9+34.5

−1.4−2.7−1.6−32.7 64+24
−30 6.0+11.1+0.6

−12.1−0.6 8.7+13.1+0.6
−13.6−0.8

B̄0
→ ωK̄0 21 ± 19 −8.1+2.5+3.0+1.7+11.8

−2.0−3.3−1.4−12.9 −3+2
−3 4.7+8.4+0.5

−9.5−0.5 3.4+5.2+0.3
−5.4−0.3

B̄0
→ φK̄0 1 ± 12 1.7+0.4+0.6+0.5+1.4

−0.5−0.5−0.3−0.8 3+1
−2 0 0

B−
→ K∗−η 2 ± 6 3.5+0.9+1.9+0.8+20.7

−0.9−2.7−0.8−20.5 −24.57+0.72
−0.27 −0.9+5.3+0.1

−5.5−0.1 −4.6+3.4+0.3
−3.4−0.3

B−
→ K∗−η′ 30+33

−37 −14.2+4.7+ 8.5+ 4.9+27.5
−4.2−13.8−14.6−26.1 4.60+1.16

−1.32 2.6+29.1+0.3
−20.9−0.3 −0.7+36.4+0.1

−34.5−0.1

B̄0
→ K̄∗0η 19 ± 5 3.8+0.9+1.1+0.2+3.8

−1.1−0.8−0.2−3.5 0.57 ± 0.011 −0.4+2.3+0.0
−2.4−0.0 −1.6+1.1+0.1

−1.1−0.1

B̄0
→ K̄∗0η′

−8 ± 25 −5.5+1.6+3.1+1.8+6.2
−1.3−5.1−5.9−7.0 −1.30 ± 0.08 10.2+8.7+1.3

−10.3−1.3 −9.8+4.5+0.9
−6.4−0.9

where the results in (out) the square brackets are predictions using the second (first) kind of inputs. In equation (61),

we can see: after taking the gluonic form factors into account, the FB→ηq and FB→ηs form factors are in the similar

size but with different signs in both kinds of inputs. In B− → ρ−ηq, another tree operator contributes in which ηq is

emitted. Although this contribution is color-suppressed, terms proportional to ζV
J give a sizable contribution. It can

be estimated by using a larger effective B → ηq form factor. Recalling that physical states η and η′ are mixtures of

ηq and ηs as in Eq. (22), one obtains the expressions for B → η(′) form factors:

FB→η =
FB→ηq

√
2

cos(θ) − FB→ηs sin(θ),

FB→η′

=
FB→ηq

√
2

sin(θ) + FB→ηs cos(θ). (62)

The mixing angle between ηq and ηs has been determined as θ = (39.3 ± 1.0)◦ [33, 34, 35] which is very close to 45◦,

thus we can obtain very small B → η′ form factors and relatively large B → η form factors. Thus the branching

fraction of B− → ρ−η′ is relatively suppressed for this flavor structure. In QCDF and PQCD approaches, the form

factors are different: FB→ηq $ FB→ηs . Thus the predicted branching ratio of B− → ρ−η is comparable with

BR(B− → ρ−η′) in these two approaches.

As in B̄0 → π0ρ0 process, our predictions on branching fractions of B̄0 → ρ0η(′) and B̄0 → ωη(′) are much larger

than the results evaluated in QCDF and PQCD approach. These channels are the so-called color-suppressed decays,

as the contributions from terms proportional to ζ and ζg are small due to the small Wilson coefficients. But in the

present framework, the hard-spectating form factors ζJ and ζJg are comparable with ζ and ζg. Moreover, the Wilson

coefficients for these form factors are large. Thus branching ratios of B̄0 → ρ0η(′) and B̄0 → ωη(′) are much larger.

Similar with B → K∗π and B → ρK decays, B → K∗η(η′) are also induced by b → s transitions in which charming

penguins provide most important contributions. But compared with B → K∗π and B → ρK decays, there are

CP Asymmetries
Wang et.al.
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TABLE V: CP -averaged branching ratios (×10−6) of Bs → PV decays: the first solution (This work 1) and the second solution

(This work 2). In both solutions, we have included the chiraly enhanced penguin in B → V P decay amplitudes. We also cite

theoretical results evaluated in QCDF [10] and PQCD [58] to make a comparison.

Modes QCDF PQCD This work 1 This work 2

B̄0
s → K+K∗− 4.1+1.7+1.5+1.0+9.2

−1.5−1.3−0.9−2.3 6.0+1.7+1.7+0.7
−1.5−1.2−0.3 8.3+4.3+1.6

−3.4−1.3 9.5+3.2+1.2
−2.7−1.1

B̄0
s → K∗+K− 5.5+1.3+5.0+0.8+14.2

−1.4−2.6−0.7− 3.6 4.7+1.1+2.5+0.0
−0.8−1.4−0.0 9.8+4.6+1.7

−3.7−1.4 10.3+3.8+1.5
−3.2−1.2

B̄0
s → K0K

∗0
3.9+0.4+1.5+1.3+10.4

−0.4−1.4−1.4− 2.8 7.3+2.5+2.1+0.0
−1.7−1.3−0.0 7.9+4.3+1.6

−3.4−1.3 9.3+3.2+1.2
−2.7−1.0

B̄0
s → K∗0K

0
4.2+0.4+4.6+1.1+13.2

−0.4−2.2−0.9− 3.2 4.3+0.7+2.2+0.0
−0.7−1.4−0.0 8.7+4.4+1.6

−3.5−1.3 9.3+3.7+1.4
−3.1−1.2

B0
s/B̄0

s → K+K∗− 17.3+6.5+3.2
−5.1−2.7 18.8+5.1+2.5

−4.5−2.2

B0
s/B̄0

s → K∗+K− 18.8+6.8+3.3
−5.4−2.8 20.8+5.3+2.7

−4.7−2.3

B̄0
s → K∗+K−

B̄0
s → K∗−K+

o

18.1+6.3+3.3
−5.0−2.7 19.8+4.9+2.6

−4.2−2.2

B0
s/B̄0

s → K0K
∗0

16.6+6.1+3.2
−4.8−2.7 18.6+4.9+2.6

−4.1−2.2

B0
s/B̄0

s → K∗0K
0

16.6+6.1+3.2
−4.8−2.7 18.6+4.9+2.6

−4.1−2.2

B̄0
s → K∗0K̄0

B̄0
s → K̄∗0K0

o

16.6+6.1+3.2
−4.8−2.7 18.6+4.9+2.6

−4.1−2.2

B̄0
s → π0φ 0.12+0.03+0.04+0.01+0.02

−0.02−0.04−0.01−0.01 0.16+0.06+0.02+0.00
−0.05−0.02−0.00 0.07+0.00+0.01

−0.00−0.01 0.09+0.00+0.01
−0.00−0.01

B̄0
s→π−K∗+ 8.7+4.6+3.5+0.7+0.8

−3.7−2.9−1.0−0.7 7.6+2.9+0.4+0.5
−2.2−0.5−0.3 5.8+0.5+0.5

−0.5−0.5 6.8+0.2+0.7
−0.1−0.7

B̄0
s→π0K∗0 0.25+0.08+0.10+0.32+0.30

−0.08−0.06−0.14−0.14 0.07+0.02+0.04+0.01
−0.01−0.02−0.01 0.90+0.07+0.10

−0.00−0.11 0.99+0.16+0.10
−0.15−0.08

B̄0
s→ρ−K+ 24.5+11.9+9.2+1.8+1.6

−9.7−7.8−3.0−1.6 17.8+7.7+1.3+1.1
−5.6−1.6−0.9 7.4+0.2+0.8

−0.1−0.8 10.1+0.4+0.9
−0.4−0.9

B̄0
s→ρ0K0 0.61+0.33+0.21+1.06+0.56

−0.26−0.15−0.38−0.36 0.08+0.02+0.07+0.01
−0.02−0.03−0.00 2.1+0.2+0.2

−0.2−0.2 0.79+0.02+0.08
−0.00−0.09

B̄0
s → K0ω 0.51+0.20+0.15+0.68+0.40

−0.18−0.11−0.23−0.25 0.15+0.05+0.07+0.02
−0.04−0.03−0.01 0.94+0.05+0.10

−0.00−0.11 1.3+0.1+0.1
−0.1−0.1

B̄0
s → K0φ 0.27+0.09+0.28+0.09+0.67

−0.08−0.14−0.06−0.18 0.16+0.04+0.09+0.02
−0.03−0.04−0.01 0.44+0.23+0.08

−0.18−0.07 0.54+0.21+0.08
−0.17−0.07

B̄0
s → ρ0η 0.17+0.03+0.07+0.02+0.02

−0.03−0.06−0.02−0.01 0.06+0.03+0.01+0.00
−0.02−0.01−0.00 0.08+0.04+0.01

−0.03−0.01 0.06+0.03+0.00
−0.02−0.00

B̄0
s → ρ0η′ 0.25+0.06+0.10+0.02+0.02

−0.05−0.08−0.02−0.02 0.13+0.06+0.02+0.00
−0.04−0.02−0.01 0.003+0.089+0.000

−0.000−0.000 0.15+0.24+0.02
−0.12−0.01

B̄0
s → ωη 0.012+0.005+0.010+0.028+0.025

−0.004−0.003−0.006−0.006 0.04+0.03+0.05+0.00
−0.01−0.02−0.00 0.04+0.04+0.00

−0.02−0.00 0.007+0.010+0.001
−0.002−0.001

B̄0
s → ωη′ 0.024+0.011+0.028+0.077+0.042

−0.009−0.006−0.010−0.015 0.44+0.18+0.15+0.00
−0.13−0.14−0.01 0.002+0.108+0.000

−0.000−0.000 0.22+0.35+0.02
−0.18−0.02

B̄0
s → φη 0.12+0.02+0.95+0.54+0.32

−0.02−0.14−0.12−0.13 3.6+1.5+0.8+0.0
−1.0−0.6−0.0 0.40+1.40+0.08

−0.51−0.07 1.2+2.1+0.2
−1.2−0.2

B̄0
s → φη′ 0.05+0.01+1.10+0.18+0.40

−0.01−0.17−0.08−0.04 0.19+0.06+0.19+0.00
−0.01−0.13−0.00 7.7+7.8+1.6

−5.5−1.3 4.2+5.2+0.7
−3.5−0.6

B̄0
s → K∗0η 0.26+0.15+0.49+0.15+0.57

−0.13−0.22−0.05−0.15 0.17+0.04+0.10+0.03
−0.04−0.06−0.01 1.7+0.3+0.2

−0.3−0.1 0.55+0.13+0.07
−0.12−0.07

B̄0
s → K∗0η′ 0.28+0.04+0.46+0.23+0.29

−0.04−0.24−0.10−0.15 0.09+0.02+0.03+0.01
−0.02−0.02−0.01 0.66+0.34+0.12

−0.26−0.11 0.77+0.33+0.09
−0.30−0.08

The system of four decay modes defines five asymmetry parameters, Cf , Sf , Cf̄ , Sf̄ together with the global charge

asymmetry related to the overall normalization:

ACP =
|Af |2 + |Āf |2 − |Af̄ |2 − |Āf̄ |2

|Af |2 + |Āf |2 + |Af̄ |2 + |Āf̄ |2
. (74)

One can also use the parameters C ≡ 1
2 (Cf + Cf̄ ), S ≡ 1

2 (Sf + Sf̄ ), ∆C ≡ 1
2 (Cf − Cf̄ ), ∆S ≡ 1

2 (Sf − Sf̄ ). If there

is no direct CP violation, only two independent decay amplitudes squared are left. Thus ACP = 0, Cf = −Cf̄ and

Sf = −Sf̄ which also implies C = 0 and S = 0. If we recall that the CP invariance conditions at the decay amplitudes

level are Af = Āf̄ and Af̄ = Āf , one can study the following two parameters:

Aff̄ =
|Āf̄ |2 − |Af |2

|Āf̄ |2 + |Af |2
, Af̄f =

|Āf |2 − |Af̄ |2

|Āf |2 + |Af̄ |2
. (75)

Bs Decays Branching Ratios
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B→ Kπ

There is an interesting correlation in the CP-asymmetries:   
(BBNS or BPRS or  Williamson et.al. or Pierini et.al.)

LO: AK+π0 < AK+π−

The usual “largest” power corrections that people include (chiral 
enhanced annihilation, chiral enhanced amplitudes, charming penguins) 
do not explain this, since they contribute equally to both amplitudes.

Sizeable power corrections can shift things towards the data, but an 
explicit power suppressed amplitude with a suitably large numerical 
coefficient (in SCET) has not yet been derived. 

AK+π0 = 0.050± 0.025
AK+π− = −0.097± 0.012

HFAG’08

Br are reproduced IF penguin is reproduced

∼ 1.5− 2.5σ deviation
(with theory error estimate from
hadronic parameters and power corr.)



A(B →M1M2) = TM1M2VubV
∗
uf + PM1M2VcbV

∗
cf

Penguin ology

How well can we reproduce the experimentally observed 
penguin amplitudes?



P̂0 ∼
(
C3,4+

αs(mb)C1,2,8g

π

)
ζBMφM ′

+
(
C3,4+

αs(mb)C1,2,8g

π

)
ζBM
J φM ′

+C1,2 αs(2mc)vÂBMM ′

cc̄

+
(
C5,6+

αs(mb)C1,2,8g

π

)[µM ′

mb
ζBMφM ′

pp +
µM ′

mb
ζBM
J φM ′

pp

]
+

(
C3,4+

αs(mb)C1,2,8g

π

)µM

mb
ζBM
χ φM ′

+
αs(mb)

mb

(
C3,4fBφMφM ′

+ C5,6fBφ+
Bφ3MφM ′

)

+C5,6
αs(mb)µM

m2
b

fBφM
ppφM ′

,

+P new−physics

Non.Pert. Charm Penguin Ciuchini et al,
Colangelo et al

Chiral Enh. 
terms BBNS

LO 

Beneke, Jager;  Jain et.al.

Arnesen et al.
singular

∫

0

dx

x
= ?

Annihilation
terms

Keum, Li,
Sanda

Penguin Phenomenology

+ . . .

theory: αs ≡ αs(mb)

∫
dx

φpp
π (x)

x(1− x)
∼ 6

P̂ ζJ
ππ + P̂χζJ

ππ

∣∣∣
C3−10

∼ fπζBπ
J

(
28 + 215

µπ

3mB

)
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P̂LO×104 P̂ χ×104 P̂ ann×104 P̂ total×104 P̂ expt
ispin×104 P̂ expt

ispin×104 P̂ expt
TF ×104

(γ = 59◦) (γ = 74◦) (γ = 59◦-74◦)

B → ππ
(8.10±0.63) (10.2±2.9) −1.31 ± 5.08 (16.9 ± 5.9) (18±9) (44±6)

+i(1.61±0.21) +i(1.10±0.39) +i(2.71 ± 0.45) −i(29±6) −i(29±6)

B → Kπ
(9.34 ± 1.00) (13.8 ± 3.9) 0.46 ± 8.03 (23.6 ± 9.0) ±(48 ± 4 ± 10)

+i(2.08 ± 0.25) +i(1.49 ± 0.57) +i(3.57 ± 0.62) −i(22 ± 7 ± 4)

B → ρρ
22.4+3.7

−2.3 — 0.87+0.67
−0.29 23.3+3.7

−2.4 −(29 ± 26) (38 ± 23)

+i 5.68+2.45
−1.07 — +i 5.68+2.45

−1.07 −i(8 ± 18) −i(8 ± 18)

TABLE IV: Numerical predictions for the short-distance penguin amplitudes at leading power, P̂ LO, from chiraly enhanced
terms P̂ χ, and from the annihilation amplitudes in Refs. [28, 29]. The sum of these contributions P̂ total, is the total short-
distance result from the factorization theorems discussed in the text (long-distance terms are discussed in the text). The last
three columns show current experimental data. Comparing them with P̂ total shows an order of magnitude short-fall for the
imaginary part.

values are not precisely the mean from table III, due to
small non-linearity e  ects in the parameter dependences.
The correlation in input parameter uncertainties must
be taken into account to get the errors shown here. The
three amplitudes in the first three columns of table IV
are then added together to get the total theoretical con-
tribution, P̂ total . These total values can be compared to
the experimental values in the last three columns. The
uncertainty shown only includes the variation of param-
eters from the Gaussian scans. For the first column the
displayed errors are dominated by the uncertainties in
aπ

2 + aπ
4 , aK

1,2,  B π ,  B π
J , and for B    those in a  ,

 B  , and  B  
J . The e  ect of other parameter uncertain-

ties is quite small. Even the dominant uncertainties are
small due to our proper account of parameter correla-
tions and use of experimental data. Also due to our fit
procedure the errors from  and  J will decrease with im-
proved measurements of the tree amplitudes (which come
from improved branching ratios and CP-asymmetries).
In P̂ total the uncertainty from the parameters in the chi-
ral enhanced annihilation by far dominate the errors for
B  ππ and B  K π.

In addition we can estimate the uncertainty from deter-
mining the hard coe  cients by varying µ  [mb / 2, 2mb].
For the real parts this gives an additional + 7%

− 9% uncer-
tainty for P̂ total

π π , + 15%
− 12% uncertainty for P̂ total

K π , and + 9%
− 10%

uncertainty for P̂ total
  . For the imaginary parts we find an

additional + 25%
− 19% uncertainty for P̂ total

π π , + 26%
− 19% uncertainty

for P̂ total
K π , and + 30%

− 22% uncertainty for P̂ total
  . Finally we as-

sign a generic 20% uncertainty to the final P̂ total results
to account for the fact that we have given only a par-
tial treatment of 1 /mb corrections, but do not foresee a
reason why the untreated corrections should be enhanced
over the power counting estimate. Thus with an estimate

for all theoretical uncertainties we find

P̂ total
π π = (16.9 ± 5.9 + 1.0

− 1.7 ± 2.0 ± 3.4)

+ i(2.71 ± 0.38 + .68
− .51 ± 0.33 ± 0.54) ,

P̂ total
K π = (23.6 ± 9.0 + 3.5

− 2.8 ± 2.8 ± 4.7)

+ i(3.57 ± 0.53 + .93
− .68 ± 0.43 ± 0.71) ,

P̂ total
  = (23.3 + 3.7

− 2.4
+ 2.1
− 2.3 ± 2.8 ± 4.7)

+ i(5.68 + 2.81
− 1.75

+ 1.70
− 1.25 ± 0.68 ± 1.14) . (139)

The first errors are from input parameters and are dom-
inated by chiral-enhanced annihilation for B  ππ, K π.
The second errors are our estimates of higher order per-
turbative corrections (the µ-variation). The third terms
are errors from |Vub| which propagate through the form
factors and hence can be added as a ±12% uncertainty.4

Finally the fourth errors are a generic 20% that we add
for unknown power corrections.

For ππ the real part of the amplitude in Eq. (139)
agrees with the data in table IV for  = 59  . However,
the same is not true for K π, nor even for ππ if  =
74  (which is the value preferred by SU(3) and SCET
power counting which predicts P̂π π  P̂K π [15]). Here
the disagreement with data in the real part is at the level
of factor of two.

On the other hand the imaginary part of the short-
distance prediction for P̂ π π and P̂ K π are much smaller
than the corresponding experimental values and have the
opposite sign. Due to a numerical enhancement P̂   

M1 M2

and P̂   J

M1 M2
are of same size as the leading power contri-

butions to the amplitude, but as we have demonstrated
by deriving an SCET I factorization theorem, these terms
are real at zeroth order in  s. After taking into account
all theoretical uncertainties in our analysis, we conclude
that it is not possible to match the P̂ imaginary parts

4 We have increased the 7% error on |Vub| quoted by HFAG [1],
which we consider to be overly optimistic.

phase
relative to
TM+

1 M−
2

All terms above have SMALL imaginary parts

Jain et.al. (BPRS)

Possible Imaginary contributions:

• new physics without long-distance penguins?  
very unlikely.  A large imaginary part requires that the new physics 
have a large strong phase Ne−iφ = N1 + N2e

iγ

|Im(N1,2)| ≤
|Im(N)|

sin γ

• complex annihilation

• complex charm penguins



Does Annihilation produce the Imaginary term?

M1M2 H(x, y)

π−K(∗)+, ρ−K(∗)+ −ãd
4(y, x)

π0K(∗)0, ρ0K(∗)0 1√
2

ãd
4(y, x)

π−π+, π−ρ+, ρ−π+, ρ−ρ+ −ãs
1(x, y) − ãs

3(x, y) − ãs
3(y, x)

π0π0, π0ρ0, ρ0ρ0
[

1
2 ãs

1(x, y) + ãs
3(x, y)

]

+
[

x ↔ y
]

K(∗)−K(∗)+ −ãs
1(x, y) − ãs

4(y, x) − ãs
3(x, y) − ãs

3(y, x)

K̄(∗)0K(∗)0 ãs
3(x, y) + ãs

3(y, x) + ãs
4(y, x)

TABLE III: Hard functions for B̄s decays for the annihilation amplitude A(1)
Lann in Eq. (23).

n

na) b) c) d)

soft

x
x

y
y

FIG. 2: Tree level annihilation graphs for B → M1M2 decays. Here soft, n, n̄ denote quarks that
are soft, n-collinear, and n̄-collinear respectively.

where the ø-notation and term involving the Wilson coefficient d(µ±) are discussed below.

Note that the coefficients a3u,3c,4u,4c,7,8 are polluted in the sense of Ref. [5], meaning that

O(α2
s) matching results proportional to the large coefficients C1,2 could compete numerically.

The others are not polluted: a1u,2u involve C1,2 at O(αs), while a1c,2c,5,6 only get contributions

from electroweak penguins. Our results for the diagrams in Fig. 2 agree with Refs. [7, 10].

This includes the appearance of the combinations of momentum fractions in the functions

F (x, y) and F (ȳ, x̄), up to ø-distribution and d-term. For later convenience we define moment

parameters which convolute the hard coefficients with the distributions

βM1M2

iu =

∫ 1

0

dx dy [aiu(x, y)+κai+4(x, y)] φM1(y)φM2(x) ,

βM1M2

ic =

∫ 1

0

dx dy [aic(x, y)+κai+4(x, y)] φM1(y)φM2(x) . (26)

In Eq. (25) the subscript ø denotes the fact that singular terms in convolution integrals

are finite in SCET due to the MS-factorization which involves convolution integrals such as

∑

x, x′ $=0

∫

dxr dx′
r δ(1−x−x′)

φM(x, x′, µ)

x̄2
, (27)

where x(′) and x(′)
r correspond to label and residual momenta [18]. Implementing x $= 0 and

x′ $= 0 requires zero-bin subtractions and divergences in the rapidity must also be regulated.
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singular
x̄→ 0

This singularity has to do with a potential double counting in SCET

n-collinear

n-collinear

soft

hard
soft

soft

soft

n-collinear

n-h.c.

n-h.c.

soft

n-collinear

x̄→ 0

Arnesen et.al.
φπ(x)

Same QCD topology appears twice.
In SCET there must be a cutoff to distinguish these two terms 

(& dim.reg. alone does not suffice)

∫ 1

0
dx

φπ(x)
x̄2



p+

c

0
0

!2

2

p-

Q

!Q
0

!Q !Q
0

SCETII

s
!Q

!Q

p2 = "
2

# = a2

QCD

hcn
n

SCET II Rapidity Fact. in SCET distinguishes
 the collinear and soft d.o.f.

µ−/µ+

get

Can use cutoff or
dim.reg. type regulators

φ(x, µ, p−/a)
φ(x, µ, p−/µ−)

nonpert. functions

Manohar & I.S.

∑

p1 !=0

∫
dpr

1 F (p1) =
∫

dp1

[
F (p1)− Fsubt(p1)

]

removes support of 
collinear integrand in soft 

region and visa-versa

zero-bin
subtraction



n-collinear

n-collinear

soft

hard
soft

soft

soft

n-collinear

n-h.c.

n-h.c.

soft

n-collinear

x̄→ 0

This hard scattering term 
is real.

This soft rescattering term 
is complex.

∼ αs(mb)
Λ
mb

∼ α2
s(
√

mΛ)
Λ
mb

conclude:
“Annihilation 

is real”

Naive
counting:

Proper:  the two graphs are factored at a high scale where all alphas’ 
are equal. To determine the dominance one needs an RGE (which 
has not been derived for these rapidity cutoff amplitudes).



Path to finding New Physics in the presence of  
Hadronic Parameters/Expansions (best we can do?)

I)  use as much form factor information from semileptonic decays
      as possible (synergy is like                                                   )B → Xsγ with B → Xueν̄

II)  use global fits which combine Factorization and SU(3) to look 
       for interesting channels with large deviations
III)  use Factorization and SU(2) for individual channels, to obtain 
   more precise predictions (at the expense of additional fit parameters)

IV)  use SU(3) fits as a cross-check on the hadronic uncertainties     
      (supplementing II and III)

VI)  build a new-physics model that correlates and explains the
      deviations in several channels

V)  include THEORY uncertainty when discussing any deviations
      (power corrections, model parameters, etc.)

The End


