

## Penguin phenomenology



Cai-Dian Lu (呂才典)
IHEP, Beijing



# Question: Which penguin is fatter?

- Ordinary penguin
- Chiral enhanced penguin
- Annihilation penguin
- Charming penguin
- Electroweak penguin
- Color suppressed penguin



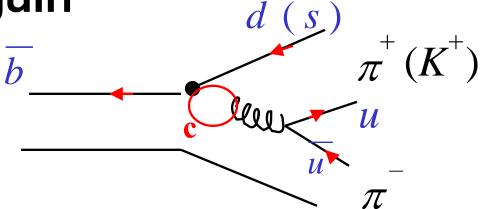


## Penguin over tree

- $B^0 \rightarrow K^+\pi^-$  and  $B^0 \rightarrow \pi^+\pi^-$  are dominated by penguin (P) and tree (T) operators, respectively
- In leading power,
- $|P/T| \sim |f_K/f_{\pi}| * |V_{ts}/V_{ub}| * |a4/a1|$ =158/132 \* 41.61/3.96 \* 0.045/1.05 = 0.54

Exp:  $B(B^0 \to K^+\pi^-)/B(B^0 \to \pi^+\pi^-)=18.2/4.6=4$ 



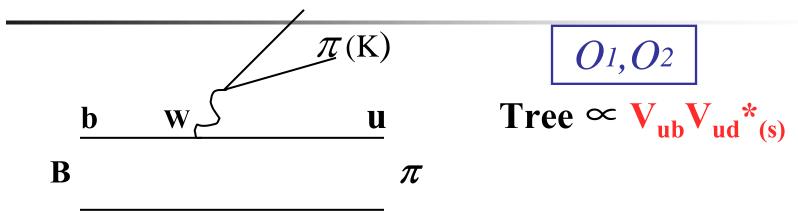

## Penguin over tree

- (V-A)(V+A) operator O<sub>6</sub> can be chirally enhanced when doing Fierz transformation in QCDF and pQCD.
- $a_6$  only slightly larger than  $a_4$ , QCDF needs very large chiral factor  $m_0 = m_K^2/m_s$ , small  $m_s$ .
- pQCD has additional chiral enhanced annihilation penguin contribution  $O_6$ , does not need small  $m_s$
- SCET/BPRS without a<sub>6</sub>, needs very large charming penguin



# **Charming penguins in SCET**

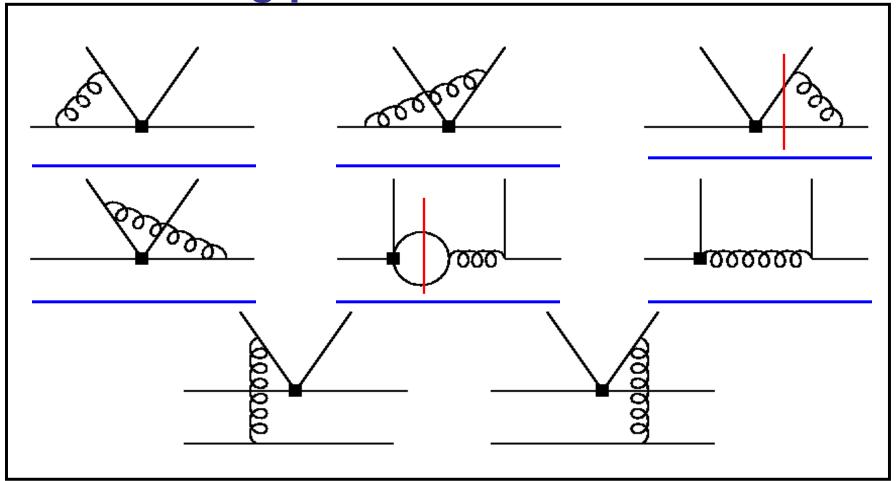
- has the same topology as chiral enhanced penguin
- Charming penguin appear always together with chiral enhanced penguin



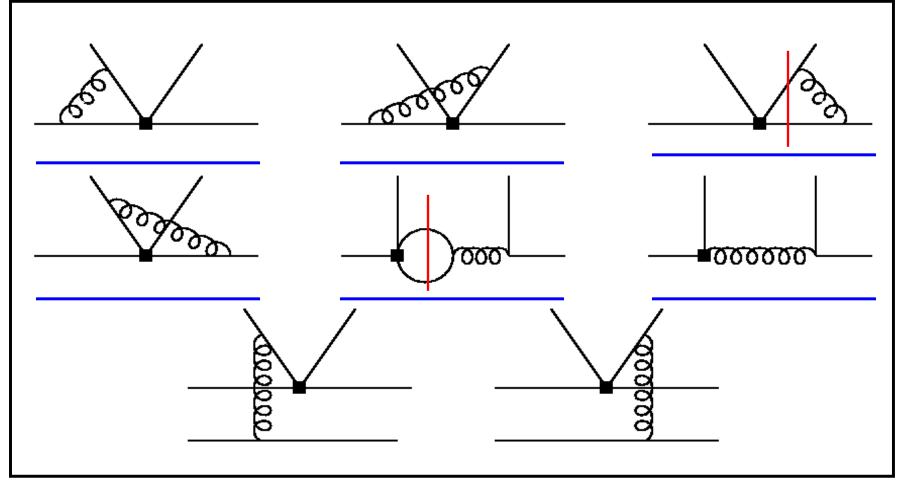



### Importance of power corrections

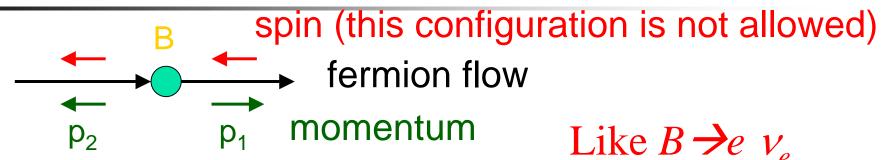
- Most of the branching ratios agree well with experiments – leading power
- Difficult to distinguish between approaches
- but CP / polarization, suppressed channels require strong phase, sensitive to weak phase, power corrections will be different


# $B \rightarrow \pi \pi$ , $\pi K$ Have Two Kinds of Diagrams with different weak phase




$$\mathbf{b}$$
 $\mathbf{b}$ 
 $\mathbf{b}$ 
 $\mathbf{b}$ 
 $\mathbf{b}$ 
 $\mathbf{b}$ 

Penguin 
$$\sim V_{tb}V_{td}^*$$
 (s)



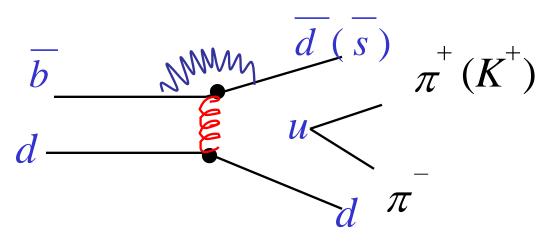







## annihilation penguin can provide a large strong phase



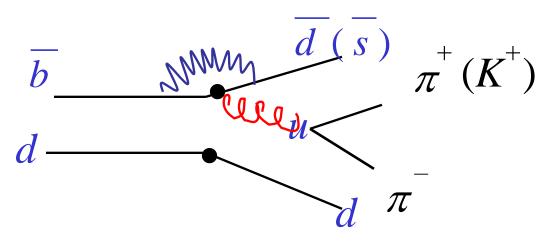

pseudo-scalar B requires spins in opposite directions, namely, helicity conservation

Annihilation suppression ~ 1/m<sub>B</sub> ~ 10%



## No suppression for $O_6$

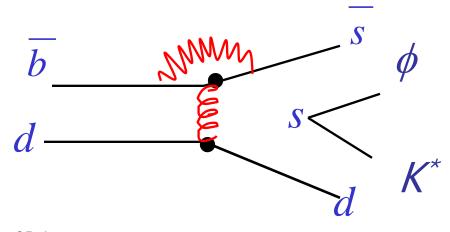
- Space-like penguin (annihilation)
- Become (s-p)(s+p) operator after Fiertz transformation Chirally enhanced
- No suppression, contribution "big" (20-30%)




Calculable in pQCD approach



## No suppression for $O_6$

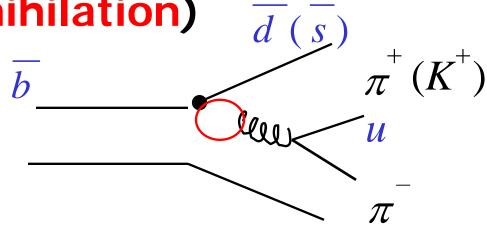

- Space-like penguin (annihilation)
- Become (s-p)(s+p) operator after Fiertz transformation Chirally enhanced
- No suppression, contribution "big" (20-30%)



Calculable in pQCD approach

## 

Annihilation can enhance transverse contribution:  $R_L = 59\%$  (exp:50%) and also right ratio of  $R_{=,}$   $R_{\perp}$  and right strong phase  $\phi_{=,}$   $\phi_{\perp}$ 




H-n Li, **Phys. Lett. B622**, **68**, **2005** 



## **Charming penguins in SCET**

- Play the similar role at SCET, but not calculable
- Charming penguin appear always together with space like penguin (annihilation)

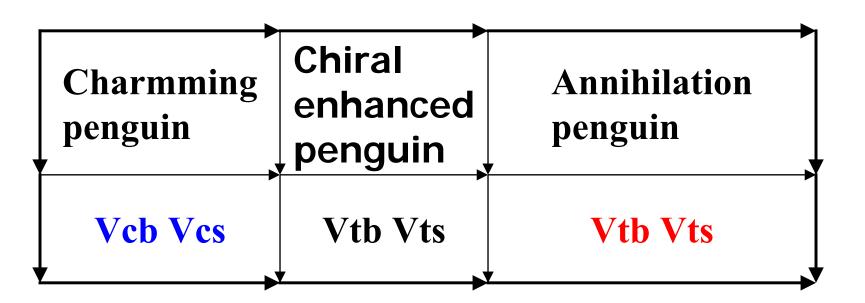




#### SCET

- $\chi^2$  Fit from experiments requires a large charming penguin, it even become the most important contribution in  $B \rightarrow K \pi$  decays
- It is essential to provide a right strong phase for direct CP asymmetry

Williamson, Zupan, Phys.Rev.D74:014003,2006, Wang<sup>2</sup>, Yang, Lu, arXiv:0801.3123



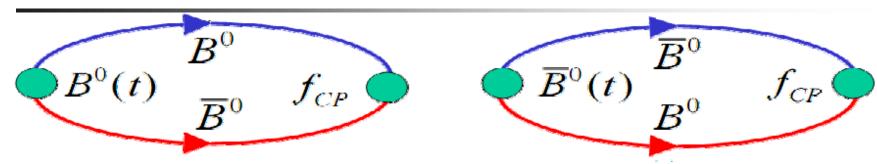

## Comparison

|               | Charmming penguin                          | Chiral enhanced penguin | Annihilation penguin                                 |
|---------------|--------------------------------------------|-------------------------|------------------------------------------------------|
| BBNS/<br>QCDF | Perturbative, small                        | Big                     | nonperturbative<br>model parameters,<br>large phases |
| pQCD          | Perturbative, small                        | Big                     | Big, perturbative large phases                       |
| BPRS/<br>SCET | Big, non-<br>perturbative<br>fit parameter | Not<br>known            | perturbative                                         |



## Comparison




CKM phase slightly different

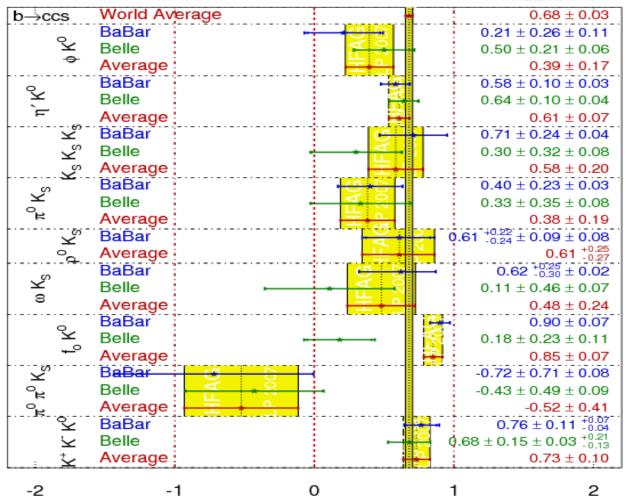


### **Mixing Induced CP**

- $B \rightarrow \pi^+\pi^-$ ,  $\phi K$ ,  $\eta' K$ , KKK...
- Dominant by the B-B bar mixing
- Most of the approaches give similar results
- Even with final state interactions
- Because characterized by weak phase

#### Mixing induced CP violation




$$\begin{split} &\Gamma(B^0(t) \to f) = \frac{1}{2} |A_f|^2 e^{-\Gamma t} \left\{ (1+|\lambda|^2) + (1-|\lambda|^2) \cos \Delta mt - 2 \mathrm{Im} \lambda \sin \Delta mt \right\} \\ &\Gamma(\bar{B}^0(t) \to f) = \frac{1}{2} |A_f|^2 e^{-\Gamma t} \left\{ (1+|\lambda|^2) - (1-|\lambda|^2) \cos \Delta mt + 2 \mathrm{Im} \lambda \sin \Delta mt \right\} \end{split}$$

$$\mathcal{A}_{CP}(t) = \frac{\Gamma(B^{0}(t) \to f) - \Gamma(\bar{B}^{0}(t) \to f)}{\Gamma(B^{0}(t) \to f) + \Gamma(\bar{B}^{0}(t) \to f)} \\ = \frac{|\lambda|^{2} - 1}{|\lambda|^{2} + 1} \cos \Delta mt + \frac{2\operatorname{Im}\lambda}{|\lambda|^{2} + 1} \sin \Delta mt$$
  $\lambda = \frac{q}{p} \frac{\bar{A}}{A}. = e^{-2i\beta} e^{-2i\delta}$ 

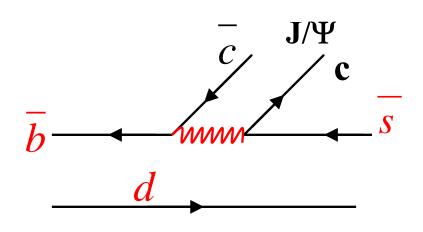


#### Tendency of exp.data against theory



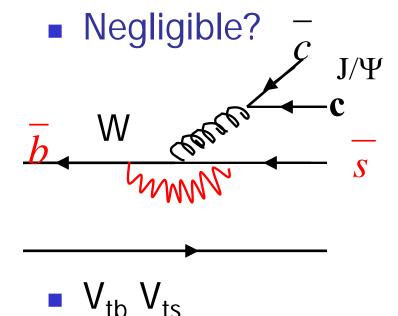


### $\Delta S$ calculated from QCDF,pQCD,SCET


| $\Delta S$ | QCDF  | pQCD  | SCET         | exp              |
|------------|-------|-------|--------------|------------------|
| φKs        | 0.02  | 0.02  | 0.00         | -0.29 ±0.17      |
| ωKs        | 0.13  | 0.15  | -0.19, 0.11  | $-0.20 \pm 0.24$ |
| ρKs        | -0.08 | -0.19 | 0.16, -0.13  | -0.07 ±0.26      |
| ηKs        | 0.10  |       | -0.03, 0.07  | _                |
| η' Ks      | 0.01  |       | -0.02, -0.02 | $-0.07 \pm 0.07$ |
| πKs        | 0.07  | 0.05  | 0.08         | -0.30 ±0.19      |

- QCDF: Beneke [results consistent with Cheng-CKC-Soni]
- pQCD: Mishima-Li
- SCET: Williamson-Zupan and Wang<sup>2</sup>, Yang, Lu, arXiv:0801.3123




## Color suppressed penguin

Color suppressed tree



 $\mathbf{V}_{cb} \mathbf{V}_{cs}$ 

Color suppressed penguin





- nrQCD predict large color octet contribution for J/Y production.
- The color suppressed penguin is a kind of color octet contribution.
- If it is "big", we have  $\sin 2\beta_{\text{eff}}$  for B  $\rightarrow$  J/Ψ Ks,
- △s will change sign



### **Summary / Comment**

- Factorization approaches are systematic tools, sometimes have to be used for data fitting (Scenario 1,2,3,4 in QCDF, charming penguin in SCET)
- SCET is encouraging, counting rules consistent with pQCD, but need more parameters
- NLO, 1/m<sub>B</sub> corrections not yet fully studied, important for certain channels



### **Summary / Comment**

- The direct CP measurements need a large contribution from annihilation penguin (or charming penguin), with large strong phase
- The large BRs of B→ VP modes also need such annihilation penguin
- Similar in the polarization of B→ VV modes
- Only pQCD approach can predict its size by calculation



## Thank you!