Rare Kaon Decays: Experimental Prospects

Augusto Ceccucci/CERN

New Physics Reach of the K $\rightarrow \pi \nu \nu$ decays

Outlook

- $K_{L}^{0} \rightarrow \pi_{L}^{0} \nu \nu$
 - State of the art: KEK E391a
 - Prospects (short term) : J-PARC E14;
 - Prospects (long term): KLOD@U70, Project X (à la KOPIO), CERN
- $K^+ \rightarrow \pi^+ \nu \nu$
 - State of the art: BNL E787/E949
 - An In flight experiment at Fermilab (CKM) was cancelled
 - Prospects (short term): in-flight CERN P-326/NA62
 - Prospects (long term): Project X (?)

State of the art: KEK E391a

E391a: technique

Kaon Decay

- $K_L \rightarrow \pi^0 \pi^0$ (2 γ missed; due to inefficiency or fusion)
- $K_L \rightarrow \pi^+\pi^-\pi^0$ (2 charged pion missed)

■ $K_1 \rightarrow \pi^- e^+ v$ (charge exchange, annihilation)

Halo neutron

- Interact with "CC02","CV"
- Produce π⁰, η

Slide from T. Nomura

E391a: Run II

PRL 100, 201802 (2008) [arXiv:0712.4164]

Background Source	Estimated # BG	
$K^0{}_L \!\!\!\!\! \to \pi^0 \; \pi^0$	0.11 ± 0.09	
CC02	0.16 ± 0.05	
CV	0.08 ± 0.04	
CV-η	0.06 ± 0.02	
Total	0.41± 0.11	

BR(
$$K_{L}^{0} \rightarrow \pi^{0} \text{ VV}$$
) < 6.7 × 10⁻⁸ 90% CL

Improvement by about a factor of three w.r.t. previous best limit

Upgrades for E14 (J-Parc Step 1)

E14@J-PARC Stage 1

- 3 snowmass years
- "KL alone" beamline

(KL yield based on GEANT4/QGSP)

		standard cuts	CsI cluster shape cut	acceptance loss (50%)
Signal	$K_L o \pi^0 \nu \overline{\nu}$	6.0 ± 0.1	5.4 ± 0.1	2.70 ± 0.05
K_L BG	$K_L o \pi^0 \pi^0$	3.7 ± 0.2	3.3 ± 0.2	1.7 ± 0.1
	$K_L \rightarrow \pi^+ \pi^- \pi^0$	0.18 ± 0.08	0.16 ± 0.07	0.08 ± 0.04
	$K_L \rightarrow \pi^- e^+ \nu_e$	0.13 ± 0.01	0.03 ± 0.003	0.02 ± 0.001
halo n BG	CV	_	_	0.08
	η	8.1	0.6	0.3

Note:

Detailed simulation of CV/CC02 BG in progress

Slide from T. Nomura

Status of E14

- Stage I Approved
- Recommended for stage II approval by J-PARC PAC
- Significant resources already secured

Schedule from T. Nomura

$K_L \rightarrow \pi^0 vv$ Long Time Prospects

Background Level (1mmPb/5mmScint)

Picture adapted from KAMI proposal

CERN is competitive if the E391A technique is established

$K^+ \rightarrow \pi^+ \nu \nu$: State of the art

Stopped K ~0.1 % acceptance

hep-ex/0403036 PRL93 (2004) See also long article just printed: PRD 77, 052003 (2008)

$$BR(K^+ \to \pi^+ \nu \nu) = 1.47^{+1.30}_{-0.89} \times 10^{-10}$$

- Three candidates
- Compatible with SM within large errors

Proposal to Measure the Rare Decay $K^+ \rightarrow \pi^+ \nu \nu$ at the CERN SPS

P-326/NA62

Bern, Birmingham, CERN, Dubna, Ferrara, Fairfax, Florence, Frascati, IHEP, INR, Louvain, Mainz, Merced, Naples, Perugia, Pisa, Rome I, Rome II, Saclay, San Luis Potosi, SLAC, Sofia, Triumf, Turin

Principle of the Experiment

1) Kinematical Rejection

$$m_{miss}^2 \approx m_K^2 \left(1 - \frac{|P_{\pi}|}{|P_K|} \right) + m_{\pi}^2 \left(1 - \frac{|P_K|}{|P_{\pi}|} \right) - |P_K| |P_{\pi}| \vartheta_{\pi K}^2$$

2) Photon vetoes to

reject
$$K^+ \rightarrow \pi^+ \pi^0$$
:

 $P(K^{+}) = 75 \text{ GeV/c}$

Requiring $P(\pi^+)$ < 35 GeV/c

 $P(\pi^0) > 40 \text{ GeV/c}$ It can hardly be

missed in the calorimeters

Signature:

- •Incoming high momentum K+
- •Outgoing low momentum π^+

3) PID (RICH) for $K^+ \rightarrow \mu^+ \nu$ rejection (à la FNAL-CKM)

Proposed Detector Layout

Missing Mass Resolution

Non-gaussian tails can be induced, for instance, by the wrong association between the incoming kaon and the pion

200 ps time resolution In gigatracker is required

LKr inefficiency measured with data

LKr ineff. per γ (E $_{\gamma}$ > 10 GeV): $\eta \sim 7 \times 10^{-6}$ (preliminary)

 π^+ track and lower energy γ are use to predict the position of the other γ

$K^+ \rightarrow \pi^+ \pi^0$ selected kinematically

June 2, 2008 Augusto Ceccucci 17

Large Angle Photon Vetos

Efficiencies for electron detection similar for all 3 technologies

Tile (CKM) and lead glass (OPAL) results are preliminary

The RICH: μ suppression (MC)

Muon contamination in π sample (15<p<35 GeV/c): 1.3×10⁻³

P-326/NA62 Sensitivity

Decay Mode	Events
Signal: $K^+ \rightarrow \pi^+ \nu \nu$ [$flux = 4.8 \times 10^{12}$	55 evt/year
$K^{+} \rightarrow \pi^{+} \pi^{0} [\eta_{\pi 0} = 2 \times 10^{-8} \ (3.5 \times 10^{-8})]$	4.3% (7.5%)
$K^+ \rightarrow \mu^+ \nu$	2.2%
$K^+ \rightarrow e^+ \pi^+ \pi^- \nu$	≤3%
Other 3 – track decays	≤1.5%
$\mathbf{K}^{+} \rightarrow \pi^{+} \pi^{0} \gamma$	~2%
$K^+ \rightarrow \mu^+ \nu \gamma$	~0.7%
K^+ → $e^+(\mu^+)$ π^0 ν, others	negligible
Expected background	≤13.5% (≤17%)

Definition of "year" and running efficiencies based on NA48 experience

Status of the R&D

Large Angle Photon Vetoes

Augusto Ceccucci 22

NA62 Experimental Challenge: Straw Tracker

Straw Trackers operated in vacuum would enable us to:

- •Remove the multiple scattering due to the Kevlar Window
- •Remove the acceptance limitations due to the beam-pipe
- •Remove the helium between the chambers

•The Straw Tracker is essential to study ultra-rare-decays in flight

June 2, 2008

STRAW Prototype built in 2007

Ultrasound Welded mylar (linear weld, no glue!)

•36 Al

•12 (Cu+Au) mylar straws

Straw Prototype inside the Vacuum Tube

- Data were collected with hadron, muon and kaon decays
- •The test in the actual vacuum tank enabled one to address realistic issues

Aluminum straws (preliminary)

Residuals

R.M.S.=130 μm sigma=67 μm

June 2, 2008

R.M.S.=113 μm sigma=49 μm

Augusto Ceccucci

27

NA62 Straw Chamber design

The RICH prototype

- Full scale (longitudinal) RICH prototype
- 18 m long tube, vacuum resistant
- Mirror: φ=50cm, f=17.01m
- 96 PMs Hamamatsu R 7400 U
- Test: negative beam from SPS@200 GeV/c

Achieved time resolution: 75 ps per event

In 2008 the prototype Will be equipped with ~400 PMTs

Gigatracker (Silicon μ-pixel)

Requirements:

Time resolution: 200 ps / station Material Budget: $< 0.5 \% X_0$ / station

Driven by the experience with the thin hybrids of the ALICE SPD

IRST Diode with NINO chip

Status of P-326 / NA62

- The Collaboration is in the phase of completing the R&D and preparing the construction
- Some Funding agency, and notably INFN, have already approved the programme
- Construction is foresee during the 2009-2011 period and data taking for K⁺→π⁺ v v should start in 2011-2012
- The New Collaboration is growing and the best way to blend the new groups is to do physics together
- In 2007 the New Collaboration NA62 has collected 5 months of proton data at the SPS to study lepton universality in kaon leptonic decays

$R_{\kappa} = \Gamma(K \rightarrow e \nu) / \Gamma(K \rightarrow \mu \nu)$

$$R_K^{LFV} = \frac{\sum_i K \to e\nu_i}{\sum_i K \to \mu\nu_i} \simeq \frac{\Gamma_{SM}(K \to e\nu_e) + \Gamma(K \to e\nu_\tau)}{\Gamma_{SM}(K \to \mu\nu_\mu)} , \quad i = e, \mu, \tau$$

Masiero, Paradisi, Petronzio, hep-ph/0511289 PRD74,(2006)

$$eH^{\pm}
u_{ au}
ightarrowrac{g_2}{\sqrt{2}}rac{m_{ au}}{M_W}\Delta_R^{31} an^2eta$$

$$\Delta_R^{31} \sim rac{lpha_2}{4\pi}\, \delta_{RR}^{31}$$

$$\Delta_R^{31} \sim 5 \cdot 10^{-4} t_\beta = 40 M_{H^{\pm}} = 500 \text{GeV}$$

$$\Delta au_{\!K\,SUSY}^{e-\mu} \simeq \left(rac{m_K^4}{M_{H^\pm}^4}
ight)\!\left(rac{m_ au^2}{m_e^2}
ight) |\Delta_R^{31}|^2 an^6eta pprox 10^{-2}$$

 $R_{\kappa}(SM) = (2.472 \pm 0.001) \times 10^{-5}$

Variations of the order of 1% to with respect to R_K(SM) may be present from breaking of μ -e universality in SUSY (maximum effect possible -3.2%)

World average (PDG): $R_{\kappa} = (2.44 \pm 0.11) \times 10^{-5}$

from three experiments: 1972 (112 evts); 1975 (534 evts); 1976 (404 evts) From the analysis of NA48/2 2003 data (~ 4000 events):

 $R_{K} = (2.416 \pm 0.043 \pm 0.024) \times 10^{-5}$ (~ 4000 evts) presented at HEP2005, Lisbon

Ratio of Leptonic Meson Decays

$$R_{M} = \frac{\Gamma(M \to ev(\gamma))}{\Gamma(M \to \mu v(\gamma))} = \left(\frac{m_{e}}{m_{\mu}}\right)^{2} \left(\frac{1 - \left(\frac{m_{e}}{m_{M}}\right)^{2}}{1 - \left(\frac{m_{\mu}}{m_{M}}\right)^{2}}\right)^{2} \times \left(1 + \delta R_{M}\right) R_{\pi} = (1.2352 \pm 0.0001) \times 10^{-4}$$

$$R_{K} = (2.477 \pm 0.001) \times 10^{-5}$$

Experimental Situation

$$\pi \rightarrow e\nu$$

$$R_{e/\mu}^{\exp \pi} (\pm 0.4\%)$$

$$1.2265(34)(44)x10^{-4}$$
 TRIUMF (1992)

$$1.2346(35)(36)x10^{-4}$$
 PSI (1993)

New experiments planned at TRIUMF and PSI to reach <0.1% on R_{π}

$$R_K = 2.457 \pm 0.032 \times 10^{-5}$$

Augusto Ceccucci

NA62: 2007 data taking for R_K

NA62 has accumulated more than 100 k K \rightarrow e v events in 2007 to push the error on R_K from ~2% to ~0.3%

Subset of the NA62 data (2007)

Kaons: Rare Decays $K^+ \rightarrow \pi^+ \nu \nu$, $K_L \rightarrow \pi^0 \nu \nu$

Young-Kee Kim April 8, 2008, CERN Slide 38

Kaons: Rare Decays

Young-Kee Kim, April 8

- an almost-Minimal Flavor Violation World
 - Measuring small deviations from SM of great importance.
 - SUSY breaking scale, Flavor symmetries related to unification, Compositeness, extra dimensions, etc.
 - Directly complementary to central physics program at LHC.
 - Experimental focus theoretically & experimentally clean
 - Small errors: ~ a few %; require ~1,000 clean Kaon events

$K^+ \rightarrow \pi^+ \nu \nu$	#evnts	$K_L \rightarrow \pi^0 \nu \nu$	#evnts
CERN NA48 (by 2012)	~160	J-PARC I (by 2012)	~4
		J-PARC II (by ~2016)	~100
Potential FNAL (w/o Proj.X)	~600	Potential FNAL (w/o Proj.X)	
Potential FNAL (w/ Proj.X)	~1500	Potential FNAL (w/ Proj.X)	~1000

HEPAP-P5 Report May 29, 2008

From C. Baltay presentation

Budget re-instated

→ at 2007level and adjusted for inflation

 The more favorable funding scenario, scenario C, would allow for pursuing a program in rare K decay experiments at Fermilab as well.

Doubling the 2007 budget Over 10 years

June 2, 2008 Augusto Ceccucci 40

Personal Concluding Remarks

- The precise SM predictions and the sensitivity to New Physics makes the continuation of rare kaon decays measurements compelling
- The Community should focus on the most promising approach and to consolidate globally into one or two collaborations.
- The rare kaon decay experimental programme has to be considered within a coherent flavour effort complementary to the high energy frontier
- Like the epsilon'/epsilon endeavor in the past, these experiments can produce a variety of physics results
- To avoid limitations to the physics output, resources for triggering, read-out and data handling have to be planned carefully