Status and Prospect of sKEKB

May 30, 2008 Yutaka Ushiroda (KEK)

Flavour as a Window to New Physics at the LHC Focus Week "B@LHC"

Outline

- Introduction
- Accelerator status and prospect
- Detector status and prospect
- Political situation
- Summary

The Luminosity Frontier

Five key measurements

- ullet Non-SM CP phase: High precision $b \to s$ penguin studies
- Charged Higgs: searches in $B^+ \to \tau^+ \nu$ and $B \to D^{(*)} \tau^+ \nu$
- Non-SM right-handed current: $B \to K^* \gamma$ CPV
- Loop vs tree: high precision unitarity triangle measurement
- Lepton flavor violation: searches in high statistics τ decays

+ Bonus

- NP search in up-quark sector: CPV in D-D mixing
- Hunt for new particles: 4-quark states and more?
- Endless list: Many rare B decays, $A_{FB}(B \to K^*\ell^+\ell^-)$, B_s at $\Upsilon(5S)$, more D decays, continuum, $\gamma\gamma$, ISR...
- Jackpot?: anything not thought of yet...

Super B factory and Super-LHCb

Sensitivity Comparison ~2020 Super-LHCb 100 fb⁻¹ vs Super-B factory 50 ab⁻¹

SuperB numbers from M Hazumi - Flavour in LHC era workshop; LHCb numbers from Muheim

 B_s

•This plot is made by our LHCb friend.

LHCb: 10/fb

Super-LHCb: 100/fb

No IP Neutrals, ν

Common

Quite complementary to each other!

$B \rightarrow K^*(\rightarrow K_S \pi^0) \gamma TCPV$

SM prediction

The decay is almost flavor specific because photon is highly polarized

$$|S| \square \underbrace{\frac{2m_s}{m_b}} \sin 2\phi_1 \square 0.04 \qquad b \to s\gamma_L$$

$$\overline{b} \to \overline{s\gamma_R}$$

AGS [Phys.Rev.Lett. **79**, 185 (1997)] AGHS [Phys. Rev. D 71, 076003 (2005)]

Constraints in the $(C_7^{\text{NP}} \equiv C_7 - C_7^{\text{SM}}, C_7')$ plane from

C. Bobeth, G. Hiller and G. Piranishvili, $\operatorname{arXiv:}0805.2525$

Fig. 2a

Assumptions for the above plot:

- (i) $C_7^{\rm NP}$ and C_7' are real.
- (ii) All the other Wilson coefficients are fixed at their SM values.

Green: $\bar{B} \to X_s \gamma$,

Blue: $\bar{B} \to X_s l^+ l^$ $q_{\text{dilept}}^2 \in [1, 6] \text{ GeV}^2$,

Red: $S_{K^*\gamma}$

Black dotted lines: Effect of enlarging the uncertainty in the SM prediction for $S_{K^*\gamma}$ due to the $\mathcal{O}(\Lambda/m_b)$ fraction of right-handed photons originating from:

B. Grinstein, Y. Grossman, Z. Ligeti and D. Pirjol, Phys. Rev. D 71 (2005) 011504.

Machine parameters Slide from Y. Ohnishi

		LER	HER	
Energy	Е	3.5	8.0	GeV
Current	l _b	9.4	4.1	Α
#particles/bunch	Ν	1.18x10 ¹¹	5.13x10 ¹⁰	
#bunches	n _b	5018		
Emittance	ϵ_{x}	12		nm
Coupling	$\epsilon_{y}/\epsilon_{x}$	0.5		%
Beta at IP	$\beta_{x}^{\ *}$	20		cm
	${eta_{y}}^*$	3		mm
Bunch length (0A)	$\sigma_{\!\scriptscriptstyle \sf Z}$	3		mm
Crossing angle	θ_{x}	30→0 (crab crossing)		mrad
Bean-beam	ξ _x	0.272		
	ξ _y	0.295		
Luminosity reduction	R_L	0.86		
Beam-beam	$R_{\boldsymbol{\xi}x}$	0.98		
reduction	$R_{\xi y}$	1.11		
Luminosity	L	5.5x10 ³⁵		cm ⁻² s ⁻¹

Improve Luminosity

sKEKB

- Increase beam current
- Squeeze beam size (a little)

Brute force, but adiabatic and steady

KEKB PEPII

SuperB

Squeeze beam size

New sophisticated approach

Improve Gas Mileage

Gasoline Car

Hydrogen

Projected Luminosity (preliminary)

Beam Background (extrapolation)

2015

2020

2010

Prepare against 20x

Ideas to reduce background:
Neutron shield for KLM
Improve vacuum
Cu chamber near IR
Careful IR design

Against high background (1)

Finer segmentation of sensors

Large cell
Occupancy = 6/12 = 50%
Hits overlap

Small cell Occupancy = 7/48 = 14.5% Hits separated

Hit rate per cell can be reduced

Against high background (2)

Finer segmentation in time

Long-tailed signals overlap each other

Short signals are separated

Even when we cannot shorten the peaking time, waveform sampling will help to discriminate two signals

"effective" background with new hardware

	How to cope with	Reduction factor	bkg
SVD	Shorter t _p	50/800 = 1/16	0 ~ 1
CDC	Smaller cell	<2/3	4 ~ 13 (*)
PID	Brand new device	Good enough	0 ~ 1
B-ECL	Waveform fitting	1/7	1 ~ 2
E-ECL	Pure CsI (shorter τ)	1/200	0 ~ 1
KLM	Faster detector, finer segment	Under control	0 ~ 1

(*) Software efforts needed for CDC

We know how to deal with high background

sKEKB: Baseline Design

To be improved

- Larger radial size of vertex detector to accept more K_S
- Innermost sensor closer to the IP to improve Δz resolution
- More hermetic detector to help reconstruction of *invisible* modes (w/ v)
- Better Particle Identification
- Better K_L reconstruction

•

End-cap PID (A-RICH)

Test beam result

March 2008 at KEK Fuji electron beam line $p_{\rm e}$ = 2 GeV/c

Clear ring image observed!

 $\sigma \sim$ 12mrad, $N_{\rm p.e.} \sim 4$

External Reviews

Belle PAC, Feb. 25,26, 2008

BPAC report, 6 March 2008

BELLE Programme Advisory Committee
Review Summary Report
2nd meeting, 25-26 February 2008 at KEK

I. Bigi (Notre Dame), A. Buras (TU München), A. Golutvin (ITEP),
S. Kim¹⁾ (Tsukuba), T. Nakada*) (CERN and EPFL), T. Skwarnicki (Syracuse) and
T. Yamanaka (Osaka)

*) Chair

1) Partially attended
Apology received from J. Butler (FNAL)

http://belle.kek.jp/hot/Review_report-bis.pdf

KEKB Review, Nov.-Dec., 2007

KEK Roadmap Review Committee, Mar. 9,10, 2008

and one more Belle review in July by Japanese key figures

Necessary approvals to start a new big project at KEK

HEP community in Japan

KEK = an interuniversity research institute corporation

KEK management

KEK roadmap Jan. 2008

Ministry of Education, culture, sports, science and technology 文部科学省

Ministry of Finance 財務省

Tight Schedule Toward Upgrade

Summary

- We plan to upgrade KEKB/Belle in a sure and steady method.
- We have ideas to make the accelerator and the detector, and continuing R&Ds.
- We will make a budget request to the government soon.
- Hopefully, we will start the operation in late 2012 and accumulate 10-50ab⁻¹ by 202x depending on the budget.
- Hope you will put this talk not in the 'Longterm future' session from the next time.

KEK's 5 year Roadmap

- Official 20 page report released on January 4, 2008 by director A. Suzuki and KEK management
- KEKB's upgrade to 2x10³⁵ /cm²/sec in 3+x years is the central element in particle physics. (Funding limited: Final goal is 8 x 10³⁵ and an integrated luminosity of 50 ab⁻¹)
 - Will be finalized after recommendations by the Roadmap Review Committee (March 9-10).
 - Membership: Young Kee Kim, John Ellis, Rolf Heuer, Andrew Hutton, Jon Rosner and reviewers from other fields

Super-Belle (and Super KEKB) is an open international project that covers the next two orders of magnitudes at the luminosity frontier. A special opportunity for high impact international collaboration

Three factors to determine the luminosity:

Stored current:

 $1.7 / 1.4 A (e^{+}/e^{-} KEKB)$

 \rightarrow 9.4 /4.1 A (SuperKEKB)

Beam-beam parameter:

0.059 (KEKB)

 \rightarrow >0.24 (SuperKEKB)

Lorentz factor

$$L = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \frac{I_{\pm} \xi_{\pm y}}{\beta_y^*} \left(\frac{R_L}{R_y} \right)$$

Classical electron radius

Beam size ratio

Geometrical repipeion factors due to crossing angle and hour-glass effect

Luminosity:

$$0.17 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1} \text{ (KEKB)}$$

$$8\times10^{35}$$
 cm⁻²s⁻¹ (SuperKEKB)

Vertical β at the IP:

6.5/5.9 mm (KEKB)

 \rightarrow 3.0/3.0 mm (SuperKEKB)

Costs & Effects

Preliminary

Item	Object	Oku-yen = 1.0 M\$	Luminosity
New beam pipes	Enable high current Reduce e-cloud	178 (incl. BPM, magnets, etc.)	x1.5
New IR	Small β*	31	x2
e+ Damping Ring	Allow injection with small increase e+ capture	40 incl. linac upgrade	if not, x0.75
More RF and cooling systems	High current	179 (incl. facilities)	x3
Crab Cavities	Higher beam-beam param.	15	x2 - x4

Items are interrelated.

Time schedule is restricted.

Baseline is "HIGH current scheme".

Alternative is low beta+low emittance+crab waist scheme

Luminosity upgrade

Luminosity gain and upgrade items (preliminary)

	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
<u>d</u>	utdov		
oadime	ears sh		
KEK ro	3 ye.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
P			

Item	Gain	Purpose
beam pipe	x 1.5	high current, short bunch, electron cloud
$IR(\beta^*_{x/y}=20cm/3 mm)$	x 1.5	small beam size at IP
low emittance(12 nm) & $v_x \rightarrow 0.5$	x 1.3	mitigate nonlinear effects with beam-beam
crab crossing	x 2	mitigate nonlinear effects with beam-beam
RF/infrastructure	x 3	high current
DR/e+ source	x 1.5	low β^* injection, improve e ⁺ injection
charge switch	x ?	electron cloud, lower e+ current

Machine parameters

		LER	HER	
Energy	E	3.5	8.0	GeV
Current	l _b	9.4	4.1	Α
#particles/bunch	Ν	1.18x10 ¹¹	5.13x10 ¹⁰	
#bunches	n _b	5018		
Emittance	ϵ_{x}	12		nm
Coupling	$\epsilon_{y}/\epsilon_{x}$	0.5		%
Beta at IP	$\beta_{x}^{\ *}$	20		cm
	$\beta_{y}^{\ *}$	3		mm
Bunch length (0A)	$\sigma_{_{\! Z}}$	3		mm
Crossing angle	θ_{x}	30→0 (crab crossing)		mrad
Bean-beam	ξ _x	0.272		
	ξ _y	0.295		
Luminosity reduction	R_L	0.86		
Beam-beam	$R_{\xi x}$	0.98		
reduction	$R_{\boldsymbol{\xi} y}$	1.11		
Luminosity	L	5.5x10 ³⁵		cm ⁻² s ⁻¹

sKEKB: Accelerator Luminosity is funding-limited

Luminosity ⇒ Gas mileage

Hybrid

Plug-in Hybrid

Hydrogen

EV

Hydrogen