Determination of $V_{c b}$ and $V_{u b}$

N. Uraltsev

The role of Flavor Physics at the present stage of exploring the SM

The role of Flavor Physics at the present stage of exploring the SM doesn't need to be detailed

CKM studies place high demand on theory
Developments in theory have an idependent intellectual value
Often practical tasks come and go while theoretical tools remain and become assets

The role of Flavor Physics at the present stage of exploring the SM doesn't need to be detailed

CKM studies place high demand on theory
Developments in theory have an idependent intellectual value
Often practical tasks come and go while theoretical tools remain and become assets

With this perspective

- Principal motivation - available extraction of $V_{c b}$ and $V_{u b}$ with the maximal precision

The role of Flavor Physics at the present stage of exploring the SM doesn't need to be detailed

CKM studies place high demand on theory
Developments in theory have an idependent intellectual value
Often practical tasks come and go while theoretical tools remain and become assets

With this perspective

- Principal motivation - available extraction of $V_{c b}$ and $V_{u b}$ with the maximal precision
- Address certain interesting aspects even if they don't find an immediate phenomenological usage today

The role of Flavor Physics at the present stage of exploring the SM doesn't need to be detailed

CKM studies place high demand on theory
Developments in theory have an idependent intellectual value
Often practical tasks come and go while theoretical tools remain and become assets

With this perspective

- Principal motivation - available extraction of $V_{c b}$ and $V_{u b}$ with the maximal precision
- Address certain interesting aspects even if they don't find an immediate phenomenological usage today

Rate $\propto\left|V_{q b}\right|^{2} \Longrightarrow$ measure a $b \rightarrow c(b \rightarrow u)$ decay rate. Need the coefficient accurately

- $V_{c b}$ at zero recoil
- $B \rightarrow D^{*} \ell \nu$
- $B \rightarrow D \ell \nu$
- $V_{c b}$ from $\Gamma_{\mathrm{sl}}(B)$
- extracting heavy quark parameters and $V_{c b}$
- recent theoretical advances
- $V_{u b}$ from inclusive $b \rightarrow u \ell \nu$ decays

$V_{c b}$ at zero recoil

$$
\mathrm{d} w\left(B \rightarrow D^{*}+\ell \bar{\nu}\right) \sim G_{F}^{2} \cdot\left|V_{c b}\right|^{2} \cdot|\vec{p}| \cdot\left|F_{B \rightarrow D^{*}}(\vec{p})\right|^{2}
$$

$\left|V_{c b}\right|$ requires $F_{B \rightarrow D^{*}}(\vec{p})$ - it is shaped by bound-state physics

$$
\text { At } \vec{p}=0 \quad\left(\vec{p}_{e}=-\vec{p}_{\bar{\nu}}\right)
$$

almost nothing happened!

$V_{c b}$ at zero recoil

$$
\mathrm{d} w\left(B \rightarrow D^{*}+\ell \bar{\nu}\right) \sim G_{F}^{2} \cdot\left|V_{c b}\right|^{2} \cdot|\vec{p}| \cdot\left|F_{B \rightarrow D^{*}}(\vec{p})\right|^{2}
$$

$\left|V_{c b}\right|$ requires $F_{B \rightarrow D^{*}}(\vec{p})$ - it is shaped by bound-state physics

$$
\text { At } \vec{p}=0 \quad\left(\vec{p}_{e}=-\vec{p}_{\bar{\nu}}\right)
$$

almost nothing happened!

Without isotopic effects (in the heavy quark limit) $F(\vec{p}=0)=1$:

$$
F_{\mathrm{n} / \mathrm{p}}(0)=1+\frac{0}{m_{c, b}}+\mathcal{O}\left(\frac{\Lambda_{Q C D}^{2}}{m_{c, b}^{2}}\right)+\mathcal{O}\left(\frac{\Lambda_{Q C D}^{3}}{m_{c, b}^{3}}\right)+\ldots
$$

$V_{c b}$ at zero recoil

$$
\mathrm{d} \boldsymbol{w}\left(B \rightarrow D^{*}+\ell \bar{\nu}\right) \sim G_{F}^{2} \cdot\left|V_{c b}\right|^{2} \cdot|\vec{p}| \cdot\left|F_{B \rightarrow D^{*}}(\vec{p})\right|^{2}
$$

$\left|V_{c b}\right|$ requires $F_{B \rightarrow D^{*}}(\vec{p})$ - it is shaped by bound-state physics

$$
\text { At } \vec{p}=0 \quad\left(\vec{p}_{e}=-\vec{p}_{\bar{\nu}}\right)
$$

almost nothing happened!

Without isotopic effects (in the heavy quark limit) $F(\vec{p}=0)=1$:

$$
F_{n / p}(0)=1+\frac{0}{m_{c, b}}+\mathcal{O}\left(\frac{\Lambda_{Q C D}^{2}}{m_{c, b}^{2}}\right)+\mathcal{O}\left(\frac{\Lambda_{Q C D}^{3}}{m_{c, b}^{3}}\right)+\ldots
$$

No $1 / m_{b, c}$-corrections

1986 Voloshin, Shifman 1990 Luke

Experimental issue: extrapolation to the zero-recoil point

$$
\left.\frac{1}{\sqrt{\left(M_{B}-M_{\left.D^{*}\right)^{2}-q^{2}}\right.}} \frac{\mathrm{d} \Gamma\left(B \rightarrow D^{*} \ell \nu\right)}{\mathrm{d} q^{2}}\right|_{q^{2}=\left(M_{B}-M_{D^{*}}\right)^{2}}
$$

Controversy between CLEO and other groups, in particular BaBar, both in the value and in the slope

Is there a reason behind?

Experimental issue: extrapolation to the zero-recoil point

$$
\left.\frac{1}{\sqrt{\left(M_{B}-M_{\left.D^{*}\right)^{2}-q^{2}}\right.}} \frac{\mathrm{d} \Gamma\left(B \rightarrow D^{*} \ell \nu\right)}{\mathrm{d} q^{2}}\right|_{q^{2}=\left(M_{B}-M_{D^{*}}\right)^{2}}
$$

Controversy between CLEO and other groups, in particular BaBar, both in the value and in the slope

Is there a reason behind? I think this should be clarified

Experimental issue: extrapolation to the zero-recoil point

$$
\left.\frac{1}{\sqrt{\left(M_{B}-M_{\left.D^{*}\right)^{2}-q^{2}}\right.}} \frac{\mathrm{d} \Gamma\left(B \rightarrow D^{*} \ell \nu\right)}{\mathrm{d} q^{2}}\right|_{q^{2}=\left(M_{B}-M_{D^{*}}\right)^{2}}
$$

Controversy between CLEO and other groups, in particular BaBar, both in the value and in the slope

Is there a reason behind? I think this should be clarified

Challenge to theory: corrections to $F(0)=1$ are driven by $1 / m_{c}$, potentially significant!

Originally (before 1994) were thought to be only about -0.02

Experimental issue: extrapolation to the zero-recoil point

$$
\left.\frac{1}{\sqrt{\left(M_{B}-M_{\left.D^{*}\right)^{2}-q^{2}}\right.}} \frac{\mathrm{d} \Gamma\left(B \rightarrow D^{*} \ell \nu\right)}{\mathrm{d} q^{2}}\right|_{q^{2}=\left(M_{B}-M_{D^{*}}\right)^{2}}
$$

Controversy between CLEO and other groups, in particular BaBar, both in the value and in the slope

Is there a reason behind? I think this should be clarified

Challenge to theory: corrections to $F(0)=1$ are driven by $1 / m_{c}$, potentially significant!

Originally (before 1994) were thought to be only about -0.02
In fact, considerably larger

Sum rules for heavy flavor transitions (can be paralleled in the nonrelativistic QM expansion):

Bigi, Shifman, N.U., Vainshtein 1994

$$
\begin{aligned}
F_{D^{*}}^{2}+\sum_{f \neq D^{*}}\left|F_{B \rightarrow f}\right|^{2}=\xi_{A}^{\text {pert }}-\frac{\mu_{G}^{2}}{3 m_{c}^{2}}-\frac{\mu_{\pi}^{2}-\mu_{G}^{2}}{4}\left(\frac{1}{m_{c}^{2}}\right. & \left.+\frac{1}{m_{b}^{2}}+\frac{2}{3 m_{c} m_{b}}\right) \\
& -\Delta_{\frac{1}{m_{Q}^{3}}}+\Delta_{\frac{1}{m_{Q}^{4}}}+\ldots
\end{aligned}
$$

Sum rules for heavy flavor transitions (can be paralleled in the nonrelativistic QM expansion):

Bigi, Shifman, N.U., Vainshtein 1994

$$
\begin{aligned}
F_{D^{*}}^{2}+\sum_{f \neq D^{*}}\left|F_{B \rightarrow f}\right|^{2}=\xi_{A}^{\text {pert }}-\frac{\mu_{G}^{2}}{3 m_{c}^{2}}-\frac{\mu_{\pi}^{2}-\mu_{G}^{2}}{4}\left(\frac{1}{m_{c}^{2}}\right. & \left.+\frac{1}{m_{b}^{2}}+\frac{2}{3 m_{c} m_{b}}\right) \\
& -\Delta_{\frac{1}{m_{Q}^{3}}}+\Delta_{\frac{1}{m_{Q}^{4}}}+\ldots
\end{aligned}
$$

Sum rules also yield $\mu_{\pi}^{2}>\mu_{G}^{2}$, likewise positivity for $\Delta_{\frac{1}{m_{R}^{2}}}$

Sum rules for heavy flavor transitions (can be paralleled in the nonrelativistic QM expansion):

Bigi, Shifman, N.U., Vainshtein 1994
$F_{D^{*}}^{2}+\sum_{f \neq D^{*}}\left|F_{B \rightarrow f}\right|^{2}=\xi_{A^{\text {pert }}}-\frac{\mu_{G}^{2}}{3 m_{c}^{2}}-\frac{\mu_{\pi}^{2}-\mu_{G}^{2}}{4}\left(\frac{1}{m_{c}^{2}}+\frac{1}{m_{b}^{2}}+\frac{2}{3 m_{c} m_{b}}\right)$

$$
-\Delta_{\frac{1}{m_{Q}^{s}}}+\Delta_{\frac{1}{m_{Q}^{T}}}+\ldots
$$

Sum rules also yield $\mu_{\pi}^{2}>\mu_{G}^{2}$, likewise positivity for $\Delta_{\frac{1}{m_{Q}^{3}}}$

$$
\sqrt{\xi_{A}^{\text {pert }}} \simeq 0.96 \quad-\Delta_{\frac{1}{m_{Q}^{2}}}-\Delta_{\frac{1}{m_{Q}^{2}}} \simeq-0.13 \quad F_{D^{*}} \lesssim 0.90
$$

Sum rules for heavy flavor transitions (can be paralleled in the nonrelativistic QM expansion):

Bigi, Shifman, N.U., Vainshtein 1994
$F_{D^{*}}^{2}+\sum_{f \neq D^{*}}\left|F_{B \rightarrow f}\right|^{2}=\xi_{A^{\text {pert }}}-\frac{\mu_{G}^{2}}{3 m_{c}^{2}}-\frac{\mu_{\pi}^{2}-\mu_{G}^{2}}{4}\left(\frac{1}{m_{c}^{2}}+\frac{1}{m_{b}^{2}}+\frac{2}{3 m_{c} m_{b}}\right)$

$$
-\Delta_{\frac{1}{m_{Q}^{g}}}+\Delta_{\frac{1}{m_{Q}^{q}}}+\ldots
$$

Sum rules also yield $\mu_{\pi}^{2}>\mu_{G}^{2}$, likewise positivity for $\Delta_{\frac{1}{m_{\beta}^{2}}}$
$\sqrt{\xi_{A}^{\text {pert }}} \simeq 0.96 \quad-\Delta_{\frac{1}{m_{Q}^{\text {a }}}}-\Delta_{\frac{1}{m_{Q}^{2}}} \simeq-0.13 \quad F_{D^{*}} \lesssim 0.90$
Inelastic contributions?

$$
\sum_{f \neq D^{*}}\left|F_{B \rightarrow f}\right|^{2}=\chi \cdot\left(\Delta_{\frac{1}{m_{Q}}}+\Delta_{\frac{1}{m_{b}}}+\ldots\right)
$$

Sum rules for heavy flavor transitions (can be paralleled in the nonrelativistic QM expansion):

Bigi, Shifman, N.U., Vainshtein 1994
$\begin{aligned} F_{D^{*}}^{2}+\sum_{f \neq D^{*}}\left|F_{B \rightarrow f}\right|^{2}=\xi_{A^{\text {pert }}}-\frac{\mu_{G}^{2}}{3 m_{c}^{2}}-\frac{\mu_{\pi}^{2}-\mu_{G}^{2}}{4}\left(\frac{1}{m_{c}^{2}}\right. & \left.+\frac{1}{m_{b}^{2}}+\frac{2}{3 m_{c} m_{b}}\right) \\ & -\Delta_{\frac{1}{m_{Q}^{3}}}+\Delta_{\frac{1}{m_{Q}^{4}}}+\ldots\end{aligned}$
Sum rules also yield $\mu_{\pi}^{2}>\mu_{G}^{2}$, likewise positivity for $\Delta_{\frac{1}{m_{8}^{2}}}$
$\sqrt{\xi_{A}^{\text {pert }}} \simeq 0.96 \quad-\Delta_{\frac{1}{m_{Q}^{\text {a }}}}-\Delta_{\frac{1}{m_{Q}^{2}}} \simeq-0.13 \quad F_{D^{*}} \lesssim 0.90$
Inelastic contributions?

$$
\sum_{f \neq D^{*}}\left|F_{B \rightarrow f}\right|^{2}=\chi \cdot\left(\Delta_{\frac{1}{m_{Q}}}+\Delta_{\frac{1}{m_{Q}}}+\ldots\right)
$$

Guess: $\chi=0.5 \pm 0.5$ In models typically get between 0.5 and 1.3

The size of Δ and the final estimates depend on the heavy quark expectation values, in particular on μ_{π}^{2}. Typically smaller $F_{D^{*}}$ at larger μ_{π}^{2}

The size of Δ and the final estimates depend on the heavy quark expectation values, in particular on μ_{π}^{2}. Typically smaller $F_{D^{*}}$ at larger μ_{π}^{2}. Nowadays extracted μ_{π}^{2} tend to be on the lower side, and

$$
F_{D^{*}}=0.87 \pm 0.04 \text { at } \mu_{\pi}^{2} \approx 0.4 \mathrm{GeV}^{2}
$$

The size of Δ and the final estimates depend on the heavy quark expectation values, in particular on μ_{π}^{2}. Typically smaller $F_{D^{*}}$ at larger μ_{π}^{2}. Nowadays extracted μ_{π}^{2} tend to be on the lower side, and

$$
F_{D^{*}}=0.87 \pm 0.04 \text { at } \mu_{\pi}^{2} \approx 0.4 \mathrm{GeV}^{2}
$$

A 'BPS' approximation: $\quad \chi \gtrsim 1.5$

The size of Δ and the final estimates depend on the heavy quark expectation values, in particular on μ_{π}^{2}. Typically smaller $F_{D^{*}}$ at larger μ_{π}^{2}. Nowadays extracted μ_{π}^{2} tend to be on the lower side, and

$$
F_{D^{*}}=0.87 \pm 0.04 \text { at } \mu_{\pi}^{2} \approx 0.4 \mathrm{GeV}^{2}
$$

A 'BPS' approximation: $\chi \gtrsim 1.5$, yet $\Delta_{\frac{1}{m_{P}^{2}}}$ itself is smaller, N.U. 2001 and $F_{D^{*}} \approx 0.87$

The size of Δ and the final estimates depend on the heavy quark expectation values, in particular on μ_{π}^{2}. Typically smaller $F_{D^{*}}$ at larger μ_{π}^{2}. Nowadays extracted μ_{π}^{2} tend to be on the lower side, and

$$
F_{D^{*}}=0.87 \pm 0.04 \text { at } \mu_{\pi}^{2} \approx 0.4 \mathrm{GeV}^{2}
$$

A 'BPS' approximation: $\chi \gtrsim 1.5$, yet $\Delta_{\frac{1}{m_{Q}^{2}}}$ itself is smaller, and $F_{D^{*}} \approx 0.87$

The $D \pi$ intermediate state contribution appears enhanced:

$$
\begin{aligned}
& g_{D^{* D \pi}}=4.9 \quad\left(\Gamma_{D}=96 \mathrm{KeV}\right) \\
& g_{B^{*} B \pi} / g_{D^{*} D \pi}=1,0.8,0.6 \text { and } 0.4
\end{aligned}
$$

$\delta_{D \pi} \simeq-(2.5 \%$ to $3 \%) \quad$ corresponds alone to $\chi \gtrsim 0.4$

Experimental determination

We can take $V_{c b}$ extracted from inclusive decays and calculate $F_{D^{*}}$
Shifman, N.U. 1994

Experimental determination

We can take $V_{c b}$ extracted from inclusive decays and calculate $F_{D^{*}}$
Shifman, N.U. 1994

$$
F_{D^{*}} \simeq 0.810 \pm 0.007 \pm 0.026 \pm \delta_{\text {incl }} \quad \text { BaBar } 2008
$$

Experimental determination

We can take $V_{c b}$ extracted from inclusive decays and calculate $F_{D^{*}}$
Shifman, N.U. 1994

$$
\begin{aligned}
& F_{D^{*}} \simeq 0.810 \pm 0.007 \pm 0.026 \pm \delta_{\text {incl }} \quad \text { BaBar } 2008 \\
& 0.857 \\
& \pm 0.013 \pm \delta_{\text {incl }} \quad \text { HFAG Average } 2008
\end{aligned}
$$

Experimental determination

We can take $V_{c b}$ extracted from inclusive decays and calculate $F_{D^{*}}$
Shifman, N.U. 1994

$$
\begin{aligned}
F_{D^{*}} \simeq & 0.810 \pm 0.007 \pm 0.026 \pm \delta_{\text {incl }} \quad \text { BaBar } 2008 \\
& 0.857 \pm 0.013 \pm \delta_{\text {incl }} \quad \text { HFAG Average } 2008 \\
& 0.836 \pm 0.015 \pm \delta_{\text {incl }} \quad \text { HFAG, CLEO / ALEPH excluded }
\end{aligned}
$$

(inclusive value taken without error bars)

Experimental determination

We can take $V_{c b}$ extracted from inclusive decays and calculate $F_{D^{*}}$
Shifman, N.U. 1994

$$
\begin{aligned}
F_{D^{*}} \simeq & 0.810 \pm 0.007 \pm 0.026 \pm \delta_{\text {incl }} \quad \text { BaBar } 2008 \\
& 0.857 \pm 0.013 \pm \delta_{\text {incl }} \quad \text { HFAG Average } 2008 \\
& 0.836 \pm 0.015 \pm \delta_{\mathrm{incl}} \quad \text { HFAG, CLEO / ALEPH excluded }
\end{aligned}
$$

(inclusive value taken without error bars)

Seems on the lower side, but within 1 to 2σ

Experimental determination

We can take $V_{c b}$ extracted from inclusive decays and calculate $F_{D^{*}}$
Shifman, N.U. 1994

$$
\begin{aligned}
F_{D^{*}} \simeq & 0.810 \pm 0.007 \pm 0.026 \pm \delta_{\mathrm{incl}} \quad \text { BaBar } 2008 \\
& 0.857 \pm 0.013 \pm \delta_{\mathrm{incl}} \quad \text { HFAG Average } 2008 \\
& 0.836 \pm 0.015 \pm \delta_{\mathrm{incl}} \quad \text { HFAG, CLEO / ALEPH excluded }
\end{aligned}
$$

(inclusive value taken without error bars)

Seems on the lower side, but within 1 to 2σ
c quark really is not sufficiently heavy...

Lattice estimates of $F_{D^{*}}(F N A L)$

J. Laiho, arXiv:0710.1111 [hep-lat]
$F_{D^{*}}=0.924 \pm 0.012 \pm 0.019$ unquenched

$$
F_{D^{*}}=0.924 \pm 0.012 \pm 0.019 \quad \text { unquenched }
$$

The small effect of unquenching is a bit surprising...
The question of uncertainties, in particular, is subtle

Lattice estimates of $F_{D^{*}}(F N A L)$

$$
F_{D^{*}}=0.924 \pm 0.012 \pm 0.019 \quad \text { unquenched }
$$

The small effect of unquenching is a bit surprising...
The question of uncertainties, in particular, is subtle
Encouraging that the lattice yielded the right corrections - not only the sign, but also the overall scale, bearing in mind the complexity of the problem and the novelty of the approach

Lattice estimates of $F_{D^{*}}$ (FNAL)

$$
F_{D^{*}}=0.924 \pm 0.012 \pm 0.019 \quad \text { unquenched }
$$

The small effect of unquenching is a bit surprising...
The question of uncertainties, in particular, is subtle
Encouraging that the lattice yielded the right corrections - not only the sign, but also the overall scale, bearing in mind the complexity of the problem and the novelty of the approach

Is the literal disagreement too surprising?

Lattice estimates of $F_{D^{*}}(F N A L)$

$$
F_{D^{*}}=0.924 \pm 0.012 \pm 0.019 \quad \text { unquenched }
$$

The small effect of unquenching is a bit surprising...
The question of uncertainties, in particular, is subtle
Encouraging that the lattice yielded the right corrections - not only the sign, but also the overall scale, bearing in mind the complexity of the problem and the novelty of the approach

Is the literal disagreement too surprising? I do not think it is
Remains only if the error intervals are truly " \pm ", not if many are ' - ' Usually the sign is unknown, but sometimes there are physics arguments for a definite sign

Strange that with large lattice μ_{π}^{2} a smaller $\delta F_{D^{*}}$ is derived

Strange that with large lattice μ_{π}^{2} a smaller $\delta F_{D^{*}}$ is derived
Chiral effects must be significant

May lead to the clues of what happens

Strange that with large lattice μ_{π}^{2} a smaller $\delta F_{D^{*}}$ is derived
Chiral effects must be significant

May lead to the clues of what happens

The approach itself with relativistic heavy quarks may have subtleties

Strange that with large lattice μ_{π}^{2} a smaller $\delta F_{D^{*}}$ is derived
Chiral effects must be significant

May lead to the clues of what happens

The approach itself with relativistic heavy quarks may have subtleties

The HQ symmetries are indeed the same, but the effective theories may not be identical
The structure of the $1 / m^{k}$ corrections is the same, but without quantitative equality

Strange that with large lattice μ_{π}^{2} a smaller $\delta F_{D^{*}}$ is derived
Chiral effects must be significant

May lead to the clues of what happens

The approach itself with relativistic heavy quarks may have subtleties
The HQ symmetries are indeed the same, but the effective theories may not be identical
The structure of the $1 / m^{k}$ corrections is the same, but without quantitative equality

Is this what the lattice skeptics used to say?

Extrapolated values for $V_{c b} \cdot F_{D^{*}}$ strongly correlated with the slope of the formfactor

$$
\varrho^{2} \geq \frac{3}{4}
$$

N.U. 2000

Extrapolated values for $V_{c b} \cdot F_{D^{*}}$ strongly correlated with the slope of the formfactor

$$
\varrho^{2} \geq \frac{3}{4}
$$

N.U. 2000

Small μ_{π}^{2} - lower the slope. Prediction (2002):

$$
\varrho^{2} \lesssim 1 \quad\left(\varrho_{A_{1}}^{2} \lesssim 1.25\right)
$$

Extrapolated values for $V_{c b} \cdot F_{D^{*}}$ strongly correlated with the slope of the formfactor

$$
\varrho^{2} \geq \frac{3}{4} \quad \text { N.U. } 2000
$$

Small μ_{π}^{2} - lower the slope. Prediction (2002):

$$
\varrho^{2} \lesssim 1 \quad\left(\varrho_{A_{1}}^{2} \lesssim 1.25\right)
$$

Recently confirmed by BaBar

$$
\varrho^{2}=0.97 \pm 0.06
$$

but inconsistent with CLEO

Extrapolated values for $V_{c b} \cdot F_{D^{*}}$ strongly correlated with the slope of the formfactor

$$
\varrho^{2} \geq \frac{3}{4} \quad \text { N.U. } 2000
$$

Small μ_{π}^{2} - lower the slope. Prediction (2002):

$$
\varrho^{2} \lesssim 1 \quad\left(\varrho_{A_{1}}^{2} \lesssim 1.25\right)
$$

Recently confirmed by BaBar

$$
\varrho^{2}=0.97 \pm 0.06
$$

but inconsistent with CLEO

Can be understood?

$B \rightarrow D \ell \nu$ near zero recoil

Experimentally challenging

$B \rightarrow D \ell \nu$ near zero recoil

Experimentally challenging theoretically advantageous N.U. 2003
$\left\langle D\left(p_{2}\right)\right| \bar{c} \gamma_{\nu} b\left|B\left(p_{1}\right)\right\rangle=f_{+}\left(p_{1}+p_{2}\right)_{\nu}+f_{-}\left(p_{1}-p_{2}\right)_{\nu}$

$$
f_{ \pm} \equiv f_{ \pm}\left(\vec{q}^{2}\right)
$$

$B \rightarrow D \ell \nu$ near zero recoil

Experimentally challenging theoretically advantageous N.U. 2003
$\left\langle D\left(p_{2}\right)\right| \bar{c} \gamma_{\nu} b\left|B\left(p_{1}\right)\right\rangle=f_{+}\left(p_{1}+p_{2}\right)_{\nu}+f_{-}\left(p_{1}-p_{2}\right)_{\nu}$

$$
f_{ \pm} \equiv f_{ \pm}\left(\vec{q}^{2}\right)
$$

A single amplitude $J_{0}=\left(M_{B}+M_{D}\right) f_{+}(0)+\left(M_{B}-M_{D}\right) f_{-}(0)$ at $\vec{q}=0$

$B \rightarrow D \ell \nu$ near zero recoil

Experimentally challenging theoretically advantageous
$\left\langle D\left(p_{2}\right)\right| \bar{c} \gamma_{\nu} b\left|B\left(p_{1}\right)\right\rangle=f_{+}\left(p_{1}+p_{2}\right)_{\nu}+f_{-}\left(p_{1}-p_{2}\right)_{\nu}$

$$
f_{ \pm} \equiv f_{ \pm}\left(\vec{q}^{2}\right)
$$

A single amplitude $J_{0}=\left(M_{B}+M_{D}\right) f_{+}(0)+\left(M_{B}-M_{D}\right) f_{-}(0)$ at $\vec{q}=0$
HQ limit:

$$
f_{+}=\frac{M_{B}+M_{D}}{2 \sqrt{M_{B} M_{D}}},
$$

$$
f_{-}=-\frac{M_{B}-M_{D}}{M_{B}+M_{D}} f_{+}
$$

$B \rightarrow D \ell \nu$ near zero recoil

Experimentally challenging theoretically advantageous N.U. 2003
$\left\langle D\left(p_{2}\right)\right| \bar{c} \gamma_{\nu} b\left|B\left(p_{1}\right)\right\rangle=f_{+}\left(p_{1}+p_{2}\right)_{\nu}+f_{-}\left(p_{1}-p_{2}\right)_{\nu}$

$$
f_{ \pm} \equiv f_{ \pm}\left(\vec{q}^{2}\right)
$$

A single amplitude $J_{0}=\left(M_{B}+M_{D}\right) f_{+}(0)+\left(M_{B}-M_{D}\right) f_{-}(0)$ at $\vec{q}=0$
HQ limit: $\quad f_{+}=\frac{M_{B}+M_{D}}{2 \sqrt{M_{B} M_{D}}}, \quad f_{-}=-\frac{M_{B}-M_{D}}{M_{B}+M_{D}} f_{+}$

$$
\frac{J_{0}}{2 \sqrt{M_{B} M_{D}}}=1-a_{2}\left(\frac{1}{m_{c}}-\frac{1}{m_{b}}\right)^{2}-a_{3}\left(\frac{1}{m_{c}}-\frac{1}{m_{b}}\right)^{2}\left(\frac{1}{m_{c}}+\frac{1}{m_{b}}\right)+\ldots
$$

Power corrections are well under control and small

$B \rightarrow D \ell \nu$ near zero recoil

Experimentally challenging theoretically advantageous
N.U. 2003
$\left\langle D\left(p_{2}\right)\right| \bar{c} \gamma_{\nu} b\left|B\left(p_{1}\right)\right\rangle=f_{+}\left(p_{1}+p_{2}\right)_{\nu}+f_{-}\left(p_{1}-p_{2}\right)_{\nu}$

$$
f_{ \pm} \equiv f_{ \pm}\left(\vec{q}^{2}\right)
$$

A single amplitude $J_{0}=\left(M_{B}+M_{D}\right) f_{+}(0)+\left(M_{B}-M_{D}\right) f_{-}(0)$ at $\vec{q}=0$
HQ limit: $\quad f_{+}=\frac{M_{B}+M_{D}}{2 \sqrt{M_{B} M_{D}}}, \quad f_{-}=-\frac{M_{B}-M_{D}}{M_{B}+M_{D}} f_{+}$

$$
\frac{J_{0}}{2 \sqrt{M_{B} M_{D}}}=1-a_{2}\left(\frac{1}{m_{c}}-\frac{1}{m_{b}}\right)^{2}-a_{3}\left(\frac{1}{m_{c}}-\frac{1}{m_{b}}\right)^{2}\left(\frac{1}{m_{c}}+\frac{1}{m_{b}}\right)+\ldots
$$

Power corrections are well under control and small
Any amplitude with massless leptons depends, however solely on f_{+}, (only the combination of f_{+}and f_{-}has no $1 / m$ corrections)
$F_{+} \equiv \frac{2 \sqrt{M_{B} M_{D}}}{M_{B}+M_{D}} f_{+}$has $1 / m_{Q}$ corrections since nothing forbids it in \vec{J}

$B \rightarrow D \ell \nu$ near zero recoil

Experimentally challenging theoretically advantageous
N.U. 2003
$\left\langle D\left(p_{2}\right)\right| \bar{c} \gamma_{\nu} b\left|B\left(p_{1}\right)\right\rangle=f_{+}\left(p_{1}+p_{2}\right)_{\nu}+f_{-}\left(p_{1}-p_{2}\right)_{\nu}$

$$
f_{ \pm} \equiv f_{ \pm}\left(\vec{q}^{2}\right)
$$

A single amplitude $J_{0}=\left(M_{B}+M_{D}\right) f_{+}(0)+\left(M_{B}-M_{D}\right) f_{-}(0)$ at $\vec{q}=0$
HQ limit: $\quad f_{+}=\frac{M_{B}+M_{D}}{2 \sqrt{M_{B} M_{D}}}, \quad f_{-}=-\frac{M_{B}-M_{D}}{M_{B}+M_{D}} f_{+}$

$$
\frac{J_{0}}{2 \sqrt{M_{B} M_{D}}}=1-a_{2}\left(\frac{1}{m_{c}}-\frac{1}{m_{b}}\right)^{2}-a_{3}\left(\frac{1}{m_{c}}-\frac{1}{m_{b}}\right)^{2}\left(\frac{1}{m_{c}}+\frac{1}{m_{b}}\right)+\ldots
$$

Power corrections are well under control and small
Any amplitude with massless leptons depends, however solely on f_{+}, (only the combination of f_{+}and f_{-}has no $1 / m$ corrections)
$F_{+} \equiv \frac{2 \sqrt{M_{B} M_{D}}}{M_{B}+M_{D}} f_{+}$has $1 / m_{Q}$ corrections since nothing forbids it in \vec{J}
Not a drawback in the era of dynamics

$$
F_{+}=1+\left(\frac{\bar{\pi}}{2}-\bar{\Sigma}\right)\left(\frac{1}{m_{c}}-\frac{1}{m_{b}}\right) \frac{M_{B}-M_{D}}{M_{B}+M_{D}}-\mathcal{O}\left(\frac{1}{m_{Q}^{2}}\right)
$$

$$
F_{+}=1+\left(\frac{\bar{\pi}}{2}-\bar{\Sigma}\right)\left(\frac{1}{m_{c}}-\frac{1}{m_{b}}\right) \frac{M_{B}-M_{D}}{M_{B}+M_{D}}-\mathcal{O}\left(\frac{1}{m_{Q}^{2}}\right)
$$

From inclusive decays and exact sum rules we know $\frac{\bar{\Lambda}}{2}-\bar{\Sigma}$ (positive, but small $\propto \frac{\mu_{\pi}^{2}-\mu_{\bar{c}}^{2}}{3 \mu_{\text {hadr }}}$)

$$
F_{+}=1+\left(\frac{\bar{\pi}}{2}-\bar{\Sigma}\right)\left(\frac{1}{m_{c}}-\frac{1}{m_{b}}\right) \frac{M_{B}-M_{D}}{M_{B}+M_{D}}-\mathcal{O}\left(\frac{1}{m_{Q}^{2}}\right)
$$

From inclusive decays and exact sum rules we know $\frac{\bar{\Lambda}}{2}-\bar{\Sigma}$ (positive, but small $\propto \frac{\mu_{\pi}^{2}-\mu_{⿳}^{2}}{3 \mu_{\text {hadr }}}$)

Moreover, we know all power corrections are small at small μ_{π}^{2}

$$
F_{+}=1+\left(\frac{\bar{\pi}}{2}-\bar{\Sigma}\right)\left(\frac{1}{m_{c}}-\frac{1}{m_{b}}\right) \frac{M_{B}-M_{D}}{M_{B}+M_{D}}-\mathcal{O}\left(\frac{1}{m_{Q}^{2}}\right)
$$

From inclusive decays and exact sum rules we know $\frac{\overline{1}}{2}-\bar{\Sigma}$ (positive, but small $\propto \frac{\mu_{\pi}^{2}-\mu_{\epsilon}^{2}}{3 \mu_{\text {hadr }}}$)

Moreover, we know all power corrections are small at small μ_{π}^{2}

$$
\frac{M_{B}+M_{D}}{2 \sqrt{M_{B} M_{D}}} f_{+}(0)=1.04 \pm 0.01 \pm 0.01
$$

All orders in $1 / m$ in 'BPS', to $1 / m^{2} \cdot 1 /$ BPS $^{2}, \alpha_{s}^{1}$
The bulk 3\% is the perturbative factor

$$
F_{+}=1+\left(\frac{\bar{\pi}}{2}-\bar{\Sigma}\right)\left(\frac{1}{m_{c}}-\frac{1}{m_{b}}\right) \frac{M_{B}-M_{D}}{M_{B}+M_{D}}-\mathcal{O}\left(\frac{1}{m_{Q}^{2}}\right)
$$

From inclusive decays and exact sum rules we know $\frac{\overline{1}}{2}-\bar{\Sigma}$ (positive, but small $\propto \frac{\mu_{\pi}^{2}-\mu_{\epsilon}^{2}}{3 \mu_{\text {hadr }}}$)

Moreover, we know all power corrections are small at small μ_{π}^{2}

$$
\frac{M_{B}+M_{D}}{2 \sqrt{M_{B} M_{D}}} f_{+}(0)=1.04 \pm 0.01 \pm 0.01
$$

N.U. 2003

All orders in $1 / m$ in 'BPS', to $1 / m^{2} \cdot 1 /$ BPS $^{2}, \alpha_{s}^{1}$
The bulk 3\% is the perturbative factor, only a percent comes from power terms

Numerical evaluation of the formfactor requires accounting for perturbative renormalization:

Must be compatible with BPS in the nonperturbative domain

This can be done in the Wilsonian approach

Lattice (FNAL, 2004):

$$
F_{+}(0)=1.075 \pm .018 \pm .015
$$

Differs significantly from my estimate

Lattice (FNAL, 2004):

$$
F_{+}(0)=1.075 \pm .018 \pm .015
$$

Differs significantly from my estimate
such $F_{+}(0)$ seems in line with the large value of μ_{π}^{2} obtained in the same simulations

Lattice (FNAL, 2004):

$$
F_{+}(0)=1.075 \pm .018 \pm .015
$$

Differs significantly from my estimate
such $F_{+}(0)$ seems in line with the large value of μ_{π}^{2} obtained in the same simulations

This leads to

$$
\left|V_{c b}\right|=(40.7 \pm 4.4) \cdot 10^{-3}
$$

Lattice (FNAL, 2004):

$$
F_{+}(0)=1.075 \pm .018 \pm .015
$$

Differs significantly from my estimate
such $F_{+}(0)$ seems in line with the large value of μ_{π}^{2} obtained in the same simulations

Extracting $\left|V_{c b}\right|$ from $\Gamma_{s l}(B)$

$$
\Gamma=\left|V_{c b}\right|^{2} \cdot \sum_{i}\left|F_{i}\right|^{2} \cdot p h . s p .
$$

Extracting $\left|V_{c b}\right|$ from $\Gamma_{s l}(B)$

$\Gamma=\left|V_{c b}\right|^{2} \cdot \sum\left|F_{i}\right|^{2} \cdot$ ph.sp. \quad More states - more problems?

Extracting $\left|V_{c b}\right|$ from $\Gamma_{\mathrm{sl}}(B)$

$\Gamma=\left|V_{c b}\right|^{2} \cdot \sum\left|F_{i}\right|^{2} \cdot$ ph.sp. \quad More states - more problems?

Not necessarily, parton estimate $\frac{G_{F}^{2} m_{b}^{5}}{192 \pi^{3}}\left|V_{c b}\right|^{2} z\left(m_{c} / m_{b}\right)$ applies!

Extracting $\left|V_{c b}\right|$ from $\Gamma_{\mathrm{sl}}(B)$

$\Gamma=\left|V_{c b}\right|^{2} \cdot \sum_{i}\left|F_{i}\right|^{2} \cdot$ ph.sp. More states - more problems?
Not necessarily, parton estimate $\frac{G_{E}^{2} m_{b}^{5}}{192 \pi^{3}}\left|V_{c b}\right|^{2} z\left(m_{c} / m_{b}\right)$ applies!

Extracting $\left|V_{c b}\right|$ from $\Gamma_{\mathrm{sl}}(B)$

$\Gamma=\left|V_{c b}\right|^{2} \cdot \sum_{i}\left|F_{i}\right|^{2} \cdot$ ph.sp. More states - more problems?
Not necessarily, parton estimate $\frac{G_{F}^{2} m_{b}^{5}}{192 \pi^{3}}\left|V_{c b}\right|^{2} z\left(m_{c} / m_{b}\right)$ applies!

Folklore: A parton-hadron transformer, efficiency $\eta=1$

Extracting $\left|V_{c b}\right|$ from $\Gamma_{\mathrm{sl}}(B)$

$\Gamma=\left|V_{c b}\right|^{2} \cdot \sum_{i}\left|F_{i}\right|^{2} \cdot$ ph.sp. More states - more problems?
Not necessarily, parton estimate $\frac{G_{F}^{2} m_{b}^{5}}{192 \pi^{3}}\left|V_{c b}\right|^{2} z\left(m_{c} / m_{b}\right)$ applies!

Folklore: A parton-hadron transformer, efficiency $\eta=1$
Now we treat this scientifically and know that $\eta \neq 1$: calculate it in the $1 / m_{b}$-expansion

In practice need to evaluate

In practice need to evaluate

- 'Input power' $\Gamma_{\mathrm{sl}}(b \rightarrow c \ell \nu)$ - parton rate

In practice need to evaluate

- 'Input power' $\Gamma_{\mathrm{sl}}(b \rightarrow c \ell \nu)$ - parton rate
- 'efficiency' η - QCD corrections
both hard and soft
$\Gamma_{\text {part }}$: need accurate values of m_{b} and m_{c}

In practice need to evaluate

- 'Input power' $\Gamma_{\mathrm{sl}}(b \rightarrow c \ell \nu)$ - parton rate
high precision
- 'efficiency' η - QCD corrections
$\Gamma_{\text {part }}$: need accurate values of m_{b} and m_{c}
$1-\eta$: requires nonperturbative parameters $\mu_{\pi}^{2}, \mu_{G}^{2}, \rho_{D}^{3}, \rho_{L S}^{3} \cdots$

In practice need to evaluate

- 'Input power' $\Gamma_{\mathrm{sl}}(b \rightarrow c \ell \nu)$ - parton rate
high precision
- 'efficiency' η - QCD corrections
$\Gamma_{\text {part }}$: need accurate values of m_{b} and m_{c}
$1-\eta$: requires nonperturbative parameters $\mu_{\pi}^{2}, \mu_{G}^{2}, \rho_{D}^{3}, \rho_{L S}^{3} \cdots$

These QCD entities replace models and their attributes used early on
$m_{b}, m_{c}, \mu_{\pi}^{2}, \ldots$ (properly defined) can be determined from the semileptonic $(b \rightarrow s+\gamma)$ decay distributions themselves BSUV, 1993-1994
$m_{b}, m_{c}, \mu_{\pi}^{2}, \ldots$ (properly defined) can be determined from the semileptonic $(b \rightarrow s+\gamma)$ decay distributions
themselves
BSUV, 1993-1994

Overcame numerous skepticism which took different forms
A robust analysis required without relying on $1 / m_{c}$ expansion

Expansions in $1 / m_{c}$ are questionable
$m_{b}, m_{c}, \mu_{\pi}^{2}, \ldots$ (properly defined) can be determined from the semileptonic $(b \rightarrow s+\gamma)$ decay distributions
themselves
BSUV, 1993-1994

Overcame numerous skepticism which took different forms
A robust analysis required without relying on $1 / m_{c}$ expansion

Expansions in $1 / m_{c}$ are questionable

Expand only in $1 / m_{b}$ (or $1 /\left(m_{b}-m_{c}\right)$), in practice assumes relaxing the $M_{B}-M_{D}$ constraints
$m_{b}, m_{c}, \mu_{\pi}^{2}, \ldots$ (properly defined) can be determined from the semileptonic $(b \rightarrow s+\gamma)$ decay distributions themselves

BSUV, 1993-1994

Overcame numerous skepticism which took different forms
A robust analysis required without relying on $1 / m_{c}$ expansion
N.U. 2002

Expansions in $1 / m_{c}$ are questionable

Expand only in $1 / m_{b}$ (or $1 /\left(m_{b}-m_{c}\right)$), in practice assumes relaxing the $M_{B}-M_{D}$ constraints

Use well-defined QCD parameters and enjoy numerically stable perturbation theory

Now adopted for analysis in all experiments

Experiment provides many observables, e.g.

$$
\left\langle E_{\ell}\right\rangle, \quad\left\langle E_{\ell}^{2}\right\rangle, \quad\left\langle E_{\ell}^{3}\right\rangle ; \quad\left\langle M_{X}^{2}\right\rangle, \quad\left\langle M_{X}^{4}\right\rangle, \quad\left\langle M_{X}^{6}\right\rangle \ldots
$$

all as functions of the lower cut on charged lepton energy

Now adopted for analysis in all experiments

Experiment provides many observables, e.g.

$$
\left\langle E_{\ell}\right\rangle, \quad\left\langle E_{\ell}^{2}\right\rangle, \quad\left\langle E_{\ell}^{3}\right\rangle ; \quad\left\langle M_{X}^{2}\right\rangle, \quad\left\langle M_{X}^{4}\right\rangle, \quad\left\langle M_{X}^{6}\right\rangle \ldots
$$

all as functions of the lower cut on charged lepton energy
The special role of the hadronic mass moments:
if m_{c} were large enough, the first would yield $\bar{\Lambda}$, the second μ_{π}^{2}, the third ρ_{D}^{3} more or less directly

Precision data on the photon spectrum in $B \rightarrow X_{s}+\gamma$
are important!

A technical detail: in higher hadronic moments should not include $M_{B}-m_{b}$ into counting rules in μ_{hadr} (although $M_{B}-m_{b} \propto \mu_{\mathrm{hadr}}^{1}$), rather treat as an arbitrary scale parameter

For skeptics - study the modified hadronic moments $\left\langle\tilde{N}_{X}^{k}\right\rangle$ (Gambino, N.U.) more directly related to higher-dimensional expectation values in progress

A technical detail:
in higher hadronic moments should not include $M_{B}-m_{b}$ into counting rules in μ_{hadr} (although $M_{B}-m_{b} \propto \mu_{\mathrm{hadr}}^{1}$), rather treat as an arbitrary scale parameter

For skeptics - study the modified hadronic moments $\left\langle\tilde{N}_{X}^{k}\right\rangle$ (Gambino, N.U.) more directly related to higher-dimensional expectation values in progress

The first extensive data analysis along these lines was accomplished in 2004-2005 and turned out quite successful
$\left\langle M_{X}^{2}\right\rangle$ vs. $E_{\text {cut }}^{\ell}$
Robust OPE approach à la Wilson, $\mu=1 \mathrm{GeV}$:

hep-ph/0507253

hep-ph/0507253

Good agreement where the right theory is used right

hep-ph/0507253

Good agreement where the right theory is used right

OPE works well even where it can be expected to break down
hep-ph/0507253

Good agreement where the right theory is used right

OPE works well even where it can be expected to break down
The Heavy Quark Expansion is based on the smart application of the Wilsonian OPE

Good agreement where the right theory is used right

OPE works well even where it can be expected to break down
The Heavy Quark Expansion is based on the smart application of the Wilsonian OPE

It has nothing to do with integrating α_{s} over the Landau singularity or with summing non-summable perturbative series

IR domain is excluded from the perturbative calculations

A comprehensive fit including all moment measurements:
(by the professionals)

Important: HQ values emerged in accord with the theoretical expectations

A comprehensive fit including all moment measurements:
(by the professionals)

Important: HQ values emerged in accord with the theoretical expectations
The OPE-based theory seems to work too well ?

A comprehensive fit including all moment measurements:
(by the professionals)

Important: HQ values emerged in accord with the theoretical expectations
The OPE-based theory seems to work too well?
'Theoretical correlations'

Status

Four years is quite a period Some changes were inevitable HFAG:
$\left|V_{c b}\right|=(4.191 \pm 0.019 \pm 0.028 \pm 0.59) \cdot 10^{-3}$

Status

Four years is quite a period Some changes were inevitable

HFAG:

$$
\begin{aligned}
\left|V_{c b}\right|= & (4.191 \pm 0.019 \pm 0.028 \pm 0.59) \cdot 10^{-3} \\
& 4.168 \quad \pm 0.039 \quad \pm 0.58 \quad B \rightarrow X_{c} \ell \nu \text { only }
\end{aligned}
$$

$$
\begin{array}{ll}
m_{b}=4.613 \pm 0.035 \mathrm{GeV} & m_{b}\left(m_{b}\right) \simeq 4.22 \mathrm{GeV} \\
m_{c}=1.187 \pm 0.052 \mathrm{GeV} & m_{c}\left(m_{c}\right) \simeq 1.32 \mathrm{GeV}
\end{array}
$$

Status

Four years is quite a period Some changes were inevitable

HFAG:

$$
\begin{aligned}
\left|V_{c b}\right|=(4.191 & \pm 0.019 \pm 0.028 \pm 0.59) \cdot 10^{-3} \\
4.168 & \pm 0.039 \quad \pm 0.58 \quad B \rightarrow X_{c} \ell \nu \text { only } \\
& \\
m_{b}=4.613 \pm 0.035 \mathrm{GeV} & m_{b}\left(m_{b}\right) \simeq 4.22 \mathrm{GeV} \\
m_{c}=1.187 \pm 0.052 \mathrm{GeV} & m_{c}\left(m_{c}\right) \simeq 1.32 \mathrm{GeV}
\end{aligned}
$$

Recent theory improvements

'Intrinsic charm' effects

Benson, Bigi, Mannel, N.U. 2003 Bigi, Zwicky, N.U. 2006

Is charm sufficiently heavy?

'Intrinsic charm' effects

Benson, Bigi, Mannel, N.U. 2003 Bigi, Zwicky, N.U. 2006
Is charm sufficiently heavy? we do not expand in $\frac{1}{m_{c}}$, yet
Effects of the nonperturbative four-quark expectation values with charm $\langle B| \bar{b} c \bar{c} b|B\rangle$ superficially resemble Brodsky's 'Intrinsic Charm'

'Intrinsic charm' effects

Benson, Bigi, Mannel, N.U. 2003 Bigi, Zwicky, N.U. 2006
Is charm sufficiently heavy? we do not expand in $\frac{1}{m_{c}}$, yet
Effects of the nonperturbative four-quark expectation values with charm $\langle B| \bar{b} c \bar{c} b|B\rangle$

superficially resemble Brodsky's 'Intrinsic Charm'

Required in the consistent OPE Benson et al., hep-ph/0302262
Generate enhanced effects $\frac{1}{m_{b}^{3}} \frac{1}{m_{c}^{2+k}}$ or even $\frac{1}{m_{b}^{3}} \frac{\alpha_{s}}{m_{c}^{1+k}}$ in the naive $1 / m_{Q}$ expansion

'Intrinsic charm’ effects

Benson, Bigi, Mannel, N.U. 2003 Bigi, Zwicky, N.U. 2006
Is charm sufficiently heavy? we do not expand in $\frac{1}{m_{c}}$, yet
Effects of the nonperturbative four-quark expectation values with charm $\langle B| \bar{b} c \bar{c} b|B\rangle$

superficially resemble Brodsky's 'Intrinsic Charm'

Required in the consistent OPE Benson et al., hep-ph/0302262
Generate enhanced effects $\frac{1}{m_{b}^{3}} \frac{1}{m_{c}^{2+k}}$ or even $\frac{1}{m_{b}^{3}} \frac{\alpha_{s}}{m_{c}^{1+k}}$ in the naive $1 / m_{Q}$ expansion
Analysis:
Bigi, N.U., Zwicky, hep-ph/0511158
In the $1 / m_{c}$ expansion the effect appears at the sub- $\%$ level in $\Gamma_{\text {sl }}$, is expected below 0.5% due to certain cancellations
α_{s}-corrections are enhanced!

'Intrinsic charm' effects

$$
\text { Benson, Bigi, Mannel, N.U. } 2003
$$ Bigi, Zwicky, N.U. 2006

Is charm sufficiently heavy? we do not expand in $\frac{1}{m_{c}}$, yet Effects of the nonperturbative four-quark expectation values with charm $\langle B| \bar{b} c \bar{c} b|B\rangle$ superficially resemble Brodsky's 'Intrinsic Charm' Required in the consistent OPE Benson et al., hep-ph/0302262 Generate enhanced effects $\frac{1}{m_{b}^{3}} \frac{1}{m_{c}^{2+k}}$ or even $\frac{1}{m_{b}^{3}} \frac{\alpha_{s}}{m_{c}^{1+k}}$ in the naive $1 / m_{Q}$ expansion

Analysis: Bigi, N.U., Zwicky, hep-ph/0511158

In the $1 / m_{c}$ expansion the effect appears at the sub- $\%$ level in $\Gamma_{\text {sl }}$, is expected below 0.5% due to certain cancellations
α_{s}-corrections are enhanced!
Experiment directly constrains the effect at 1 to 2% level
Expect improvement down to 0.5% where it would not affect precision of $V_{c b}$
The values of the q^{2}-moments are sensitive to these effects

Regular $1 / m_{b}^{4}$ corrections

More expectation values appear. Expect small effect for $\Gamma_{\mathrm{sl}}(B)$, however noticeable for higher moments where so far both the experimental and theory accuracy have been limited

Regular $1 / m_{b}^{4}$ corrections

Dassinger, Mannel, Turczyk hep-ph/0611168

More expectation values appear. Expect small effect for $\Gamma_{\mathrm{sl}}(B)$, however noticeable for higher moments where so far both the experimental and theory accuracy have been limited

Uncertainties in the B-meson matrix elements of the $d=7$ operators...
There are ideas how to approach this

Regular $1 / m_{b}^{4}$ corrections

Dassinger, Mannel, Turczyk hep-ph/0611168

More expectation values appear. Expect small effect for $\Gamma_{\mathrm{sl}}(B)$, however noticeable for higher moments where so far both the experimental and theory accuracy have been limited

Uncertainties in the B-meson matrix elements of the $d=7$ operators...
There are ideas how to approach this

Important to check their impact on $E_{\ell}^{\text {cut }}$ dependence

Full α_{s}^{2} corrections to decay distributions

Melnikov arXiv:0803.0951 [hep-ph]
So far incorporated $\alpha_{s}, \beta_{0} \alpha_{s}^{2}$, all-order BLM. Complete α_{s}^{2} had been evaluated only in $\Gamma_{\mathrm{sl}}(b)$

Now complete α_{s}^{2} corrections are available for distributions in the numeric form

Full α_{s}^{2} corrections to decay distributions

Melnikov arXiv:0803.0951 [hep-ph]
So far incorporated $\alpha_{s}, \beta_{0} \alpha_{s}^{2}$, all-order BLM. Complete α_{s}^{2} had been evaluated only in $\Gamma_{\mathrm{sl}}(b)$

Now complete α_{s}^{2} corrections are available for distributions in the numeric form

Calculations are time-consuming

Full α_{s}^{2} corrections to decay distributions

Melnikov arXiv:0803.0951 [hep-ph]
So far incorporated $\alpha_{s}, \beta_{0} \alpha_{s}^{2}$, all-order BLM. Complete α_{s}^{2} had been evaluated only in $\Gamma_{\mathrm{sl}}(b)$
Now complete α_{s}^{2} corrections are available for distributions in the numeric form
Calculations are time-consuming, need to find an efficient way to incorporate into the codes

The corrections are moderate.

Full α_{s}^{2} corrections to decay distributions

Melnikov arXiv:0803.0951 [hep-ph]
So far incorporated $\alpha_{s}, \beta_{0} \alpha_{s}^{2}$, all-order BLM. Complete α_{s}^{2} had been evaluated only in $\Gamma_{\mathrm{sl}}(b)$
Now complete α_{s}^{2} corrections are available for distributions in the numeric form

Calculations are time-consuming, need to find an efficient way to incorporate into the codes

The corrections are moderate. There are reasons to expect they will not change results in a significant way

N.U.; Czarnecki, Melnikov, N.U. PRL 1998

Full α_{s}^{2} corrections to decay distributions

Melnikov arXiv:0803.0951 [hep-ph] So far incorporated $\alpha_{s}, \beta_{0} \alpha_{s}^{2}$, all-order BLM. Complete α_{s}^{2} had been evaluated only in $\Gamma_{\text {sl }}(b)$
Now complete α_{s}^{2} corrections are available for distributions in the numeric form

Calculations are time-consuming, need to find an efficient way to incorporate into the codes
The corrections are moderate. There are reasons to expect they will not change results in a significant way
N.U.; Czarnecki, Melnikov, N.U. PRL 1998

Using the more physical effective coupling is advantageous In particular, in $b \rightarrow c \ell \nu$ the bulk of the QCD effects are encoded in the dipole radiation coupling $\alpha_{s}^{(d)}$:
$\alpha_{s}^{(d)}=\bar{\alpha}_{s}-\frac{\alpha_{s}^{2}}{\pi} \underbrace{C_{A}\left(\frac{\pi^{2}}{6}-\frac{13}{12}\right)}_{1.67}+\ldots$

Full α_{s}^{2} corrections to decay distributions

Melnikov arXiv:0803.0951 [hep-ph] So far incorporated $\alpha_{s}, \beta_{0} \alpha_{s}^{2}$, all-order BLM. Complete α_{s}^{2} had been evaluated only in $\Gamma_{\text {sl }}(b)$
Now complete α_{s}^{2} corrections are available for distributions in the numeric form

Calculations are time-consuming, need to find an efficient way to incorporate into the codes The corrections are moderate. There are reasons to expect they will not change results in a significant way
N.U.; Czarnecki, Melnikov, N.U. PRL 1998

Using the more physical effective coupling is advantageous In particular, in $b \rightarrow c \ell \nu$ the bulk of the QCD effects are encoded in the dipole radiation coupling $\alpha_{s}^{(d)}$:

$$
\alpha_{s}^{(d)}=\bar{\alpha}_{s}-\frac{\alpha_{s}^{2}}{\pi} \underbrace{C_{A}\left(\frac{\pi^{2}}{6}-\frac{13}{12}\right)}_{1.67}+\ldots
$$

NB: the 'dipole' coupling is an objective reality; -1.67 is an artifact of the $\overline{\mathrm{MS}}$ scheme

Table: Lepton energy moments

n	$E_{\ell}^{\text {cut }}, \mathrm{GeV}$	$L_{n}^{(0)}$	$L_{n}^{(1)}$	$L_{n}^{(2)}$
0	0	1	-1.77759	3.40
1	0	0.307202	-0.55126	1.11
2	0	0.10299	-0.1877	0.394
0	1	0.81483	-1.4394	2.63
1	1	0.27763	-0.49755	1.00
2	1	0.09793	-0.17846	0.382

Table: Lepton energy moments

n	$E_{\ell}^{\text {cut }}, \mathrm{GeV}$	$L_{n}^{(0)}$	$L_{n}^{(1)}$	$L_{n}^{(2)}$	$L_{n}^{(2)} / L_{n}^{(1)}$
0	0	1	-1.77759	3.40	-1.91
1	0	0.307202	-0.55126	1.11	-2.01
2	0	0.10299	-0.1877	0.394	-2.10
0	1	0.81483	-1.4394	2.63	-1.83
1	1	0.27763	-0.49755	1.00	-2.01
2	1	0.09793	-0.17846	0.382	-2.14

'conformal' corrections have a coefficient between -1.8 and -2.15

Table: Lepton energy moments

n	$E_{\ell}^{\text {cut }}, \mathrm{GeV}$	$L_{n}^{(0)}$	$L_{n}^{(1)}$	$L_{n}^{(2)}$	$L_{n}^{(2)} / L_{n}^{(1)}$
0	0	1	-1.77759	3.40	-1.91
1	0	0.307202	-0.55126	1.11	-2.01
2	0	0.10299	-0.1877	0.394	-2.10
0	1	0.81483	-1.4394	2.63	-1.83
1	1	0.27763	-0.49755	1.00	-2.01
2	1	0.09793	-0.17846	0.382	-2.14

'conformal' corrections have a coefficient between -1.8 and -2.15 the largest part of them is just the dipole coupling piece -1.67

Table: Lepton energy moments

n	$E_{\ell}^{\text {cut }}, \mathrm{GeV}$	$L_{n}^{(0)}$	$L_{n}^{(1)}$	$L_{n}^{(2)}$	$L_{n}^{(2)} / L_{n}^{(1)}$
0	0	1	-1.77759	3.40	-1.91
1	0	0.307202	-0.55126	1.11	-2.01
2	0	0.10299	-0.1877	0.394	-2.10
0	1	0.81483	-1.4394	2.63	-1.83
1	1	0.27763	-0.49755	1.00	-2.01
2	1	0.09793	-0.17846	0.382	-2.14

'conformal' corrections have a coefficient between -1.8 and -2.15 the largest part of them is just the dipole coupling piece -1.67

Table: Hadronic energy moments.

n	$E_{\ell}^{\text {cut }}, \mathrm{GeV}$	$H_{n}^{(0)}$	$H_{n}^{(1)}$	$H_{n}^{(2)}$	$H_{n}^{(2)} / H_{n}^{(1)}$
1	1	0.334	-0.57728	1.02	-1.77
2	1	0.14111	-0.23456	0.362	-1.54

Table: Lepton energy moments

n	$E_{\ell}^{\text {cut }}, \mathrm{GeV}$	$L_{n}^{(0)}$	$L_{n}^{(1)}$	$L_{n}^{(2)}$	$L_{n}^{(2)} / L_{n}^{(1)}$
0	0	1	-1.77759	3.40	-1.91
1	0	0.307202	-0.55126	1.11	-2.01
2	0	0.10299	-0.1877	0.394	-2.10
0	1	0.81483	-1.4394	2.63	-1.83
1	1	0.27763	-0.49755	1.00	-2.01
2	1	0.09793	-0.17846	0.382	-2.14

'conformal' corrections have a coefficient between -1.8 and -2.15 the largest part of them is just the dipole coupling piece -1.67

Table: Hadronic energy moments.

n	$E_{\ell}^{\text {cut }}, \mathrm{GeV}$	$H_{n}^{(0)}$	$H_{n}^{(1)}$	$H_{n}^{(2)}$	$H_{n}^{(2)} / H_{n}^{(1)}$
1	1	0.334	-0.57728	1.02	-1.77
2	1	0.14111	-0.23456	0.362	-1.54

The residual genuine non-BLM effects are suppressed!

Running of $\alpha_{s}^{(d)}$ is given by the same β-function up to three loops, hence BLM resummation etc. remain literally valid

The change simply amounts to using a 10% smaller input value of α_{s} in all the expressions:

$$
\alpha_{s}(4.6 \mathrm{GeV})=0.22 \quad \text { vs. } \quad 0.25
$$

That was actually applied in the fit par our suggestions the dependence on the numerical value of α_{s} was traced

Running of $\alpha_{s}^{(d)}$ is given by the same β-function up to three loops, hence BLM resummation etc. remain literally valid

The change simply amounts to using a 10% smaller input value of α_{s} in all the expressions:

$$
\alpha_{s}(4.6 \mathrm{GeV})=0.22 \quad \text { vs. } \quad 0.25
$$

That was actually applied in the fit par our suggestions the dependence on the numerical value of α_{s} was traced

The results are likely not to change when including full α_{s}^{2}

The corrections are significantly smaller than allowed for in our analysis of the moments

α_{s}-corrections to the power-suppressed Wilson coefficients:

for a long time the principal limiting factor

Remain largely unknown...
α_{s}-corrections to the power-suppressed Wilson coefficients: for a long time the principal limiting factor

Remain largely unknown...

The kinetic operator is special in this respect. In true scalars like the total width the coefficient is fixed and the correction is nearly absent Yet may be relevant in the moments
α_{s}-corrections to the power-suppressed Wilson coefficients: for a long time the principal limiting factor

Remain largely unknown...

The kinetic operator is special in this respect. In true scalars like the total width the coefficient is fixed and the correction is nearly absent Yet may be relevant in the moments

α_{s}-corrections to c_{π}

Becher, Boos, Lunghi arXiv:0708.0855 [hep-ph]

$$
E_{\ell}^{\text {cut }}=1 \mathrm{GeV}
$$

	1	$\frac{\alpha_{s}}{\pi}$	$\frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}$	$\frac{\alpha_{s}}{\pi} \frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}$	$\left(\frac{\alpha_{s}}{\pi} \mu_{\pi}^{2}\right) / \mu_{\pi}^{2}$	$\left(\frac{\alpha_{s}}{\pi}\right) / 1$
1	0.5149	-0.910	-0.5692	0.987	-1.73	-1.77
\hat{E}_{l}	0.1754	-0.314	0.0109	-0.024	-2.20	-1.79
\hat{E}_{l}^{2}	0.06189	-0.1128	0.1105	-0.202	-1.83	-1.82
\hat{E}_{l}^{3}	0.02251	-0.0418	0.09269	-0.1722	-1.86	-1.86
\hat{E}_{X}	0.2111	-0.365	-0.5694	1.010	-1.77	-1.73
\hat{E}_{x}^{2}	0.08917	-0.1482	-0.3378	0.576	-1.71	-1.66
\hat{E}_{x}^{3}	0.03867	-0.0606	$-0.16898(6)$	0.2639	-1.56	-1.57
$\left(\hat{p}_{x}^{2}-\rho\right)$	0	0.03618	-0.6855	1.213	-1.77	
$\left(\hat{p}_{x}^{2}-\rho\right)^{2}$	0	0.002808	0.15198	-0.4388	-2.89	
$\left(\hat{p}_{x}^{2}-\rho\right)^{3}$	0	0.0004053	0	0.020998		
$\hat{E}_{x}\left(\hat{p}_{x}^{2}-\rho\right)$	0	0.01801	-0.20707	0.2961	-1.43	
$\hat{E}_{x}\left(\hat{p}_{x}^{2}-\rho\right)^{2}$	0	0.0015307	0.06794	-0.1897	-2.79	
$\hat{E}_{x}^{2}\left(\hat{p}_{x}^{2}-\rho\right)$	0	0.009147	-0.05271	0.0304	-0.58	

Typically $\mu_{\pi}^{2} \Longrightarrow\left(1-(1.5\right.$ to 2.2$\left.) \frac{\alpha_{s}}{\pi}\right)$

	1	$\frac{\alpha_{s}}{\pi}$	$\frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}$	$\frac{\alpha_{s}}{\pi} \frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}$	$\left(\frac{\alpha_{s}}{\pi} \mu_{\pi}^{2}\right) / \mu_{\pi}^{2}$	$\left(\frac{\alpha_{s}}{\pi}\right) / 1$
1	0.5149	-0.910	-0.5692	0.987	-1.73	-1.77
\hat{E}_{l}	0.1754	-0.314	0.0109	-0.024	-2.20	-1.79
\hat{E}_{l}^{2}	0.06189	-0.1128	0.1105	-0.202	-1.83	-1.82
\hat{E}_{l}^{3}	0.02251	-0.0418	0.09269	-0.1722	-1.86	-1.86
\hat{E}_{x}	0.2111	-0.365	-0.5694	1.010	-1.77	-1.73
\hat{E}_{X}^{2}	0.08917	-0.1482	-0.3378	0.576	-1.71	-1.66
\hat{E}_{x}^{3}	0.03867	-0.0606	$-0.16898(6)$	0.2639	-1.56	-1.57
$\left(\hat{p}_{x}^{2}-\rho\right)$	0	0.03618	-0.6855	1.213	-1.77	
$\left(\hat{p}_{x}^{2}-\rho\right)^{2}$	0	0.002808	0.15198	-0.4388	-2.89	
$\left(\hat{p}_{x}^{2}-\rho\right)^{3}$	0	0.0004053	0	0.020998		
$\hat{E}_{x}\left(\hat{p}_{x}^{2}-\rho\right)$	0	0.01801	-0.20707	0.2961	-1.43	
$\hat{E}_{x}\left(\hat{p}_{x}^{2}-\rho\right)^{2}$	0	0.0015307	0.06794	-0.1897	-2.79	
$\hat{E}_{x}^{2}\left(\hat{p}_{x}^{2}-\rho\right)$	0	0.009147	-0.05271	0.0304	-0.58	

Typically $\mu_{\pi}^{2} \Longrightarrow\left(1-(1.5\right.$ to 2.2$\left.) \frac{\alpha_{s}}{\pi}\right)$, yet the 'parton' moments are little affected, similar to the width itself

	1	$\frac{\alpha_{s}}{\pi}$	$\frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}$	$\frac{\alpha_{s}}{\pi} \frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}$	$\left(\frac{\alpha_{s}}{\pi} \mu_{\pi}^{2}\right) / \mu_{\pi}^{2}$	$\left(\frac{\alpha_{s}}{\pi}\right) / 1$
1	0.5149	-0.910	-0.5692	0.987	-1.73	-1.77
\hat{E}_{l}	0.1754	-0.314	0.0109	-0.024	-2.20	-1.79
\hat{E}_{l}^{2}	0.06189	-0.1128	0.1105	-0.202	-1.83	-1.82
\hat{E}_{l}^{3}	0.02251	-0.0418	0.09269	-0.1722	-1.86	-1.86
\hat{E}_{X}	0.2111	-0.365	-0.5694	1.010	-1.77	-1.73
\hat{E}_{x}^{2}	0.08917	-0.1482	-0.3378	0.576	-1.71	-1.66
\hat{E}_{x}^{3}	0.03867	-0.0606	$-0.16898(6)$	0.2639	-1.56	-1.57
$\left(\hat{p}_{x}^{2}-\rho\right)$	0	0.03618	-0.6855	1.213	-1.77	
$\left(\hat{p}_{x}^{2}-\rho\right)^{2}$	0	0.002808	0.15198	-0.4388	-2.89	
$\left(\hat{p}_{x}^{2}-\rho\right)^{3}$	0	0.0004053	0	0.020998		
$\hat{E}_{x}\left(\hat{p}_{x}^{2}-\rho\right)$	0	0.01801	-0.20707	0.2961	-1.43	
$\hat{E}_{X}\left(\hat{p}_{x}^{2}-\rho\right)^{2}$	0	0.0015307	0.06794	-0.1897	-2.79	
$\hat{E}_{x}^{2}\left(\hat{p}_{x}^{2}-\rho\right)$	0	0.009147	-0.05271	0.0304	-0.58	

Typically $\mu_{\pi}^{2} \Longrightarrow\left(1-(1.5\right.$ to 2.2$\left.) \frac{\alpha_{s}}{\pi}\right)$, yet the 'parton' moments are little affected, similar to the width itself
Corrections are of the size assumed by Gambino and myself (2004), and an order of magnitude larger than stated by Ligeti et al.

	1	$\frac{\alpha_{s}}{\pi}$	$\frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}$	$\frac{\alpha_{s}}{\pi} \frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}$	$\left(\frac{\alpha_{s}}{\pi} \mu_{\pi}^{2}\right) / \mu_{\pi}^{2}$	$\left(\frac{\alpha_{s}}{\pi}\right) / 1$
1	0.5149	-0.910	-0.5692	0.987	-1.73	-1.77
\hat{E}_{l}	0.1754	-0.314	0.0109	-0.024	-2.20	-1.79
\hat{E}_{l}^{2}	0.06189	-0.1128	0.1105	-0.202	-1.83	-1.82
\hat{E}_{l}^{3}	0.02251	-0.0418	0.09269	-0.1722	-1.86	-1.86
\hat{E}_{X}	0.2111	-0.365	-0.5694	1.010	-1.77	-1.73
\hat{E}_{X}^{2}	0.08917	-0.1482	-0.3378	0.576	-1.71	-1.66
\hat{E}_{x}^{3}	0.03867	-0.0606	$-0.16898(6)$	0.2639	-1.56	-1.57
$\left(\hat{p}_{x}^{2}-\rho\right)$	0	0.03618	-0.6855	1.213	-1.77	
$\left(\hat{p}_{x}^{2}-\rho\right)^{2}$	0	0.002808	0.15198	-0.4388	-2.89	
$\left(\hat{p}_{x}^{2}-\rho\right)^{3}$	0	0.0004053	0	0.020998		
$\hat{E}_{x}\left(\hat{p}_{x}^{2}-\rho\right)$	0	0.01801	-0.20707	0.2961	-1.43	
$\hat{E}_{X}\left(\hat{p}_{x}^{2}-\rho\right)^{2}$	0	0.0015307	0.06794	-0.1897	-2.79	
$\hat{E}_{x}^{2}\left(\hat{p}_{x}^{2}-\rho\right)$	0	0.009147	-0.05271	0.0304	-0.58	

Typically $\mu_{\pi}^{2} \Longrightarrow\left(1-(1.5\right.$ to 2.2$\left.) \frac{\alpha_{s}}{\pi}\right)$, yet the 'parton' moments are little affected, similar to the width itself
Corrections are of the size assumed by Gambino and myself (2004), and an order of magnitude larger than stated by Ligeti et al. Increase in the extracted value of μ_{π}^{2} by $10-15 \%$?

	1	$\frac{\alpha_{s}}{\pi}$	$\frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}$	$\frac{\alpha_{s}}{\pi} \frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}$	$\left(\frac{\alpha_{s}}{\pi} \mu_{\pi}^{2}\right) / \mu_{\pi}^{2}$	$\left(\frac{\alpha_{s}}{\pi}\right) / 1$
1	0.5149	-0.910	-0.5692	0.987	-1.73	-1.77
\hat{E}_{l}	0.1754	-0.314	0.0109	-0.024	-2.20	-1.79
\hat{E}_{l}^{2}	0.06189	-0.1128	0.1105	-0.202	-1.83	-1.82
\hat{E}_{l}^{3}	0.02251	-0.0418	0.09269	-0.1722	-1.86	-1.86
\hat{E}_{X}	0.2111	-0.365	-0.5694	1.010	-1.77	-1.73
\hat{E}_{x}^{2}	0.08917	-0.1482	-0.3378	0.576	-1.71	-1.66
\hat{E}_{x}^{3}	0.03867	-0.0606	$-0.16898(6)$	0.2639	-1.56	-1.57
$\left(\hat{p}_{x}^{2}-\rho\right)$	0	0.03618	-0.6855	1.213	-1.77	
$\left(\hat{p}_{x}^{2}-\rho\right)^{2}$	0	0.002808	0.15198	-0.4388	-2.89	
$\left(\hat{p}_{x}^{2}-\rho\right)^{3}$	0	0.0004053	0	0.020998		
$\hat{E}_{x}\left(\hat{p}_{x}^{2}-\rho\right)$	0	0.01801	-0.20707	0.2961	-1.43	
$\hat{E}_{X}\left(\hat{p}_{x}^{2}-\rho\right)^{2}$	0	0.0015307	0.06794	-0.1897	-2.79	
$\hat{E}_{x}^{2}\left(\hat{p}_{x}^{2}-\rho\right)$	0	0.009147	-0.05271	0.0304	-0.58	

Typically $\mu_{\pi}^{2} \Longrightarrow\left(1-(1.5\right.$ to 2.2$\left.) \frac{\alpha_{s}}{\pi}\right)$, yet the 'parton' moments are little affected, similar to the width itself
Corrections are of the size assumed by Gambino and myself (2004), and an order of magnitude larger than stated by Ligeti et al. Increase in the extracted value of μ_{π}^{2} by $10-15 \%$?
Would be welcomed, might account for certain difference between $b \rightarrow c \ell \nu$ and $b \rightarrow s+q$
$V_{c b}$, possibly, is not affected: in $\Gamma_{\text {sl }}$ this has been accounted for, it depends on nearly the same combination as does $\left\langle M_{X}^{2}\right\rangle$ $\left\langle M_{X}^{2}\right\rangle$ is dominated by $\left\langle E_{X}\right\rangle$:

$$
\left\langle M_{X}^{2}\right\rangle \propto\left[\ldots-\left(32-2 \frac{\alpha_{s}}{\pi}\right) \frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}\right]
$$

almost no change!
$V_{c b}$, possibly, is not affected: in $\Gamma_{\text {sl }}$ this has been accounted for, it depends on nearly the same combination as does $\left\langle M_{X}^{2}\right\rangle$ $\left\langle M_{X}^{2}\right\rangle$ is dominated by $\left\langle E_{X}\right\rangle$:

$$
\left\langle M_{X}^{2}\right\rangle \propto\left[\ldots-\left(32-2 \frac{\alpha_{s}}{\pi}\right) \frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}\right]
$$

almost no change!
μ_{G}^{2} typically is less important than μ_{π}^{2}, yet α_{s}-corrections to it may be larger

Expect significant effects also in the Darwin operator
I believe corrections to $\rho_{L S}^{3}$ will not be relevant
$V_{c b}$, possibly, is not affected: in $\Gamma_{\text {sl }}$ this has been accounted for, it depends on nearly the same combination as does $\left\langle M_{X}^{2}\right\rangle$ $\left\langle M_{X}^{2}\right\rangle$ is dominated by $\left\langle E_{X}\right\rangle$:

$$
\left\langle M_{X}^{2}\right\rangle \propto\left[\ldots-\left(32-2 \frac{\alpha_{s}}{\pi}\right) \frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}\right]
$$

almost no change!
μ_{G}^{2} typically is less important than μ_{π}^{2}, yet α_{s}-corrections to it may be larger

Expect significant effects also in the Darwin operator
I believe corrections to $\rho_{L S}^{3}$ will not be relevant
Have approached the level of nearly ' 1% ' theoretical accuracy in $V_{c b}$ Accurate implementation of the recent improvements along with calculation of α_{s}-corrections to o_{G} and o_{D} would provide the real 1% accuracy
$B \rightarrow\left(\pi, \rho, a_{1}, \ldots\right) \ell \nu: \quad$ need formfactors

$B \rightarrow\left(\pi, \rho, a_{1}, \ldots\right) \ell \nu: \quad$ need formfactors LCSR, lattices

Khodjamirian and Zwicky for details
$B \rightarrow\left(\pi, \rho, a_{1}, \ldots\right) \ell \nu: \quad$ need formfactors LCSR, lattices
Khodjamirian and Zwicky for details
a) parametrization of the shape fitted to the data:
P. Ball 2006

$$
\left|V_{u b} f_{B \pi}^{+}(0)\right|=\left(0.91 \pm[0.06]_{\text {shape }} \pm[0.03]_{\mathrm{BR}}\right) \times 10^{-3}
$$

$V_{u b}$

$B \rightarrow\left(\pi, \rho, a_{1}, \ldots\right) \ell \nu: \quad$ need formfactors
LCSR, lattices
Khodjamirian and Zwicky for details
a) parametrization of the shape fitted to the data:
P. Ball 2006

$$
\left|V_{u b} f_{B \pi}^{+}(0)\right|=\left(0.91 \pm[0.06]_{\text {shape }} \pm[0.03]_{\mathrm{BR}}\right) \times 10^{-3}
$$

b) LCSR calculation of $f_{B \pi}^{+}(0)$:

$$
f_{B \pi}^{+}(0)=0.26_{-0.03}^{+0.04} \quad \text { Duplancić, Khodjamirian, Mannel, Melić, Offen } 2008
$$

with

$$
\left|V_{u b}\right|=\left(3.5 \pm 0.4_{\mathrm{th}} \pm 0.2_{\text {shape }} \pm 0.1_{\mathrm{BR}}\right) \times 10^{-3}
$$

previous LCSR result (Ball, Zwicky 2004): $\quad f_{B \pi}^{+}(0)=0.258 \pm 0.031$
$V_{u b}$ determinations from $B \rightarrow \pi \ell \nu$

	$f_{B \pi}^{+}\left(q^{2}\right)$ calculation	$V_{u b} \times 10^{3}$
Okamoto et al.	lattice $\left(n_{f}=3\right)$	$3.78 \pm 0.25 \pm 0.52$
HPQCD	lattice $\left(n_{f}=3\right)$	$3.55 \pm 0.25 \pm 0.50$
Becher \& Hill	-	$3.7 \pm 0.2 \pm 0.1$
Flynn et al.	-	$3.47 \pm 0.29 \pm 0.03$
Ball \& Zwicky	LCSR	$3.5 \pm 0.4 \pm 0.1$
DKMMO	LCSR	$3.5 \pm 0.4 \pm 0.2 \pm 0.1$

$V_{u b}$ determinations from $B \rightarrow \pi \ell \nu$

	$f_{B \pi}^{+}\left(q^{2}\right)$ calculation	$V_{u b} \times 10^{3}$
Okamoto et al.	lattice $\left(n_{f}=3\right)$	$3.78 \pm 0.25 \pm 0.52$
HPQCD	lattice $\left(n_{f}=3\right)$	$3.55 \pm 0.25 \pm 0.50$
Becher \& Hill	-	$3.7 \pm 0.2 \pm 0.1$
Flynn et al.	-	$3.47 \pm 0.29 \pm 0.03$
Ball \& Zwicky	LCSR	$3.5 \pm 0.4 \pm 0.1$
DKMMO	LCSR	$3.5 \pm 0.4 \pm 0.2 \pm 0.1$

LCSR: Intrisic limitations of the method, calculating more corrections not always helps to increase the accuracy
$V_{u b}$ determinations from $B \rightarrow \pi \ell \nu$

	$f_{B \pi}^{+}\left(q^{2}\right)$ calculation	$V_{u b} \times 10^{3}$
Okamoto et al.	lattice $\left(n_{f}=3\right)$	$3.78 \pm 0.25 \pm 0.52$
HPQCD	lattice $\left(n_{f}=3\right)$	$3.55 \pm 0.25 \pm 0.50$
Becher \& Hill	-	$3.7 \pm 0.2 \pm 0.1$
Flynn et al.	-	$3.47 \pm 0.29 \pm 0.03$
Ball \& Zwicky	LCSR	$3.5 \pm 0.4 \pm 0.1$
DKMMO	LCSR	$3.5 \pm 0.4 \pm 0.2 \pm 0.1$

LCSR: Intrisic limitations of the method, calculating more corrections not always helps to increase the accuracy 10-15\% ceiling?
$V_{u b}$ determinations from $B \rightarrow \pi \ell \nu$

	$f_{B \pi}^{+}\left(q^{2}\right)$ calculation	$V_{u b} \times 10^{3}$
Okamoto et al.	lattice $\left(n_{f}=3\right)$	$3.78 \pm 0.25 \pm 0.52$
HPQCD	lattice $\left(n_{f}=3\right)$	$3.55 \pm 0.25 \pm 0.50$
Becher \& Hill	-	$3.7 \pm 0.2 \pm 0.1$
Flynn et al.	-	$3.47 \pm 0.29 \pm 0.03$
Ball \& Zwicky	LCSR	$3.5 \pm 0.4 \pm 0.1$
DKMMO	LCSR	$3.5 \pm 0.4 \pm 0.2 \pm 0.1$

LCSR: Intrisic limitations of the method, calculating more corrections not always helps to increase the accuracy 10-15\% ceiling?

Lattices: the first-principle approach to formulate a field theory
$V_{u b}$ determinations from $B \rightarrow \pi \ell \nu$

	$f_{B \pi}^{+}\left(q^{2}\right)$ calculation	$V_{u b} \times 10^{3}$
Okamoto et al.	lattice $\left(n_{f}=3\right)$	$3.78 \pm 0.25 \pm 0.52$
HPQCD	lattice $\left(n_{f}=3\right)$	$3.55 \pm 0.25 \pm 0.50$
Becher \& Hill	-	$3.7 \pm 0.2 \pm 0.1$
Flynn et al.	-	$3.47 \pm 0.29 \pm 0.03$
Ball \& Zwicky	LCSR	$3.5 \pm 0.4 \pm 0.1$
DKMMO	LCSR	$3.5 \pm 0.4 \pm 0.2 \pm 0.1$

LCSR: Intrisic limitations of the method, calculating more corrections not always helps to increase the accuracy 10-15\% ceiling?

Lattices: the first-principle approach to formulate a field theory... however nobody can directly calculate the functional integral there either analytically or numerically
$V_{u b}$ determinations from $B \rightarrow \pi \ell \nu$

	$f_{B \pi}^{+}\left(q^{2}\right)$ calculation	$V_{u b} \times 10^{3}$
Okamoto et al.	lattice $\left(n_{f}=3\right)$	$3.78 \pm 0.25 \pm 0.52$
HPQCD	lattice $\left(n_{f}=3\right)$	$3.55 \pm 0.25 \pm 0.50$
Becher \& Hill	-	$3.7 \pm 0.2 \pm 0.1$
Flynn et al.	-	$3.47 \pm 0.29 \pm 0.03$
Ball \& Zwicky	LCSR	$3.5 \pm 0.4 \pm 0.1$
DKMMO	LCSR	$3.5 \pm 0.4 \pm 0.2 \pm 0.1$

LCSR: Intrisic limitations of the method, calculating more corrections not always helps to increase the accuracy 10-15\% ceiling?

Lattices: the first-principle approach to formulate a field theory... however nobody can directly calculate the functional integral there either analytically or numerically

In many instances the accuracy is being learned

Inclusive $V_{u b}$

Extract $V_{u b}$ from $\Gamma_{\text {sl }}(b \rightarrow u)$
Theory uncertainties per se have been a few \% already for a decade (6\% N.U. 1999)

Inclusive $V_{u b}$

Extract $V_{u b}$ from $\Gamma_{\text {sl }}(b \rightarrow u)$
Theory uncertainties per se have been a few \% already for a decade (6\% N.U. 1999)
they can further be reduced, e.g.

$$
\int \mathrm{d} q^{2} \frac{\mathrm{~d} \Gamma_{\mathrm{sl}}(b \rightarrow u)}{\mathrm{d} q^{2}} \propto\left|V_{u b}\right|^{2} m_{b}^{5}
$$

Inclusive $V_{u b}$

Extract $V_{u b}$ from $\Gamma_{\mathrm{sl}}(b \rightarrow u)$
Theory uncertainties per se have been a few \% already for a decade (6\% N.U. 1999)
they can further be reduced, e.g.

$$
\int_{1 \mathrm{GeV}^{2}}^{5 \mathrm{GeV}^{2}} \underset{\mathrm{~d} q^{2}}{\mathrm{~d} \Gamma_{\mathrm{sl}}(b \rightarrow u)} \underset{\mathrm{d} q^{2}}{ } \propto\left|V_{u b}\right|^{2} m_{b}^{\mathrm{K} 3}
$$

Inclusive $V_{u b}$

Extract $V_{u b}$ from $\Gamma_{\text {sl }}(b \rightarrow u)$
Theory uncertainties per se have been a few \% already for a decade (6\% N.U. 1999)
they can further be reduced, e.g.

$$
\int_{1 \mathrm{GeV}^{2}}^{5 \mathrm{GeV}^{2}} \underset{\mathrm{~d} q^{2}}{\mathrm{~d} \Gamma_{\mathrm{sl}}(b \rightarrow u)} \underset{\mathrm{d} q^{2}}{\left|V_{u b}\right|^{2} m_{b}^{\mathbb{K} 3},{ }^{2} .}
$$

Problem: $b \rightarrow c$ background

Inclusive $V_{u b}$

Extract $V_{u b}$ from $\Gamma_{\text {sl }}(b \rightarrow u)$
Theory uncertainties per se have been a few \% already for a decade (6\% N.U. 1999)
they can further be reduced, e.g.

$$
\int_{1 \mathrm{GeV}^{2}}^{5 \mathrm{GeV}^{2}} \frac{\mathrm{~d} \Gamma^{2}(b \rightarrow u)}{\mathrm{d} q^{2}} \propto\left|V_{u b}\right|^{2} m_{b}^{\mathrm{K} 3}
$$

Problem: $b \rightarrow c$ background, need to discriminate without secondary vertexing

Inclusive $V_{u b}$

Extract $V_{u b}$ from $\Gamma_{\text {sl }}(b \rightarrow u)$
Theory uncertainties per se have been a few \% already for a decade they can further be reduced, e.g.

Problem: $b \rightarrow c$ background, need to discriminate without secondary vertexing
Lower cut on E_{ℓ} at around 2.3 GeV is the oldest, since mid 1980 s

Inclusive $V_{u b}$

Extract $V_{u b}$ from $\Gamma_{\text {sl }}(b \rightarrow u)$
Theory uncertainties per se have been a few \% already for a decade they can further be reduced, e.g.

Problem: $b \rightarrow c$ background, need to discriminate without secondary vertexing
Lower cut on E_{ℓ} at around 2.3 GeV is the oldest, since mid 1980 s
Cut on M_{X}^{2} is the most direct/efficient discriminator

Inclusive $V_{u b}$

Extract $V_{u b}$ from $\Gamma_{s l}(b \rightarrow u)$
Theory uncertainties per se have been a few \% already for a decade
they can further be reduced, e.g.

$$
\int_{1 \mathrm{GeV}^{2}}^{5 \mathrm{GeV}^{2}} q^{2} \frac{\mathrm{~d} \Gamma_{\mathrm{sl}}(b \rightarrow u)}{\mathrm{d} q^{2}} \propto\left|V_{u b}\right|^{2} m_{b}^{\mathrm{K} 3}
$$

Problem: $b \rightarrow c$ background, need to discriminate without secondary vertexing
Lower cut on E_{ℓ} at around 2.3 GeV is the oldest, since mid 1980s
Cut on M_{X}^{2} is the most direct/efficient discriminator the actual advantage is dictated by experimental capabilities!

A whole lot of hybrids is discussed: $E_{x}, E_{x}-\left|\vec{P}_{x}\right|, \ldots$

Inclusive $V_{u b}$

Extract $V_{u b}$ from $\Gamma_{s l}(b \rightarrow u)$
Theory uncertainties per se have been a few \% already for a decade they can further be reduced, e.g.

$$
\int_{1 \mathrm{GeV}^{2}}^{5 \mathrm{GeV}^{2}} \frac{\mathrm{~d} \Gamma_{\mathrm{sl}}(b \rightarrow u)}{\mathrm{d} q^{2}} \propto\left|V_{u b}\right|^{2} m_{b}^{\mathrm{K}}
$$

Problem: $b \rightarrow c$ background, need to discriminate without secondary vertexing
Lower cut on E_{ℓ} at around 2.3 GeV is the oldest, since mid 1980s
Cut on M_{X}^{2} is the most direct/efficient discriminator the actual advantage is dictated by experimental capabilities!

$$
\text { A whole lot of hybrids is discussed: } E_{x}, E_{X}-\left|\vec{P}_{x}\right|, \ldots
$$

There is no reason to have a cut on a single variable, can introduce a domain in $\left\{q^{2}, q_{0}\right\} \Longleftrightarrow\left\{M_{X},|\vec{q}|\right\}$

Rule of thumb:

More inclusive rates are better controlled theoretically
'Distance' in q_{0} to the free-quark kinematics defines the OPE expansion parameter

Rule of thumb:
More inclusive rates are better controlled theoretically
'Distance' in q_{0} to the free-quark kinematics defines the OPE expansion parameter
at limited $\{$ At large recoil $|\vec{q}|$ significant Fermi motion effects
$q_{0} \quad \quad$ At small $|\vec{q}|$ all sorts of nonperturbative effects emerge

Rule of thumb:
More inclusive rates are better controlled theoretically
'Distance' in q_{0} to the free-quark kinematics defines the OPE expansion parameter
at limited $\{$ At large recoil $|\vec{q}|$ significant Fermi motion effects $q_{0} \quad\{$ At small $|\vec{q}|$ all sorts of nonperturbative effects emerge

Fermi motion: we know how to deal with

Rule of thumb:
More inclusive rates are better controlled theoretically
'Distance' in q_{0} to the free-quark kinematics defines the OPE expansion parameter
at limited $\{$ At large recoil $|\vec{q}|$ significant Fermi motion effects $q_{0} \quad\{$ At small $|\vec{q}|$ all sorts of nonperturbative effects emerge

Fermi motion: we know how to deal with
Trying to get rid of FM by cut on q^{2} brings various nonperturbative effects since hardness becomes like in D decays; exemplified by WA

Rule of thumb:
More inclusive rates are better controlled theoretically
'Distance' in q_{0} to the free-quark kinematics defines the OPE expansion parameter
at limited $\{$ At large recoil $|\vec{q}|$ significant Fermi motion effects $q_{0} \quad$ At small $|\vec{q}|$ all sorts of nonperturbative effects emerge

Fermi motion: we know how to deal with
Trying to get rid of FM by cut on q^{2} brings various nonperturbative effects since hardness becomes like in D decays; exemplified by WA

OPE suggests excluding large q^{2} from the domain to calculate

Advantage of the cut over P_{+}?

Advantage of the cut over P_{+}? I doubt. The universality with $b \rightarrow s+\gamma$ holds to the same extent as the universality allowing to translate the distribution to arbitrary light-cone kinematics

Strategy:

- Deemphasize large q^{2}
- Impose cuts on $\left\{M_{X}, q^{2}\right\}$ to balance experimental selectivity and efficiency with the theory accuracy

Dealing with Fermi motion:

Earlier strategy from the 1990s: relate $b \rightarrow u$ distributions to $b \rightarrow s+\gamma$ relying on the FM universality

Large $1 / m$ corrections

Dealing with Fermi motion:

Earlier strategy from the 1990s: relate $b \rightarrow u$ distributions to $b \rightarrow s+\gamma$ relying on the FM universality

Large $1 / m$ corrections, the actual scale parameter is $m_{b}-\sqrt{q^{2}}$, can fall low

Dealing with Fermi motion:

Earlier strategy from the 1990s: relate $b \rightarrow u$ distributions to $b \rightarrow s+\gamma$ relying on the FM universality

Large $1 / m$ corrections, the actual scale parameter is $m_{b}-\sqrt{q^{2}}$, can fall low
We can predict essentials of the $b \rightarrow s+\gamma$ distribution more accurately from $b \rightarrow c \ell \nu$ moments applying the OPE than it is measured

Benson et al. 2004

Dealing with Fermi motion:

Earlier strategy from the 1990s: relate $b \rightarrow u$ distributions to $b \rightarrow s+\gamma$ relying on the FM universality

Large $1 / m$ corrections, the actual scale parameter is $m_{b}-\sqrt{q^{2}}$, can fall low
We can predict essentials of the $b \rightarrow s+\gamma$ distribution more accurately from $b \rightarrow c \ell \nu$ moments applying the OPE than it is measured

Benson et al. 2004

New strategy: Make the full use of the OPE with the information from $b \rightarrow c \ell \nu$

Dealing with Fermi motion:

Earlier strategy from the 1990s: relate $b \rightarrow u$ distributions to $b \rightarrow s+\gamma$ relying on the FM universality
Large $1 / m$ corrections, the actual scale parameter is $m_{b}-\sqrt{q^{2}}$, can fall low
We can predict essentials of the $b \rightarrow s+\gamma$ distribution more accurately from $b \rightarrow c \ell \nu$ moments applying the OPE than it is measured

New strategy: Make the full use of the OPE with the information from $b \rightarrow c \ell \nu$

Need the OPE-compatible inclusive $b \rightarrow u \ell \nu$ generator utilizing the QCD constraints from $b \rightarrow c \ell \nu$

Gambino, Giordano, Ossola, N.U. (2006) - emphasis on these points

Dealing with Fermi motion:

Earlier strategy from the 1990s: relate $b \rightarrow u$ distributions to $b \rightarrow s+\gamma$ relying on the FM universality
Large $1 / m$ corrections, the actual scale parameter is $m_{b}-\sqrt{q^{2}}$, can fall low
We can predict essentials of the $b \rightarrow s+\gamma$ distribution more accurately from $b \rightarrow c \ell \nu$ moments applying the OPE than it is measured

Benson et al. 2004

New strategy: Make the full use of the OPE with the information from $b \rightarrow c \ell \nu$

Need the OPE-compatible inclusive $b \rightarrow u \ell \nu$ generator utilizing the QCD constraints from $b \rightarrow c \ell \nu$

Gambino, Giordano, Ossola, N.U. (2006) - emphasis on these points
The same idea drives the later approach by Lange et al.

Gambino et al.:

- $1 / m^{k}$ corrections are included into Fermi Motion without additional model-dependence
- WA is allowed for
- All the known constraints provided by the OPE from $b \rightarrow c \ell \nu$ $(b \rightarrow s+\gamma)$ are incorporated
- Make use of natural physics constraints like positivity
- Use Wilsonian version of the OPE, results in stable perturbation theory
- Open for all sorts of improvement

Gambino et al.:

- $1 / m^{k}$ corrections are included into Fermi Motion without additional model-dependence
- WA is allowed for
- All the known constraints provided by the OPE from $b \rightarrow c \neq \nu$ ($b \rightarrow s+\gamma$) are incorporated
- Make use of natural physics constraints like positivity
- Use Wilsonian version of the OPE, results in stable perturbation theory
- Open for all sorts of improvement

Presently account for power terms through $1 / m_{b}^{3}$; perturbation theory (fixed-order) α_{s}^{1} and second-order BLM
BLM to any order is readily done

Gambino et al.:

- $1 / m^{k}$ corrections are included into Fermi Motion without additional model-dependence
- WA is allowed for
- All the known constraints provided by the OPE from $b \rightarrow c \neq \nu$ ($b \rightarrow s+\gamma$) are incorporated
- Make use of natural physics constraints like positivity
- Use Wilsonian version of the OPE, results in stable perturbation theory
- Open for all sorts of improvement

Presently account for power terms through $1 / m_{b}^{3}$; perturbation theory (fixed-order) α_{s}^{1} and second-order BLM
BLM to any order is readily done
Log resummation is misleading in the problem

Gambino et al.:

- $1 / m^{k}$ corrections are included into Fermi Motion without additional model-dependence
- WA is allowed for
- All the known constraints provided by the OPE from $b \rightarrow c \ell \nu$ $(b \rightarrow s+\gamma)$ are incorporated
- Make use of natural physics constraints like positivity
- Use Wilsonian version of the OPE, results in stable perturbation theory
- Open for all sorts of improvement

Presently account for power terms through $1 / m_{b}^{3}$; perturbation theory (fixed-order) α_{s}^{1} and second-order BLM
BLM to any order is readily done
Log resummation is misleading in the problem
Generate rate/moments over arbitrary kinematic domain, however differential rates over certain regions are model-dependent and not to be taken literally

HFAG preliminary:

$\left|V_{u b}\right|=\left(3.94 \pm 0.15_{-0.23}^{+0.20}\right) \cdot 10^{-3}$
Not fully explored yet

HFAG preliminary:

$$
\left|V_{u b}\right|=\left(3.94 \pm 0.15_{-0.23}^{+0.20}\right) \cdot 10^{-3}
$$

Not fully explored yet
The largest source of uncertainties are the values of the heavy quark parameters ($\pm 4 \%$) and the size of WA $(-3 \%$ to 0$)$

HFAG preliminary:

$$
\left|V_{u b}\right|=\left(3.94 \pm 0.15_{-0.23}^{+0.20}\right) \cdot 10^{-3}
$$

Not fully explored yet
The largest source of uncertainties are the values of the heavy quark parameters ($\pm 4 \%$) and the size of WA $(-3 \%$ to 0$)$

Functional form of the distribution function is estimated to yield only about 1% variation

HFAG preliminary:

$$
\left|V_{u b}\right|=\left(3.94 \pm 0.15_{-0.23}^{+0.20}\right) \cdot 10^{-3}
$$

Not fully explored yet
The largest source of uncertainties are the values of the heavy quark parameters ($\pm 4 \%$) and the size of WA (-3% to 0)
Functional form of the distribution function is estimated to yield only about 1% variation

There is an evidence for discrepancy between high- and low- q^{2} data, which signals importance of WA

HFAG preliminary:

$$
\left|V_{u b}\right|=\left(3.94 \pm 0.15_{-0.23}^{+0.20}\right) \cdot 10^{-3}
$$

Not fully explored yet
The largest source of uncertainties are the values of the heavy quark parameters ($\pm 4 \%$) and the size of WA (-3% to 0)
Functional form of the distribution function is estimated to yield only about 1% variation

There is an evidence for discrepancy between high- and low- q^{2} data, which signals importance of WA

May lower $V_{u b}$ by about 5\%

All methods:

| HFAG Ave. (BLNP) |
| :--- | :--- | :--- |
| $3.99 \pm 0.14+0.32-0.27$ |
| HFAG Ave. (DGE) |
| $4.48 \pm 0.16+0.25-0.26$ |
| HFAG Ave. (GGOU) |
| $3.94 \pm 0.15+0.20-0.23$ |
| HFAG Ave. (AC) |
| $3.78 \pm 0.13 \pm 0.24$ |
| HFAG Ave. (BLL) |
| $4.92 \pm 0.24 \pm 0.38$ |
| BABAR (LLR) |
| $4.92 \pm 0.32 \pm 0.36$ |
| BABAR endpoint (LLR) |
| $4.28 \pm 0.29 \pm 0.48$ |
| BABAR endpoint (LNP) |
| $4.40 \pm 0.30 \pm 0.47$ |

All methods:

The more robust approaches with adequate theory descriptions seem to provide the stable result for $V_{u b}$

