

- Introduction
- Currently: sizable NP contributions still allowed
- ullet Some key probes at LHCb and super-(KEK)B
- ullet High- p_T flavor physics
- Conclusions

I suppose, we all want to know...

• The question:

$$\mathcal{L} = ?$$

"Everything should be made as simple as possible, but not simpler" A. Einstein

... what are the elementary degrees of freedom and how they interact?

- Empirical evidence that SM is incomplete:
 - Baryon asymmetry
 - Dark matter
 - Neutrino mass
 - Dark energy

Spectacular track record

- ullet Flavor physics was crucial to figure out $\mathcal{L}_{\mathrm{SM}}$:
 - β -decay predicted neutrino (Pauli)
 - Absence of $K_L \to \mu\mu$ predicted charm (GIM)
 - ϵ_K predicted 3rd generation (KM)
 - Δm_K predicted m_c (GL)
 - Δm_B predicted large m_t
- Flavor physics is likely to be crucial to figure out \mathcal{L}_{LHC} : strong constraints already If there is NP at the TEV scale, it must have a very special flavor & CP structure

Why is flavor physics interesting?

- SM flavor problem: hierarchy of masses and mixing angles; why ν 's are different
- NP flavor problem: TeV scale (hierarchy problem)
 ≪ flavor & CPV scale

$$\epsilon_K: \frac{(s\bar{d})^2}{\Lambda^2} \Rightarrow \Lambda \gtrsim 10^4 \,\mathrm{TeV}, \quad \Delta m_B: \frac{(b\bar{d})^2}{\Lambda^2} \Rightarrow \Lambda \gtrsim 10^3 \,\mathrm{TeV}, \quad \Delta m_{Bs}: \frac{(b\bar{s})^2}{\Lambda^2} \Rightarrow \Lambda \gtrsim 10^2 \,\mathrm{TeV}$$

- Almost all extensions of the SM have new sources of CPV & flavor conversion
- A major constraint for model building
- The observed baryon asymmetry of the Universe requires CPV beyond the SM Not necessarily in flavor changing processes, nor necessarily in quark sector Flavor suppression destroys KM baryogenesis; flavor matters for leptogenesis
- Flavor sector has only been tested at the 10% level and can be done a lot better Many NP models proposed to solve the hierarchy puzzle have observable effects

SUSY in $K^0 - \overline{K}^0$ mixing (oversimplified)

•
$$\frac{(\Delta m_K)^{\text{SUSY}}}{(\Delta m_K)^{\text{exp}}} \sim 10^4 \left(\frac{1 \text{ TeV}}{\tilde{m}}\right)^2 \left(\frac{\Delta \tilde{m}_{12}^2}{\tilde{m}^2}\right)^2 \text{Re}\left[(K_L^d)_{12}(K_R^d)_{12}\right]$$

 $K^d_{L(R)}$: mixing in gluino couplings to left-(right-)handed down quarks and squarks

For
$$\epsilon_K$$
, replace: $10^4 \, \text{Re} \left[(K_L^d)_{12} (K_R^d)_{12} \right] \Rightarrow 10^6 \, \text{Im} \left[(K_L^d)_{12} (K_R^d)_{12} \right]$

- Classes of models to suppress each factors
 - (i) Heavy squarks: $\tilde{m} \gg 1 \, \mathrm{TeV}$ (e.g., split SUSY)
 - (ii) Universality: $\Delta m_{\tilde{Q},\tilde{D}}^2 \ll \tilde{m}^2$ (e.g., gauge mediation)
 - (iii) Alignment: $|(K_{L,R}^d)_{12}| \ll 1$ (e.g., horizontal symmetries)
- All SUSY models incorporate some of the above
- Last year, BaBar & Belle Δm_D results ruled out alignment as the sole explanation

The name of the game in the LHC era

- The question has been who sees NP first; once it's seen, how to understand it?
 [Assume the LHC sees more than a Higgs ...]
- Concentrate on flavor physics topics where sensitivity can improve significantly (by an order of magnitude, or at least a factor of many)
 - Skip $B \to X_s \gamma$ rate, near "hitting the theory wall" (best bound on many models)
 - ... some tension between $\sin 2\beta$ and $|V_{ub}|$

[emphasized, e.g., by UTfit]

... some tension between LQCD f_{D_s} and $D_s^+ \to \ell^+ \nu$

[Dobrescu & Kronfeld, arXiv:0803.0512]

- Many measurements with complementary sensitivity will improve a lot
- If all flavor effects <1% in your favorite model (what is it?), I'll have little to say
- Lack of a "flavor theory" there isn't an obviously right / natural way for TeV-scale
 NP to duplicate GIM and CKM suppressions

Where are we now?

The standard model CKM fit

- Very impressive accomplishment
- The level of agreement between the various measurements is often misinterpreted
- Plausible TeV scale NP scenarios, consistent with all low energy data, w/o minimal flavor violation (MFV)
- CKM is inevitable; the question is not if it's correct, but is it sufficient?

New Physics in FCNC processes

Mixing

Simple parameterization for each neutral meson: $M_{12} = M_{12}^{\rm SM} (1 + he^{2i\sigma})$

Penguin decays

Many operators for $b \rightarrow s$ transitions — no simple parameterization of NP

- ullet $V_{td,\,ts}$ only measurable in loops; likely also subleading couplings of new particles
- Isolating modest NP contributions requires many measurements
 Compare NP-independent (tree) with NP-dependent (loop) processes

Overconstraining the standard model

Consistent determinations from subsets of measurements ⇒ bound extra terms

Constraining new physics in B^0 – \overline{B}^0 mixing

 Overconstraining ("redundant") measurements are crucial to bound new physics

Simple parameterization for each neutral meson: $M_{12} = M_{12}^{\rm SM} \left(1 + h_d e^{2i\sigma_d}\right)$

non-SM terms not yet bound to be << SM

What we really ask: is $\Lambda_{\rm flavor} \gg \Lambda_{\rm EWSB}$?

Need a lot more data to be able to test if:

 $\mathsf{NP} \ll \mathsf{SM} \; \mathsf{unless} \; \sigma_d = 0 \; (\mathsf{mod} \; \pi/2)$

ightharpoonup 10-20% non-SM contributions to most loop-mediated transitions are still possible

B_s mixing — Δm_s

 $lacktriangledown B^0_s$ oscillate 25 times on average before they decay — challenge to measure

Uncertainty $\sigma(\Delta m_s)=0.7\%$ is already smaller than $\sigma(\Delta m_d)=0.8\%$

Largest uncertainty:
$$\xi = \frac{f_{B_s}\sqrt{B_s}}{f_{B_d}\sqrt{B_d}}$$

Lattice QCD: $\xi = 1.24 \pm 0.04 \pm 0.06$

B_s mixing: CP violation in $S_{\psi\phi}$ and $2eta_s$

• Next key measurement: time dep. CP asymmetry in $B_s \to \psi \phi$ (as clean as $\sin 2\beta$)

In the SM: $\beta_s = \arg(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*) = 0.019 \pm 0.001$

CDF & DØ disfavor large negative values:

The B_s "squashed" UT:

Averag complicated due to different assumptions; should be available soon

The D meson system

- Complementary to K, B: CPV, FCNC both GIM & CKM suppressed \Rightarrow tiny in SM
 - 2007: signal for mixing $> 5\sigma$ [HFAG combination]
 - Only meson mixing generated by down-type quarks (SUSY: up-type squarks)
 - SM suppression: Δm_D , $\Delta \Gamma_D \lesssim 10^{-2} \, \Gamma$, since doubly-Cabibbo-suppressed and vanish in flavor SU(3) limit
 - CPV (mixing or direct) $> 10^{-3}$ would be sign of NP

The old/new $B o K\pi$ puzzle

Q: Have we seen new physics in CPV?

$$A_{K^+\pi^-} = -0.097 \pm 0.012 \quad (P+T)$$

$$A_{K^+\pi^0} = 0.050 \pm 0.025 \ (P + T + C + A + P_{ew})$$

What is the reason for large difference?

$$A_{K^{+}\pi^{0}} - A_{K^{+}\pi^{-}} = 0.147 \pm 0.028 \ \ (> 5\sigma)$$

(Annihilation not shown) [Belle, Nature 452, 332 (2008)]

SCET / factorization predicts: $\arg{(C/T)} = \mathcal{O}(\Lambda_{\rm QCD}/m_b)$ and $A + P_{ew}$ small

- \bullet A: huge fluctuation, breakdown of 1/m exp., missing something subtle, new phys.
- No similarly transparent problem with branching ratios, e.g., Lipkin sum rule looks

$$2\,\frac{\bar{\Gamma}(B^-\to\pi^0K^-)+\bar{\Gamma}(\overline{B}^0\to\pi^0\overline{K}^0)}{\bar{\Gamma}(B^-\to\pi^-\overline{K}^0)+\bar{\Gamma}(\overline{B}^0\to\pi^+K^-)}=1.07\pm0.05\qquad\text{(should be near 1)}$$

Summary — current status

- The SM flavor sector has been tested with impressive & increasing precision
 KM phase is the dominant source of CP violation in flavor changing processes
- Measurements probe scales $\gg 1 \, \mathrm{TeV}$; sensitivity limited by statistics, not theory
- New physics in most FCNC processes may still be $\gtrsim 10\%$ of the SM contributions
- Few hints of discrepancies; need more data and/or improved theory to resolve
- Great synergy between theoretical and experimental developments to learn both about electroweak and strong interactions

Forthcoming progress

Physics goals for LHCb & super-(KEK)B

- Hopefully the LHC will discover new particles; some subleading couplings probably not measurable directly (we know V_{td} & V_{ts} from B and not t decays)
- In many models: large $m_t\Rightarrow$ non-universal coupling to EWSB and NP sector ls the physics of 3rd–1st, 3rd–2nd, and 2nd–1st generation transitions the same?
- If no NP is seen in flavor sector, similar constraints as LEP tests of gauge sector
- If non-SM flavor physics is seen, try to distinguish between classes of models:
 - One / many sources of CPV?
 - In charged / neutral current interactions?
 - Modify SM operators / new operators?
 - Couples to up / down sector?
 - 3rd / all generations? $\Delta F = 2$ and / or 1?
 - Only to quarks / leptons?

Many interesting probes

$\sin 2\beta_{\rm eff}$, α , γ — large improvements possible

• Need both LHCb and e^+e^- super B factory

Some LHCb highlights

After Δm_s measurement, large NP contribution to B_s^0 mixing is still allowed

[ZL, Papucci, Perez, hep-ph/0604112]

LHCb will probe B_s sector at a level comparable to B_d

- $B_s \to \mu^+ \mu^- (\propto \tan^6 \beta)$, search for $B_d \to \mu^+ \mu^-$, other rare / forbidden decays
- 10^{4-5} events in $B \to K^{(*)}\ell^+\ell^-$, $B_s \to \phi\gamma$, ... test Dirac structure, BSM op's
- γ from $B_s \to D_s^{\pm} K^{\mp}$ and other modes, α from $\rho\pi$ (probably super-(KEK)B wins)
- Precisely measure τ_{Λ_b} affects how much we trust $\Delta\Gamma_{B_s}$ calculation, etc.

Rare (semi)leptonic FCNC B decays

Important probes of new physics

- $-B \rightarrow X_s \gamma$: Best $m_{H^{\pm}}$ limits in 2HDM in SUSY many parameters
- $-B \rightarrow X_s \ell^+ \ell^-$ or $K^{(*)} \ell^+ \ell^-$: bsZ penguins, SUSY, right handed couplings

A crude guide $(\ell = e \text{ or } \mu)$

Decay	$\sim\!$ SM rate	physics examples		
$B \to s \gamma$	3×10^{-4}	$ V_{ts} ,H^\pm,SUSY$		
B o au u	1×10^{-4}	$f_B V_{ub} ,H^\pm$		
$B \to s \nu \nu$	4×10^{-5}	new physics		
$B \to s \ell^+ \ell^-$	6×10^{-6}	new physics		
$B_s o au^+ au^-$	1×10^{-6}	\downarrow		
$B \to s \tau^+ \tau^-$	5×10^{-7}			
$B \to \mu \nu$	5×10^{-7}			
$B_s \to \mu^+ \mu^-$	4×10^{-9}			
$B \to \mu^+ \mu^-$	2×10^{-10}			

Replacing $b \to s$ by $b \to d$ costs a factor ~ 20 (in SM); interesting to test in both: rates, CP asymmetries, etc.

In $B \to q \, l_1 \, l_2$ decays expect 10–20% K^*/ρ , and 5–10% K/π (model dept)

Many interesting modes will first be seen at LHCb and/or super-(KEK)B

Some of the theoretically cleanest $(\nu, \tau, \text{ inclusive})$ only possible at e^+e^-

Skipping $\mu ightarrow e \gamma$ and $K ightarrow \pi u ar{ u}$

• $\mu \rightarrow e\gamma$: MEG (PSI) sensitivity to $\sim 10^{-13}$

 $\mu N \rightarrow e N$: PRISM/PRIME (J-PARC) sensitivity to $\sim 10^{-17}$ (and maybe project-X)

• $K \to \pi \nu \overline{\nu}$: Theoretically clean, but small rates $\mathcal{B} \sim 10^{-10} (K^{\pm}), 10^{-11} (K_L)$

$$\mathcal{A} \propto \begin{cases} (\lambda^5 \, m_t^2) + i (\lambda^5 \, m_t^2) & t : \mathsf{CKM} \ \mathsf{suppressed} \\ (\lambda \, m_c^2) + i (\lambda^5 \, m_c^2) & c : \mathsf{GIM} \ \mathsf{suppressed} \\ (\lambda \, \Lambda_{\mathrm{QCD}}^2) & u : \mathsf{GIM} \ \mathsf{suppressed} \end{cases} \qquad \begin{matrix} \overset{s}{\searrow} & \overset{s}{\searrow} & \overset{s}{\searrow} & \overset{s}{\searrow} & \overset{s}{\swarrow} & \overset{s}{\swarrow}$$

So far 3 events:
$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (1.47^{+1.30}_{-0.89}) \times 10^{-10}$$

[BNL E787/E949]

Need more statistics for precision tests (rates also $\propto A^4 \sim |V_{cb}|^4$)

Proposals: CERN NA62: $K^+ \rightarrow \pi^+ \nu \bar{\nu} \sim 60$ events/yr, 2011–2013

FNAL: get about a thousand (few hundred) events with(out) project-X

KEK E391a & J-PARC E14

Lepton flavor violation (in τ decays)

• $\mu \to e \gamma$ vs. $\tau \to \mu \gamma$ (few $\times 10^{-9}$)

Very large model dependence $\mathcal{B}(\tau \to \mu \gamma)/\mathcal{B}(\mu \to e \gamma) \sim 10^{3\pm2}$

In many models best bet is $\mu \to e\gamma$, but there are many exceptions

•
$$\tau^- \to \ell_1^- \ell_2^- \ell_3^+$$
 (few $\times 10^{-10}$) vs. $\tau \to \mu \gamma$

Consider operators:
$$\bar{\tau}_R \sigma_{\alpha\beta} F^{\alpha\beta} \mu_L$$
, $(\bar{\tau}_L \gamma^{\alpha} \mu_L)(\bar{\mu}_L \gamma_{\alpha} \mu_L)$

Suppression by $\alpha_{\rm em}$ opposite in two cases \Rightarrow model dependent which process gives the best sensitivity

Super B sensitivity with $75\mathrm{ab}^{-1}$					
Process	Sensitivity				
$\mathcal{B}(au o \mu \gamma)$	2×10^{-9}				
$\mathcal{B}(au o e \gamma)$	2×10^{-9}				
$\mathcal{B}(au o \mu \mu \mu)$	2×10^{-10}				
$\mathcal{B}(au o eee)$	2×10^{-10}				

•
$$\mu \to e \gamma$$
 and $(g-2)_{\mu}$ operators are very similar: $\frac{m_{\mu}}{\Lambda^2} \bar{\mu} \sigma_{\alpha\beta} F^{\alpha\beta} e$, $\frac{m_{\mu}}{\Lambda^2} \bar{\mu} \sigma_{\alpha\beta} F^{\alpha\beta} \mu$
If coefficients comparable, $\mu \to e \gamma$ gives much stronger bound
If $(g-2)_{\mu}$ is due to NP, large hierarchy of coefficients (\Rightarrow model building lessons)

Flavor @ high p_T

The LHC will be a top quark factory

- Flavor violation in top decays not well explored SM $\sim 10^{-13}$, current bound $> 10^{-2}$ [CDF, 0805.2109]
- Observable top FCNC possible in extensions of the SM and still allowed by B factory constraints

[Fox et al., 0704.1482; Botella et al., 0805.3995; etc.]

• LHC: $1\,t\bar{t}$ pair / sec ($\sigma_{t\bar{t}}\sim 800\,\mathrm{pb}$)

Improve bounds on FCNC top decays by $> 10^3$

channel	$t \to Zu(c)$	$t \to \gamma u(c)$	t o gu(c)		
			(3 jets)	(4 jets)	(combined)
upper limit on BR $(L = 10 \text{ fb}^{-1})$	3.4×10^{-4}	6.6×10^{-5}	1.7×10^{-3}	2.5×10^{-3}	1.4×10^{-3}
upper limit on BR $(L = 100 \text{ fb}^{-1})$	6.5×10^{-5}	1.8×10^{-5}	5.0×10^{-4}	8.0×10^{-4}	4.3×10^{-4}

[Carvalho, Castro, Onofre, Veloso, ATLAS note, 2005]

Probe FCNC top decays down to a few $\times 10^{-5}$

ullet If top FCNC seen, LHC & B factories together can probe the NP responsible for it

Constraints on top FCNC operators

	C_{LL}^u	C^h_{LL}	C^w_{RL}	C_{RL}^b	C_{LR}^w	C_{LR}^b	C_{RR}^u
direct bound	9.0	9.0	6.3	6.3	6.3	6.3	9.0
LHC sensitivity	0.20	0.20	0.15	0.15	0.15	0.15	0.20
$B \to X_s \gamma, \ X_s \ell^+ \ell^-$	[-0.07, 0.036]	[-0.017, -0.01] $[-0.005, 0.003]$	[-0.09, 0.18]	[-0.12, 0.24]	[-14, 7]	[-10, 19]	90
$\Delta F = 2$	0.07	0.014	0.14		_	-	-
semileptonic	_	_	_	_	[0.3, 1.7]	_	_
best bound	0.07	0.014	0.15	0.24	1.7	6.3	9.0
Λ for $C_i = 1$ (min)	$3.9\mathrm{TeV}$	$8.3\mathrm{TeV}$	$2.6\mathrm{TeV}$	$2.0\mathrm{TeV}$	$0.8\mathrm{TeV}$	$0.4\mathrm{TeV}$	$0.3\mathrm{TeV}$
$\mathcal{B}(t \to cZ) \text{ (max)}$	7.1×10^{-6}	3.5×10^{-7}	3.4×10^{-5}	8.4×10^{-6}	4.5×10^{-3}	5.6×10^{-3}	0.14
$\mathcal{B}(t \to c\gamma) \text{ (max)}$	_	_	1.8×10^{-5}	4.8×10^{-5}	2.3×10^{-3}	3.2×10^{-2}	-
LHC Window	Closed*	Closed*	Ajar	Ajar	Open	Open	Open

[Fox, ZL, Papucci, Perez, Schwartz, arXiv:0704.1482]

- B factory data constrain some of the operators beyond the LHC reach
- ullet If top FCNC seen, LHC & B factories together can probe the NP responsible for it

Supersymmetry and flavor at the LHC

- After the LHC discovers new particles (and the champagne is gone):
 What are their properties: mass, decay modes, spin, production cross section?
- My prejudice: I hope the LHC will discover something unexpected
 Of the known scenarios I view supersymmetry as most interesting
 - How is supersymmetry broken?
 - How is SUSY breaking mediated to MSSM?
 - Predict soft SUSY breaking terms?
- Details of interactions of new particles with quarks and leptons will be important to understand underlying physics
- ullet Does flavor matter at ATLAS & CMS? Can we probe Sflavor directly at high p_T ?

Flavor effects at the TeV scale

- ullet Does flavor matter? Can we access flavor at high p_T ?
- Some flavor aspects of LHC:
 - $-p=g+u,d,s,c,b,ar{u},ar{d},ar{s},ar{c},ar{b}$ has flavor
 - Hard to bound flavor properties of new particles (e.g., $Z' \to b\bar{b}$ vs. $Z' \to b\bar{s}$?)
 - Little particle ID: b (displaced vertex), t (which p_T range?), and all the others
- Flavor data the LHC can give us:
 - Spectrum (degeneracies) which mass splittings can be probed?
 - Information on some (dominant?) decay widths
 - Production cross sections
- As in QCD, spectroscopy can give dynamical information

Detection of SUSY particles

- Long cascade decays, LSP undetected
- Reconstruct masses via kinematic endpoints
- Most experimental studies use reference points which set flavor (i.e., generation) off-diagonal rates to zero (and $\tilde{m}_1^2 = \tilde{m}_2^2 \neq \tilde{m}_3^2$)
- Some off-diagonal rates can still be 10-20% or more, consistent with all low energy data [E.g.: Hurth & Porod, hep-ph/0311075]

 $\widetilde{g} - \widetilde{q} - \widetilde{\chi}_{2}^{0} - \widetilde{l} - \widetilde{l}$ $\widetilde{g} - \widetilde{q} - \widetilde{\chi}_{2}^{0} - \widetilde{l} - \widetilde{l}$ $\widetilde{g} - \widetilde{q} - \widetilde{\chi}_{2}^{0} - \widetilde{l} - \widetilde{l}$

Flavor can complicate determination of sparticle masses from cascade decays ... can modify the discovery potential of some particles

Recent trends: (i) minimal flavor violation

MFV: a class of models which solves the NP flavor puzzle (GMSB, mSUGRA, ...)

[Chivukula & Georgi; Hall & Randall; D'Ambrosio, Giudice, Isidori, Strumia; Buras et al.]

Assume SM Yukawa interactions are the only source of flavor and CP violation (global symmetry... how weakly/strongly broken?)

- Spectra: $y_{u,d,s,c} \ll 1$, so first two generation squarks are quasi-degenerate Mixing: CKM \Rightarrow new particles decay to 3rd or non-3rd generation quarks, not both
- CKM and GIM (m_q) suppressions automatically occur as in the SM Even with MFV and TeV-scale NP, expect % level deviations from SM in B,D,K
- LHC data may rule out MFV or make it more plausible (so can LHCb & super-B)

Explicit models with extended particle content where LHC can test (rule out) MFV

[E.g.: Grossman, Nir, Thaler, Volansky, Zupan, arXiv:0706.1845]

Recent trends: (ii) flavorful SUSY models

- Emerging non-MFV models w/ interesting flavor structure, consistent with all data
 Many studies over the last year (and in progress), mostly based on SUSY
- "Dilute" (but not completely eliminate) SUSY flavor violation with
 - flavor blind SUSY breaking at a lower scale

[Feng et al.; Nomura, Papucci, Stolarski]

heavy Dirac gaugino masses (going beyond the MSSM)

[Kribs, Poppitz, Weiner]

- Emerging themes:
 - Viable model space ≫ often thought; sizable flavor non-universalities possible
 - Easier to tag lepton than quark flavor ⇒ slepton sflavor violation probably more accessible than squark sflavor violation
- Slepton spectrum and branching ratios may contain useful info on flavor physics

Final comments

Back to the beginning...

- Wanted to understand matter antimatter asymmetry
 The LHC may help (new particles, new CP violation)
- We hope to also understand what dark matter is
 Perfect candidate: lightest supersymmetric particle
- Neutrino mass: may gain insights to relation between (s)quark and (s)lepton flavor
- Dark energy: accelerating expansion discovered (1998) $\Lambda_{cc} \sim 10^{-29}\,\mathrm{g/cm^3} = 10^{-47}\,\mathrm{GeV^4} = 10^{-120}$ (Planck units)

The LHC won't directly address the cosmological constant problem, but it may tell us if we (mis)understand fine-tuning Is it a coincidence that $\Lambda_{cc} \sim (1\,{\rm TeV}^2/M_{\rm Pl})^4$?

Back to the beginning...

- Wanted to understand matter antimatter asymmetry
 The LHC may help (new particles, new CP violation)
- We hope to also understand what dark matter is
 Perfect candidate: lightest supersymmetric particle
- Neutrino mass: may gain insights to relation between (s)quark and (s)lepton flavor
- Dark energy: accelerating expansion discovered (1998) $\Lambda_{cc} \sim 10^{-29} \, \mathrm{g/cm^3} = 10^{-47} \, \mathrm{GeV^4} = 10^{-120} \, \text{(Planck units)}$

The LHC won't directly address the cosmological constant problem, but it may tell us if we (mis)understand fine-tuning

Is it a coincidence that $\Lambda_{cc} \sim (1 \, {\rm TeV}^2/M_{\rm Pl})^4$?

Is it going to be Heaven?

• Last two years' discoveries: 2006: $B_s^0 - \overline{B}_s^0$ mixing, 2007: $D^0 - \overline{D}^0$ mixing will they be followed by...

- Last two years' discoveries: 2006: $B^0_s \overline{B}^0_s$ mixing, 2007: $D^0 \overline{D}^0$ mixing will they be followed by...
 - Summer '08: CDF & DØ measure (no strong phase assumption): $2\beta_s = 0.9 \pm 0.3$

- Last two years' discoveries: 2006: $B_s^0 \overline{B}_s^0$ mixing, 2007: $D^0 \overline{D}^0$ mixing will they be followed by...
 - Summer '08: CDF & DØ measure (no strong phase assumption): $2\beta_s = 0.9 \pm 0.3$
 - Moriond '09: BaBar & Belle discover CP violation in $D^0 \overline{D}{}^0$ mixing

- Last two years' discoveries: 2006: $B_s^0 \overline{B}_s^0$ mixing, 2007: $D^0 \overline{D}^0$ mixing will they be followed by...
 - Summer '08: CDF & DØ measure (no strong phase assumption): $2\beta_s = 0.9 \pm 0.3$
 - Moriond '09: BaBar & Belle discover CP violation in $D^0 \overline{D}{}^0$ mixing
 - Summer '09: ATLAS & CMS: stat. insignificant, but peculiar events / accesses

- Last two years' discoveries: 2006: $B_s^0 \overline{B}_s^0$ mixing, 2007: $D^0 \overline{D}^0$ mixing will they be followed by...
 - Summer '08: CDF & DØ measure (no strong phase assumption): $2\beta_s = 0.9 \pm 0.3$
 - Moriond '09: BaBar & Belle discover CP violation in $D^0 \overline{D}{}^0$ mixing
 - Summer '09: ATLAS & CMS: stat. insignificant, but peculiar events / accesses
 - **–** Moriond 2010: LHCb discovers $\mathcal{B}(B_s \to \mu^+ \mu^-) = (1.2 \pm 0.3) \times 10^{-8}$

- Last two years' discoveries: 2006: $B_s^0 \overline{B}_s^0$ mixing, 2007: $D^0 \overline{D}^0$ mixing will they be followed by...
 - Summer '08: CDF & DØ measure (no strong phase assumption): $2\beta_s = 0.9 \pm 0.3$
 - Moriond '09: BaBar & Belle discover CP violation in $D^0 \overline{D}{}^0$ mixing
 - Summer '09: ATLAS & CMS: stat. insignificant, but peculiar events / accesses
 - **–** Moriond 2010: LHCb discovers $\mathcal{B}(B_s \to \mu^+ \mu^-) = (1.2 \pm 0.3) \times 10^{-8}$
 - Summer 2010: ATLAS & CMS: evidence for what appears like $\tilde{\mu}$ NLSP

- Last two years' discoveries: 2006: $B^0_s \overline{B}^0_s$ mixing, 2007: $D^0 \overline{D}^0$ mixing will they be followed by...
 - Summer '08: CDF & DØ measure (no strong phase assumption): $2\beta_s = 0.9 \pm 0.3$
 - Moriond '09: BaBar & Belle discover CP violation in $D^0 \overline{D}{}^0$ mixing
 - Summer '09: ATLAS & CMS: stat. insignificant, but peculiar events / accesses
 - **–** Moriond 2010: LHCb discovers $\mathcal{B}(B_s \to \mu^+ \mu^-) = (1.2 \pm 0.3) \times 10^{-8}$
 - Summer 2010: ATLAS & CMS: evidence for what appears like $\tilde{\mu}$ NLSP

... would settle for less

Conclusions

- Consistency of precision flavor measurements with SM is a problem for NP @ TeV
- Low energy tests will continue to improve in the next decade Sensitivity to lepton flavor violation will improve by 10-1000 in many channels
- If no NP signal is found in the flavor sector, constraints will give important clues to model building in the LHC era (similar to tests of the gauge sector at LEP)
- If new particles are discovered, their flavor properties can teach us about $\gg {
 m TeV}$ masses (degeneracies), decay rates (flavor decomposition), cross sections Will also make interpretation of low energy data a whole new game
- Interplay between direct & indirect probes of NP will provide important information
 - synergy in reconstructing the underlying theory (distinguish between models)
 - complementary coverage of param. space (subleading couplings, ≫TeV scales)

Backup slides

Hitchhiker's guide to recent flavor models

Models with hierarchical fermion wave functions yield partial alignment of NP flavor violation with Yukawas in down sector (NMFV, problems w/ ϵ_K)

[Agashe *et al.*, hep-ph/0509117; Bona *et al.*, arXiv:0707.0636]

Party in up sector? CPV in D mixing & decay, $D \to \pi \ell^+ \ell^-$, FCNC t decays, etc. e.g., RS [Agashe, Perez, Soni, hep-ph/0408134; Davidson, Isidori, Uhlig, arXiv:0711.3376; Csaki, Falkowski, Weiler, arXiv:0804.1954]

• Down-quark alignment 5D MFV \neq 4D MFV (more BSM in MFV than usual lore)

[Fitzpatrick, Perez, Randall, arXiv:0710.1869]

- Suppression from heavy Dirac-gauginos (gluinos) \Rightarrow OK with low energy observables (ϵ_K ?), still plenty of high- p_T flavor violation [Kribs, Poppitz, Weiner, arXiv:0712.2039]
- Allow for modest subleading flavor-non-universal contributions in a natural way;
 maybe easiest to discover in slepton flavor violation

[Feng et al., arXiv:0712.0674; Nomura, Papucci, Stolarski, arXiv:0712.2074]

Expect more on lepton flavor models

[Cirigliano et al., hep-ph/0507001; Chen, Yu, arXiv:0804.2503]

Parameterization of NP in mixing

• Assume: (i) 3×3 CKM matrix is unitary; (ii) Tree-level decays dominated by SM NP in mixing — two new param's for each neutral meson:

$$M_{12} = \underbrace{M_{12}^{\rm SM} r_q^2 e^{2i\theta_q}}_{\rm easy \ to \ relate \ to \ data} \equiv \underbrace{M_{12}^{\rm SM} (1 + h_q e^{2i\sigma_q})}_{\rm easy \ to \ relate \ to \ models}$$

• Observables sensitive to $\Delta F = 2$ new physics:

$$\Delta m_{Bq} = r_q^2 \, \Delta m_{Bq}^{\rm SM} = |1 + h_q e^{2i\sigma_q}| \Delta m_q^{\rm SM}$$

$$S_{\psi K} = \sin(2\beta + 2\theta_d) = \sin[2\beta + \arg(1 + h_d e^{2i\sigma_d})]$$

$$S_{\rho\rho} = \sin(2\alpha - 2\theta_d)$$

$$S_{B_s \to \psi \phi} = \sin(2\beta_s - 2\theta_s) = \sin[2\beta_s - \arg(1 + h_s e^{2i\sigma_s})]$$

$$A_{\rm SL}^q = \operatorname{Im}\left(\frac{\Gamma_{12}^q}{M_{12}^q r_q^2 e^{2i\theta_q}}\right) = \operatorname{Im}\left[\frac{\Gamma_{12}^q}{M_{12}^q (1 + h_q e^{2i\sigma_q})}\right]$$

$$\Delta \Gamma_s^{CP} = \Delta \Gamma_s^{\rm SM} \cos^2(2\theta_s) = \Delta \Gamma_s^{\rm SM} \cos^2[\arg(1 + h_s e^{2i\sigma_s})]$$

• Tree-level constraints unaffected: $|V_{ub}/V_{cb}|$ and γ (or $\pi - \beta - \alpha$)

Flavor and CP violation in SUSY

Superpotential:

[Haber, hep-ph/9709450]

$$W = \sum_{i,j} \left(Y_{ij}^u H_u Q_{Li} \bar{U}_{Lj} + Y_{ij}^d H_d Q_{Li} \bar{D}_{Lj} + Y_{ij}^\ell H_d L_{Li} \bar{E}_{Lj} \right) + \mu H_u H_d$$

Soft SUSY breaking terms:

$$(S = \tilde{Q}_L, \tilde{\bar{D}}_L, \tilde{\bar{U}}_L, \tilde{L}_L, \tilde{\bar{E}}_L)$$

$$\mathcal{L}_{\text{soft}} = -\left(A_{ij}^{u} H_{u} \tilde{Q}_{Li} \tilde{\bar{U}}_{Lj} + A_{ij}^{d} H_{d} \tilde{Q}_{Li} \tilde{\bar{D}}_{Lj} + A_{ij}^{\ell} H_{d} \tilde{L}_{Li} \tilde{\bar{E}}_{Lj} + B H_{u} H_{d}\right)$$
$$-\sum_{\text{scalars}} (m_{S}^{2})_{ij} S_{i} \bar{S}_{j} - \frac{1}{2} \left(M_{1} \tilde{B} \tilde{B} + M_{2} \tilde{W} \tilde{W} + M_{3} \tilde{g} \tilde{g}\right)$$

 $3 Y^f$ Yukawa and $3 A^f$ matrices — $6 \times (9 \text{ real} + 9 \text{ imaginary})$ parameters

 $5~m_S^2$ hermitian sfermion mass-squared matrices — $5\times(6~{
m real}+3~{
m imag.})$ param's

Gauge and Higgs sectors: $g_{1,2,3}, \theta_{\rm QCD}, M_{1,2,3}, m_{h_{u,d}}^2, \mu, B$ — 11 real + 5 imag.

Parameters: (95 + 74) - (15 + 30) from $U(3)^5 \times U(1)_{PQ} \times U(1)_R \rightarrow U(1)_B \times U(1)_L$

• 44 CPV phases: CKM + 3 in M_1, M_2, μ (set $\mu B^*, M_3$ real) + 40 in mixing matrices of fermion-sfermion-gaugino couplings (+80 real param's)

Neutral meson mixings

Identities, neglecting CPV in mixing (not too important, surprisingly poorly known)

K: long-lived = CP-odd = heavy

D: long-lived = CP-odd (3.5σ) = light (2σ)

 B_s : long-lived = CP-odd (1.5σ) = heavy in the SM

 B_d : yet unknown, same as B_s in SM for $m_b \gg \Lambda_{\rm QCD}$

Before 2006, we only knew experimentally the kaon line above

We have learned a lot about meson mixings — good consistency with SM

	$x = \Delta m/\Gamma$		$y = \Delta\Gamma/(2\Gamma)$		$A = 1 - q/p ^2$	
	SM theory	data	SM theory	data	SM theory	data
B_d	$\mathcal{O}(1)$	0.78	$y_s \left V_{td} / V_{ts} \right ^2$	-0.005 ± 0.019	$-(5.5 \pm 1.5)10^{-4}$	$(-4.7 \pm 4.6)10^{-3}$
B_s	$x_d V_{ts}/V_{td} ^2$	25.8	$\mathcal{O}(-0.1)$	-0.05 ± 0.04	$-A_d V_{td}/V_{ts} ^2$	$(0.3 \pm 9.3)10^{-3}$
\overline{K}	$\mathcal{O}(1)$	0.948	-1	-0.998	$4\operatorname{Re}\epsilon$	$(6.6 \pm 1.6)10^{-3}$
D	< 0.01	< 0.016	$\mathcal{O}(0.01)$	$y_{CP} = 0.011 \pm 0.003$	$< 10^{-4}$	$\mathcal{O}(1)$ bound only

Some key CPV measurements

- β : $S_{\psi K_S} = -\sin[(B\text{-mix} = -2\beta) + (\text{decay} = 0) + (K\text{-mix} = 0)] = \sin 2\beta$ World average: $\sin 2\beta = 0.681 \pm 0.025 - 4\%$ precision (theory uncertainty < 1%)
- $S_{b\to s}$ "penguin" dominated modes: NP can enter in mixing (as $S_{\psi K}$), also in decay Earlier hints of deviations reduced: $S_{\psi K} S_{\phi K_S} = 0.29 \pm 0.17$
- α : $S_{\pi^+\pi^-} = \sin[(B\text{-mix} = 2\beta) + (\overline{A}/A = 2\gamma + \ldots)] = \sin[2\alpha + \mathcal{O}(P/T)]$ CLEO 1997: $K\pi$ large, $\pi\pi$ small $\Rightarrow P_{\pi\pi}/T_{\pi\pi}$ large \Rightarrow pursue all $\rho\rho$, $\rho\pi$, $\pi\pi$ modes
- γ : interference of tree level $b \to c \bar{u} s \; (B^- \to D^0 K^-)$ and $b \to u \bar{c} s \; (B^- \to \bar{D}^0 K^-)$ Several difficult measurements $(D \to K_S \pi^+ \pi^-, D_{CP}, \text{CF vs. DCS})$
- Need a lot more data to approach irreducible theoretical limitations

Minimal flavor violation (MFV)

- How strongly can effects of NP at scale $\Lambda_{\rm NP}$ be (sensibly) suppressed?
- SM global flavor symmetry $U(3)_Q \times U(3)_u \times U(3)_d$ broken by Yukawa's

$$\mathcal{L}_Y = -Y_u^{ij} \, \overline{Q_{Li}^I} \, \widetilde{\phi} \, u_{Rj}^I - Y_d^{ij} \, \overline{Q_{Li}^I} \, \phi \, d_{Rj}^I \qquad \qquad \widetilde{\phi} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \phi^*$$

• MFV: Assume Y's are the only source of flavor and CP violation (cannot demand all higher dimension operators to be flavor invariant and contain only SM fields)

[Chivukula & Georgi '87; Hall & Randall '90; D'Ambrosio, Giudice, Isidori, Strumia '02]

• CKM and GIM (m_q) suppressions similar to SM; allows EFT-like analyses Imposing MFV, best constraints come from:

$$B \to X_s \gamma, \ B \to \tau \nu, \ B_s \to \mu^+ \mu^-, \ \Delta m_{B_s}, \ \Omega h^2, \ g-2,$$
 precision electroweak

- ullet Even with MFV and TeV-scale NP, expect few % deviations from SM in B,D,K
- In some scenarios high- p_T LHC data may rule out MFV or make it more plausible

