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SUSY and flavour
◮ the MSSM has many more sources of flavour violation than

the SM

Masses:

−Q̃†m2
Q · Q̃ − Ũm2

UŨ† − D̃m2
DD̃† − L̃†m2

L · L̃ − Ẽm2
E Ẽ†

Trilinear terms:

−ŨAu(Q̃)a(Hu)a + D̃Ad(Q̃)a(Hd )a + ẼAℓ(L̃)a(Hd )a + h.c.

◮ precise measurements of flavour violations at low energy
show agreement with the SM

◮ unless MSUSY ≥ 102 TeV
⇒ flavour violating couplings are strongly constrained...



Introduction MFV RGE Conclusions

SUSY and flavour
◮ the MSSM has many more sources of flavour violation than

the SM

Masses:

−Q̃†m2
Q · Q̃ − Ũm2
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−ŨAu(Q̃)a(Hu)a + D̃Ad(Q̃)a(Hd )a + ẼAℓ(L̃)a(Hd )a + h.c.

◮ precise measurements of flavour violations at low energy
show agreement with the SM

◮ unless MSUSY ≥ 102 TeV
⇒ flavour violating couplings are strongly constrained...

◮ ...but there is still room for discovering new effects!
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Minimal flavour violation

◮ Minimal flavour violation solves the flavour problem by
transforming it into a symmetry principle

◮ it drastically reduces the number of free parameters in the
MSSM ⇒ although MFV defines a large class of models it
is still predictive

◮ makes the agreement with the known phenomenology
easy to achieve

◮ deviations from the SM rather mild
⇒ look hard if you want to find them



Introduction MFV RGE Conclusions

SUSY and unification

◮ the MSSM provides a successful unification of the coupling
constants ⇒ strong point in favour of SUSY

◮ Interplay with the flavour problem?



Introduction MFV RGE Conclusions

SUSY and unification

◮ the MSSM provides a successful unification of the coupling
constants ⇒ strong point in favour of SUSY

◮ Interplay with the flavour problem?
◮ imposing that flavour violations be small at one scale can

make them large at another scale



Introduction MFV RGE Conclusions

SUSY and unification

◮ the MSSM provides a successful unification of the coupling
constants ⇒ strong point in favour of SUSY

◮ Interplay with the flavour problem?
◮ imposing that flavour violations be small at one scale can

make them large at another scale
◮ “solutions” of the flavour problem at one scale may break

down at a different scale or appear fine tuned



Introduction MFV RGE Conclusions

SUSY and unification

◮ the MSSM provides a successful unification of the coupling
constants ⇒ strong point in favour of SUSY

◮ Interplay with the flavour problem?
◮ imposing that flavour violations be small at one scale can

make them large at another scale
◮ “solutions” of the flavour problem at one scale may break

down at a different scale or appear fine tuned
◮ in particular a symmetry solution like MFV should better be

scale invariant



Introduction MFV RGE Conclusions

SUSY and unification

◮ the MSSM provides a successful unification of the coupling
constants ⇒ strong point in favour of SUSY

◮ Interplay with the flavour problem?
◮ imposing that flavour violations be small at one scale can

make them large at another scale
◮ “solutions” of the flavour problem at one scale may break

down at a different scale or appear fine tuned
◮ in particular a symmetry solution like MFV should better be

scale invariant
◮ how does an MFV-model change as you change the scale?

RGE’s for MFV models?
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Flavour symmetry in the SM

Gauge interactions are flavour-blind. Flavour mixing in the SM
occurs in the Yukawa terms:

LY = ŪR Yu QLH + D̄R Yd QLHc + ER Ye LLHc + h.c. ,

if Yu = Yd = Ye = 0 the SM acquires a large global flavour
symmetry:

GF ≡ Gq ⊗ Gℓ ⊗ U(1)B ⊗ U(1)L ⊗ U(1)Y ⊗ U(1)PQ ⊗ U(1)ER

where

Gq ≡ SU(3)QL
⊗SU(3)UR⊗SU(3)DR , Gℓ ≡ SU(3)LL⊗SU(3)ER

Chivukula, Georgi (1987)
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Spurions

The SM remains (formally) invariant under Gq ⊗ Gℓ if the
Yukawas are promoted to spurion fields transforming as

Yu ∼ (3̄, 3, 1) , Yd ∼ (3̄, 1, 3) under Gq

Ye ∼ (3̄, 3) under Gℓ .

Symmetry breaking occurs if the Yukawa’s take a specific value

VEV of truly dynamical fields?
Dynamical explanation of flavour violations?
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Minimal flavour violation

An extension of the SM is defined to respect minimal flavour
violation (MFV) if it is symmetric under Gq ⊗ Gℓ in the presence
of: D’Ambrosio, Giudice, Isidori, Strumia (02)

◮ new matter fields transforming nontrivially under GF

◮ the Yukawa spurions
◮ no other spurion fields

AND if coupling constants in front of the Yukawa’s are O(1)

In supersymmetric extensions of the SM the superpotential is
automatically MFV. On the other hand a generic, nondiagonal
soft SUSY-breaking term does not respect MFV unless one can
appropriately express the matrices in terms of the Yukawas
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MFV in the MSSM

D’Ambrosio et al. (02) wrote the soft SUSY-breaking terms in
the MSSM (almost) as follows

m2
Q = m2

0

(

a11 + b1Y†
uYu + b2Y†

dYd + b3(Y
†
dYdY†

uYu + Y†
uYuY†

dYd)
)

m2
U = m2

0

(

a21 + b5YuY†
u

)

m2
D = m2

0

(

a31 + b6YdY†
d

)

Au = A0Yu(a4 + b7Y†
dYd)

Ad = A0Yd (a5 + b8Y†
uYu)

◮ number of free parameters is drastically reduced
◮ flavour violations are kept under control
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Revisiting the construction of the MSSM with MFV

Consider the term Lm2
Q
≡ −Q̃†m2

Q·Q̃

this respects MFV if m2
Q transforms like (8, 1, 1):

m2
Q = a11+b1Y†

uYu+b2Y†
dYd +b3Y†

uYuY†
uYu +c1Y†

dYdY†
dYd +. . .

with in principle an infinite sum of admissible terms.
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Revisiting the construction of the MSSM with MFV

Consider the term Lm2
Q
≡ −Q̃†m2

Q·Q̃

this respects MFV if m2
Q transforms like (8, 1, 1):

m2
Q = a11+b1Y†

uYu+b2Y†
dYd +b3Y†

uYuY†
uYu +c1Y†

dYdY†
dYd +. . .

with in principle an infinite sum of admissible terms.
However, m2

Q is a 3 × 3 hermitian matrix and Cayley-Hamilton
identities

X3 − 〈X〉X2 +
1
2

X
(

〈X〉2 −
〈

X2
〉)

− det X = 0

constrain the number of independent terms
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Revisiting the construction of the MSSM with MFV

Consider the term Lm2
Q
≡ −Q̃†m2

Q·Q̃

this respects MFV if m2
Q transforms like (8, 1, 1):

m2
Q = a11+b1Y†

uYu+b2Y†
dYd +b3Y†

uYuY†
uYu +c1Y†

dYdY†
dYd +. . .

with in principle an infinite sum of admissible terms.

Cayley–Hamilton ⇒

m2
Q = z11 + z2Y†

uYu + z3Y†
dYd + z4

(

Y†
uYu

)2
+ z5

(

Y†
dYd

)2

+ z6

(

Y†
dYdY†

uYu + h.c.
)

+ z7Y†
uYuY†

dYdY†
uYu

+ z8Y†
dYdY†

uYuY†
dYd + z9

(

(

Y†
uYu

)2 (

Y†
dYd

)2
+ h.c.

)

MFV can be viewed as a reparametrization!
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An almost singular parametrization
MFV provides a very special parametrization: the Yukawa’s are
very far from generic matrices. Choose, e.g.

Yu = λuV , Yd = λd , Ye = λe

where

λu = diag(yu, yc , yt) , λd = diag(yd , ys, yb) , V = VCKM

then
(

Y†
uYu

)2
− y2

t Y†
uYu ∼ O(y2

c )
(

Y†
dYd

)2
− y2

b Y†
dYd ∼ O(y2

s )

⇒ if one assumes that the coefficients in front of each MFV
monomial is O(1), one can dispose of terms containing
squares of Y†

uYu and Y†
dYd .

⇒ strong reduction of the number of free parameters
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MSSM with MFV
◮ strong hierarchy of the Yukawa couplings X

◮ CKM almost diagonal ?

V =





1 λ Aλ3(ρ−iη)

−λ 1 Aλ2

Aλ3(1−(ρ+iη)) −Aλ2 1





where λ = Vus ∼ 0.23
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MSSM with MFV
◮ strong hierarchy of the Yukawa couplings X

◮ CKM almost diagonal X

V =





1 λ Aλ3(ρ−iη)

−λ 1 Aλ2

Aλ3(1−(ρ+iη)) −Aλ2 1





where λ = Vus ∼ 0.23

Counting scheme:

mu

mt
∼ O(λ7),

mc

mt
∼ O(λ4), yt ∼ O(1)

md

mt
∼ O(λ7),

ms

mt
∼ O(λ5),

mb

mt
∼ O(λ3),
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MSSM with MFV
Systematic analysis:

◮ write down all independent terms
◮ drop terms of absolute order O(λ6) or which provide only

corrections of relative order O(λ2)

m2
Q = m2

0

[

a1 + b1Y†
uYu + b2Y†

dYd + b3(Y
†
dYdY†

uYu + Y†
uYuY†

dYd )
]

m2
U = m2

0

[

a2 + b4YuY†
u

]

m2
D = m2

0

[

a3 + Yd

(

b5 + b6Y†
uYu

)

Y†
d

]

AU = A0Yu

[

a4 + b7Y†
uYu + b8Y†

dYd

]

AD = A0Yd

[

a5 + b9Y†
uYu + b10Y†

dYd + b11Y†
dYdY†

uYu

]

This is valid also in the case of large tan β. If tan β ∼ 1 all terms
containing Y†

dYd can be dropped
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MSSM with MFV
Systematic analysis:

◮ write down all independent terms
◮ drop terms of absolute order O(λ6) or which provide only

corrections of relative order O(λ2)

m2
Q = m2

0

[

a1 + b1Y†
uYu + b2Y†

dYd + b3(Y
†
dYdY†

uYu + Y†
uYuY†

dYd )
]

m2
U = m2

0

[

a2 + b4YuY†
u

]

m2
D = m2

0

[

a3 + Yd

(

b5 + b6Y†
uYu

)

Y†
d

]

AU = A0Yu

[

a4 + b7Y†
uYu + b8Y†

dYd

]

AD = A0Yd

[

a5 + b9Y†
uYu + b10Y†

dYd + b11Y†
dYdY†

uYu

]

Remark: invariant terms can be built also with ǫ tensors – they are not
relevant in this context, but very interesting in theories without R-parity

Nikolidakis & Smith (07)
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MFV as a substitute for R parity?

◮ The soft SUSY breaking terms discussed so far are those
relevant in the case of an R-parity respecting theory

◮ Nikolidakis and Smith have analyzed how MFV constrains
the R-parity violating terms

◮ They have shown that, surprisingly:
MFV alone is sufficient to forbid a too fast proton decay
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RGE’s of MFV parameters?

◮ viewing MFV as a reparametrization, it is clear that one
can derive the RGE for the MFV parameters exactly

◮ MFV is useful only because one can throw away some
terms and reduce the number of free parameters

◮ the scheme is RGE invariant only if terms which can be
neglected at one scale do not become important at
another scale (and viceversa)

◮ ⇒ apply systematically our counting rule also to the
β-functions
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RGE’s for the Yukawa’s

In MFV the basis is expressed in terms of the Yukawa’s, which,
however, also run, according to:

βYu = Yu

[

3Tr
(

YuY†
u

)

+ 3Y†
uYu + Y†

dYd −
16
3

g2
3 − 3g2

2 −
13
15

g2
1

]

where
d
dt

Yu =
1

16π2 β
(1)
Yu

+ . . .

Use the running Yukawa’s to define a “running” MFV?
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A new basis
Keep the CKM matrix at µ = MZ fixed and express everything –
including the Yukawa’s – in terms of this.

[Yu(MZ )]ij = ycδ2iV2j +ytδ3iV3j , [Yd (MZ )]ij = ysδ2iδ2j +ybδ3iδ3j
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A new basis
Keep the CKM matrix at µ = MZ fixed and express everything –
including the Yukawa’s – in terms of this.

[Yu(MZ )]ij = ycδ2iV2j +ytδ3iV3j , [Yd (MZ )]ij = ysδ2iδ2j +ybδ3iδ3j

At a different scale, the Yukawa’s will look different and contain
new structures. A complete list (up to this order) is the following:

X1 = δ3iδ3j X5 = δ3iV3j X9 = V ∗
3iδ3j X13 = V ∗

3iV3j

X2 = δ2iδ2j X6 = δ2iV2j X10 = V ∗
2iδ2j X14 = V ∗

2iV2j

X3 = δ3iδ2j X7 = δ3iV2j X11 = V ∗
3iδ2j X15 = V ∗

3iV2j

X4 = δ2iδ3j X8 = δ2iV3j X12 = V ∗
2iδ3j X16 = V ∗

2iV3j
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(
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6y2
t − Ku
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b + ct

(

6y2
t + y2

b − Ku

)
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A new basis
Keep the CKM matrix at µ = MZ fixed and express everything –
including the Yukawa’s – in terms of this.

[Yu(MZ )]ij = ycδ2iV2j +ytδ3iV3j , [Yd (MZ )]ij = ysδ2iδ2j +ybδ3iδ3j

If we apply our counting rule also to the Yukawa’s, however,
only one new structure is generated by the running:

Yu(µ) = yc(µ)X6 + yt(µ)X5 + ct(µ)X1

Yd (µ) = ys(µ)X2 + yb(µ)X1 + cb(µ)X5

and the β-functions of the coefficients read

βys = ys

(

3y2
b + y2

τ − Kd

)

βyb = yb

(

6y2
b + y2

τ − Kd

)

βcb = yby2
t + cb

(

6y2
b + y2

t + y2
τ − Kd

)
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A new basis
Keep the CKM matrix at µ = MZ fixed and express everything –
including the Yukawa’s – in terms of this.

[Yu(MZ )]ij = ycδ2iV2j +ytδ3iV3j , [Yd (MZ )]ij = ysδ2iδ2j +ybδ3iδ3j

If we apply our counting rule also to the Yukawa’s, however,
only one new structure is generated by the running:

Yu(µ) = yc(µ)X6 + yt(µ)X5 + ct(µ)X1

Yd (µ) = ys(µ)X2 + yb(µ)X1 + cb(µ)X5

and the β-functions of the coefficients read

where Ku =
16
3

g2
3 + 3g2

2 +
13
15

g2
1 , Kd = Ku −

2
5

g2
1
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MFV in the new basis

m2
Q = m2

0 [a1 + x1X13 + y1X1 + y2(X5 + X9)]

m2
U = m2

0 [a2 + x2X1]

m2
D = m2

0 [a3 + y3X1 + w1(X3 + X4)]

AU = A0 [ã4X5 + y4X1 + w2X6]

AD = A0 [ã5X1 + y5X5 + w3X2 + w4X8]

In this new basis all matrices are O(1) and whether a term is
small or large can be seen in the coefficients:

xi ∼ O(1)

yi ∼ O
(

t2
βλ6

)

i = 1, 2, 3, 4

ã5 ∼ y5 ∼ O
(

tβλ3
)

w1 ∼ O(t2
βλ10) , w2 ∼ O(λ4)

w3 ∼ O(tβλ5) , w4 ∼ O(tβλ7)
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... and the running of the coefficients

Applying the same counting rules as above (i.e. dropping any
correction of order λ2 in the β-functions) we get

βa1 = −2K̄u +
1
5

g2
1

(

S −
28
3

M2
1

m2
0

)

βx1 = 2y2
t

(

m2
Hu

m2
0

+ a1 + a2 + x1 + x2 + y2

)

+ 2rA(ã2
4 + y5

2)

βy1 = 2yb
2

(

m2
Hd

m2
0

+ a1 + a3 + y1 + y2 + y3

)

+ 2rA(ã5
2 + y4

2)

βy2 = y2
t (y1 + y2) + yb

2(x1 + y2) + 2rA(ã4y4 + ã5y5)
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... and the running of the coefficients

Applying the same counting rules as above (i.e. dropping any
correction of order λ2 in the β-functions) we get

βa2 = −
32
3

g2
3

M2
3

m2
0

−
4
5

g2
1

(

S +
8
3

g2
1

)

M2
1

m2
0

βx2 = 4y2
t

(

m2
Hu

m2
0

+ a1 + a2 + x1 + x2 + y1 + y2

)

+ 4rA(ã4 + y4)
2

βa3 = −
32
3

g2
3

M2
3

m2
0

+
2
5

g2
1

(

S −
4
3

g2
1

)

M2
1

m2
0

βy3 = 4yb
2

(

m2
Hd

m2
0

+ a1 + a3 + x1 + y1 + 2y2 + y3

)

+ 4rA(ã5 + y5)
2

βw1 = 2w1yb
2 − 4Vcbysyb(x1 + y2) + 4rAy5(w4 − Vcbw3)

. . .
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... and the running of the coefficients

where

rA ≡ A2
0/m2

0

S =
m2

Hu
− m2

Hd

m2
0

+ 3(a1 − 2a2 + a3) + x1 − 2x2 + y1 + 2y2 + y3

−3(a6 − a7) − x12 + x13

K̄u =
16
3

g2
3

M2
3

m2
0

+ 3g2
2

M2
2

m2
0

+
13
15

g2
1

M2
1

m2
0
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Remarks

The RGE’s for the soft-SUSY breaking terms written in this
form are simple and transparent

◮ it is easy to implement and solve them numerically
◮ the analytical form allows one to see who influences who
◮ MFV is explicitly scale invariant (but see below!):

◮ no new terms are generated in the running
(according to our counting rules)

◮ the β-functions of the coefficients are of the same order
(or lower) as the coefficients themselves
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Numerical examples: MSUGRA and perturbations
Benchmark point SPS-1a:
m0 =100GeV, m1/2 =250GeV, A0 =−100GeV, tβ = 10, µ>0

MGUT MSUSY

a1/M2
3 0.16 0.85

a2/M2
3 0.16 0.78

a3/M2
3 0.16 0.77

ã4/(−ytM3) 0.4 0.84
ã5/(−ybM3) 0.4 1.4
x1/a1 δ1 −0.17 + 0.026δ1 − 0.003δ2

y1/a1 0 −5.8 · 10−3

y2/a1 0 2.6 · 10−4

x2/a2 δ2 −0.37 − 0.007δ1 + 0.024δ2

y3/a2 0 −1.1 · 10−2 − 1.7 · 10−4δ1



Introduction MFV RGE Conclusions

Numerical examples: MSUGRA and perturbations
Benchmark point SPS-4:
m0 =400GeV, m1/2 =300GeV, A0 =0, tβ = 50, µ>0

MGUT MSUSY

a1/M2
3 1.8 1.13

a2/M2
3 1.8 1.06

a3/M2
3 1.8 1.05

ã4/(−ytM3) 0 0.77
ã5/(−ybM3) 0 0.98
x1/a1 δ1 −0.20 + 0.25δ1 − 0.03δ2 + 0.005ǫ1 + . . .

y1/a1 ǫ1t2
βλ6 −0.11 + 0.075ǫ1 + 0.003δ1 + . . .

y2/a1 ǫ2t2
βλ6 2.9 · 10−3 + 0.07ǫ2 − 9 · 10−3δ1 + . . .

x2/a2 δ2 −0.42 − 0.06δ1 + 0.23δ2 − 0.03ǫ2 + . . .

y3/a2 ǫ3t2
βλ6 −0.22 − 0.033δ1 + 0.08ǫ3 − 0.019ǫ2 + . . .
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Running of x1 and x2

SPS-1a point
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Running of x1 and x2

SPS-1a point
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Running of x1 and x2
SPS-1a point
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Comparison with Paradisi et al.

In arXiv:0805.3989[hep-ph], Paradisi et al. have studied
the running of the MSSM with MFV

◮ they mainly rely on SOFTSUSY to do this analysis:
input MFV boundary conditions at Q = MGUT and fit the
outcome at the low scale

◮ they use the original parametrization of MFV and do not
apply a counting

◮ announce that they will study the large-tβ case later
◮ we confirm their finding about the existence of “fixed

points”
◮ with our parametrization and counting, we are able to

discuss the large-tβ case
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Summary and conclusions

◮ I have reviewed the definition of minimal flavour violation in
SUSY extensions of the standard model and bound it to
power counting rules

◮ I have shown how the application of the same counting
rules leads to a scale-invariant definition of MFV

◮ we have derived simple RGE’s for the MFV parameters
and shown the first results of our numerical analysis

◮ nontrivial consequences of the running of the MFV
parameters start to emerge:
if MFV originates at a higher scale, at low energy it is a lot
more constraining than imagined so far
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