Estimating U-spin breaking IN $B_{d, s} \rightarrow D_{d, s}(\pi, K)$

Vladimir Gligorov

University of Glasgow

Informal discussion

5 June 2008

OVERVIEW

- Motivation for looking at $B_{d, s} \rightarrow D_{d, s}(\pi, K)$
- Constraining $\operatorname{SU}(3)$ uncertainties in $B \rightarrow D \pi$
- Expected precision from separate analyses of $B_{s} \rightarrow D_{s} K$ and $B \rightarrow D \pi$
- Combined analysis with U-spin symmetry
- Further theoretical inputs required

MOTIVATION

MEASURING γ WITH $\mathrm{B}_{\mathrm{q}} \rightarrow \mathrm{D}_{\mathrm{q}} \mathrm{u}_{\mathrm{q}}$

- The $\mathrm{B}_{\mathbf{q}}{ }^{\mathbf{0}} \rightarrow \mathrm{D}_{\mathbf{q}} \mathbf{u}_{\mathbf{q}}$ family are tree level decays
> Not sensitive to New Physics
$>$ Provide a SM baseline of γ for other measurements

Current SM values of CKM angles:

$$
\begin{aligned}
& \alpha=\left(87.8_{-5.4}^{+5.8}\right)^{\circ} \\
& \beta=\left(21.5_{-1.0}^{+1.0}\right)^{\circ} \\
& \gamma=\left(72_{-30}^{+34}\right)^{\circ} \begin{array}{l}
\text { Ref: : CKMFitter } \\
\text { Moriond } 2008
\end{array}
\end{aligned}
$$

Informal discussion, 5 June 2008

LHCB PERFORMANCE PREVIEV

What is the expected LHCb precision on γ ?
$>10^{\circ}$ with 1 year of data taking ($2 \mathrm{fb}^{-1}$) in $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}} \mathrm{K}$
$>\sim 20^{\circ}$ with 1 year of data taking ($2 \mathrm{fb}^{-1}$) possible in $\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{D} \pi$

Can also use $B_{d} \rightarrow D^{*} \pi, B_{s} \rightarrow D_{s}{ }^{*} K$
Will discuss in more detail later in the talk... just whetting your appetite for now.

DEPENDENCE ON γ

The dependence on γ comes from time dependent rate asymmetries:

$$
A\left(B \rightarrow D_{q} \bar{u}_{q}\right)=\frac{C \cos (\Delta m \tau)+S \sin (\Delta m \tau)}{\cosh \left(\Delta \Gamma_{q} t / 2\right)-A_{\Delta \Gamma} \sinh \left(\Delta \Gamma_{q} t / 2\right)}
$$

Since there are two possible final states, one obtains two asymmetries, and hence two (to first order) independent constraints on γ

ASYMMETRIES IN MORE DETAIL

C, S, $\mathbf{A}_{\Delta \Gamma}$ are the observable parameters, from which γ is extracted (from now on "CP observables"
> Can only be resolved for large $\mathbf{x}_{\mathbf{q}}$
$>\mathbf{A}_{\Delta \Gamma}$ can only be resolved for large $\Delta \Gamma$

$$
\begin{aligned}
& S=\frac{2 x_{q} \sin \left(\delta_{q}+\phi_{q}-\gamma\right)}{\left(x_{q}^{2}+1\right)} \quad C_{q}=-\frac{1-x_{q}^{2}}{1+x_{q}^{2}} \\
& \left|A_{\Delta \Gamma}\left(B_{q}^{0} \rightarrow D_{q} \bar{u}_{q}\right)\right|^{2}+\left|C\left(B_{q}^{0} \rightarrow D_{q} \bar{u}_{q}\right)\right|^{2}+\left|S\left(B_{q}^{0} \rightarrow D_{q} \bar{u}_{q}\right)\right|^{2}=1
\end{aligned}
$$

And there are of course three analogous parameters for the "other" asymmetry

GOING DEEPER INTO THE TERMINOLOGY

The dependence on γ is contained in the CP-observable S

$$
S=\frac{2 x_{q} \sin \left(\delta_{q}+\phi_{q}-\gamma\right)}{\left(x_{q}^{2}+1\right)}
$$

$\mathbf{x}_{\mathbf{q}}$ is the ratio of the interfering tree-level diagrams; the bigger $\mathbf{x}_{\mathbf{q}}$, the more sensitive the decay is to γ

$$
x_{d}=-\left(\frac{\lambda^{2} R_{b}}{1-\lambda^{2}}\right) a_{d}
$$

$$
x_{s}=R_{b} a_{s}
$$

Informal discussion, 5 June 2008

ONE FINAL STEP...

The formulas for $\mathrm{x}_{\mathrm{d}, \mathrm{s}}$ come from the decay amplitudes

$$
R_{b}=\left(1-\frac{\lambda^{2}}{2}\right) \frac{1}{\lambda}\left|\frac{V_{u b}}{V_{c b}}\right| \approx 0.4 \quad \begin{aligned}
& \mathbf{a}_{\mathbf{d}} \mathbf{a}_{\mathbf{s}} \text { are hadronic parameters } \\
& \text { of order } 1, \lambda \text { is of course } 0.22 \\
& \text { (the Cabbibo angle) }
\end{aligned}
$$

$$
x_{s}=R_{b} a_{s} \approx 0.4 \quad x_{d}=-\left(\frac{\lambda^{2} R_{b}}{1-\lambda^{2}}\right) a_{d} \approx 0.02
$$

$\mathbf{x}_{\mathbf{s}}$ is large enough to fit from data
BUT
$\mathbf{x}_{\mathbf{d}}$ must be externally constrained!

WHERE DOES THIS LEAVE US?

$B_{s} \rightarrow D_{s} K$ and $B_{d} \rightarrow D \pi$ decays are sensitive to γ
We measure γ from time dependent CP asymmetries
The observables which carry the dependence on γ also depend on the ratio of the interfering tree level diagrams
$>$ This interference is big enough to fit from the data for the B_{s} case, but too small for B_{d}

In order to extract from $B_{d} \rightarrow D \pi$, we need an external constraint on X_{d} !

CONSTRAINING X_{d}

BEFORE WE PROCEED

In all following slides

$\mathbf{r}^{\mathrm{D}(*) \mathbf{h}} \equiv \mathbf{X}_{\mathbf{d}}$

THE STARTING POINT

$$
\text { Estimate } \mathbf{r}^{\mathbf{D}(*) h} \text { from } \mathbf{B}^{0} \rightarrow \mathbf{D}_{\mathbf{s}}{ }^{(*)+} \pi^{-} / \rho^{-} \text {using } \mathbf{S U}(3) \text { symmetry }{ }^{[1]}
$$

SOURCES OF SU(3) BREAKING

Amplitude relation assumes factorization

- Not (yet) been proven to work for wrong-charm $b \rightarrow u$ transitions
- i.e. No theoretical handle on size of non-factorizable contributions involved

Three potential sources of $\operatorname{SU}(3)$ breaking between $D^{(*)} h$ and $D_{s}{ }^{(*)} h$:

1. Unknown $\operatorname{SU}(3)$ breaking uncertainty from non-factorizable contributions
2. Final state interactions: different rescattering diagrams
3. Missing W-exchange diagrams in calculation

Accounted for by introducing theoretical uncertainty on amplitude ratio r(*)h

- Size of uncertainty not well understood
- Typically guestimated to be $\mathbf{3 0 \%}$ of size of amplitude ratio.

RESCATTERING CORRECTION

1. Rescattering is parametarized as a multiplicative correction to the amplitude ratio:
2. Rescattering is independent of formation process, so can be calculated from CKM-favoured modes
3. Fit to the strong-interaction rescattering matrix using experimental inputs to obtain correction factors
4. Can check validity of method by comparing predicted rescattering branching ratios to measured ones

BR $\left(\times 10^{-4}\right)$	Factorized \mathcal{B}	Rescattered \mathcal{B}	Measured \mathcal{B}	χ
$B^{+} \rightarrow \bar{D}^{0} \pi^{+}$	48.6	48.6	49.2 ± 2.0	+0.29
$B^{0} \rightarrow D^{-} \pi^{+}$	32.7	28.0	28.3 ± 1.7	+0.20
$B^{0} \rightarrow \bar{D}^{0} \pi^{0}$	0.50	2.39	2.61 ± 0.24	+0.90
$B^{0} \rightarrow D_{s}^{-} K^{+}$	0.00	0.25	0.27 ± 0.06	+0.41
$B^{0} \rightarrow \bar{D}^{0} \eta$	0.00	1.36	2.02 ± 0.35	+1.89
$B^{0} \rightarrow \bar{D}^{0} \eta^{\prime}$	0.08	1.25	1.25 ± 0.23	+0.02
$B^{+} \rightarrow D^{0} K^{+}$	3.90	3.90	4.08 ± 0.24	+0.75
$B^{0} \rightarrow D^{-} K^{+}$	2.6	2.2	2.0 ± 0.6	-0.27
$B^{0} \rightarrow \bar{D}^{0} K^{0}$	0.08	0.53	0.52 ± 0.07	-0.12
$B^{+} \rightarrow D^{* 0} \pi^{+}$	50.3	50.3	46 ± 4	-1.08
$B^{0} \rightarrow D^{*-} \pi^{+}$	33.0	28.3	27.6 ± 2.1	-0.34
$B^{0} \rightarrow \bar{D}^{* 0} \pi^{0}$	0.60	2.51	1.73 ± 0.42	-1.86
$B^{0} \rightarrow D_{s}^{*-} K^{+}$	0.00	0.23	0.18 ± 0.06	-0.87
$B^{0} \rightarrow \bar{D}^{* 0} \eta$	0.07	1.34	1.78 ± 0.56	+0.79
$B^{0} \rightarrow \bar{D}^{* 0} \eta^{\prime}$	0.10	1.24	1.23 ± 0.35	-0.03
$B^{+} \rightarrow \bar{D}^{* 0} K^{+}$	3.88	3.88	3.7 ± 0.4	-0.44
$B^{0} \rightarrow D^{*-} K^{+}$	2.53	2.10	2.1 ± 0.2	+0.21
$B^{0} \rightarrow \bar{D}^{* 0} K^{0}$	0.09	0.53	0.36 ± 0.12	-1.35
$B^{+} \rightarrow \bar{D}^{0} \rho^{+}$	101	101	134 ± 18	+1.86
$B^{0} \rightarrow D^{-} \rho^{+}$	76.3	71.1	75 ± 12	+0.32
$B^{0} \rightarrow \bar{D}^{0} \rho^{0}$	0.4	3.1	2.9 ± 1.1	-0.19
$B^{0} \rightarrow D_{s}^{-} K^{*+}$	0.0	0.0	0.0 ± 6.6	0.00
$B^{0} \rightarrow \bar{D}^{0} \omega$	0.2	2.6	2.6 ± 0.6	-0.10
$B^{0} \rightarrow \bar{D}^{0} \phi$	0.0	0.0	-	-
$B^{+} \rightarrow \bar{D}^{0} K^{*+}$	5.9	5.9	6.3 ± 0.8	+0.49
$B^{0} \rightarrow D^{-} K^{*+}$	4.2	3.9	4.5 ± 0.7	+0.79
$B^{0} \rightarrow \bar{D}^{0} K^{* 0}$	0.08	0.36	0.40 ± 0.08	+0.48

SU(3) correction from rescattering

> Naive amplitude ratio :

$$
r^{D^{(*)} h}=\sqrt{\frac{\mathcal{B}\left(B^{0} \rightarrow D_{s}^{(*)+} h^{-}\right)}{\mathcal{B}\left(B^{0} \rightarrow D^{(*)-} h^{+}\right)}}\left|\frac{V_{c d}}{V_{c s}}\right| \frac{f_{D^{(*)}}}{f_{D_{s}^{(*)}}}
$$

> $\mathrm{SU}(3)$ rescattering correction factor R_{i} to amplitude ratio $\mathrm{r}^{\mathrm{D}\left({ }^{*} \mathrm{~h}\right.}$:
> Values of R_{i} :

Final state	R_{i}
$D^{+} \pi^{-}$	1.045 ± 0.005
$D^{*+} \pi^{-}$	1.072 ± 0.005
$D^{+} \rho^{-}$	1.036

Informal discussion, 5 June 2008

W EXCHANGE CORRECTION

1. Estimate from effective hamiltonians for the two processes (tree-level and exchange) using naive factorization
2. However, factorization is not reliable for colour-suppressed decays

No exchange diagram for final state $D_{s} \pi / \rho$

3. Add a large systematic error to account for this:

$$
|\mathrm{E} / \mathrm{T}|<5.0 \%
$$

NON-FACTORIZABLE SU(3) CORRECTIONS

1. Estimate residual $\operatorname{SU}(3)$ breaking from non-factorizable contributions using $B \rightarrow D_{s} * \pi$
2. Relate the measured branching ratio to the rescatteringcorrected factorization prediction
3. Precise estimate from factorization is possible by relating $B \rightarrow D_{s} * \pi$ to semileptonic B decays
$>$ Assuming up to 3 times typical $\mathrm{SU}(3)$ breaking scale for $\mathrm{B}^{0} \rightarrow \pi^{-} \mathrm{D}_{(\mathrm{s})}{ }^{*}$:

$$
\begin{aligned}
\left|\bar{a}^{\mathrm{c}} \frac{2 m_{s}}{\Lambda_{\chi}}\right| & <2\left(\frac{2 m_{s}}{\Lambda_{\chi}}\right)\left|\frac{\mathcal{R} e\left(\tilde{a}_{s}^{\text {corr }}\right)+\frac{1}{2}\left|\tilde{a}_{s}^{\text {corr }}\right|^{2}}{\left|1+\tilde{a}_{s}^{\text {corr }}\right|^{2}}\right| \\
& <0.085(0.120) @ 68.3 \%(90 \%) \text { C.L. }
\end{aligned}
$$

THE FINAL ERROR BUDGET

> Amplitude ratios after rescattering correction:

$$
r^{D^{(*)} h}=\sqrt{\frac{\mathcal{B}\left(B^{0} \rightarrow D_{s}^{(*)+} h^{-}\right)}{\mathcal{B}\left(B^{0} \rightarrow D^{(*)-} h^{+}\right)}}\left|\frac{V_{c d}}{V_{c s}}\right| \frac{f_{D^{(*)}}}{f_{D_{s}^{(*)}}} R_{i}
$$

Decay	Predicted $r^{D^{(*)} h}\left(\times 10^{-2}\right)$
$B^{0} \rightarrow D^{\mp} \pi^{ \pm}$	$1.54 \pm 0.18(\mathcal{B}) \pm 0.09\left(r . f_{D_{(s)}}\right) \pm 0.17\left(V_{c q}\right) \pm 0.01$ (rsc.)
$B^{0} \rightarrow D^{* \mp} \pi^{ \pm}$	$2.15 \pm 0.30(\mathcal{B}) \pm 0.12\left(r . f_{D_{(s)}}\right) \pm 0.24\left(V_{c q}\right) \pm 0.01($ rsc. $)$
$B^{0} \rightarrow D^{\mp} \rho^{ \pm}$	$0.33 \pm 0.59(\mathcal{B}) \pm 0.02\left(r . f_{D_{(s)}}\right) \pm 0.04\left(V_{c q}\right)$

> New since PDG '06: large uncertaintainty from V_{cs}
> We add 9\% Gaussian errors for SU(3) from nonfactorizable contributions and 5\% flat errors for $\mathrm{SU}(3)$ breaking from W -exchange diagrams.

OVERALL ERROR NOW TAKEN AS 20\%

Informal discussion, 5 June 2008

EXPECTED PRECISIONS AT LHCB

ASSUMED THROUGHOUT

$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}} \mathrm{K}$

- Use untagged $B_{s} \rightarrow D_{s} K$ events to resolve $\mathbf{A}_{\Delta \Gamma}$
- Use $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}} \pi$ events to help constrain $\Delta \Gamma_{\mathbf{s}}$ and $\Delta \mathbf{m}_{\mathbf{s}}$
- Results in twofold ambiguity on γ

	Yield (2fb ${ }^{-1}$)	B / S
$B_{s} \rightarrow D_{s} K$	$6.2 k$	0.2
$B_{s} \rightarrow D_{s} \pi$	$140 k$	0.7

With $2 \mathrm{fb}^{-1}$ of data:

	Precision with tagged \& untagged events			
$\gamma+\phi_{\mathrm{s}}$	$\mathbf{1 0 . 3 ^ { \circ }}$			
Δ_{ms}	$0.007 \mathrm{ps}^{-1}$			
\mathbf{x}_{s}	0.06			
Ref: CERN-LHCb-2005-036 CRN-LCb-2007-017 CERN-LHCb-2007-041				$21 / 35$

Two problems:

1) The uncertainty on $\mathbf{x}_{\mathbf{d}}$ introduces correlations between the two asymmetries.
> The errors on each observable worsen, and after some time are saturated by the correlations.
2) The negligible lifetime difference in the $\mathbf{B}_{\boldsymbol{d}}$ system means $\mathbf{A}_{\Delta \Gamma}$ is not accesible
> The eight-fold ambiguity on γ remains. Also, the precisions vary with the value of the strong phases.

Both will be resolved by using U-spin symmetry!
Informal discussion, 5 June 2008

$B_{D} \rightarrow D \pi: 5$ YEARS, FACTORIZATION LIMIT

Informal discussion, 5 June 2008

$B_{D}>\mathrm{D} \pi: 5$ YEARS, LARGE STRONG PHASE

Informal discussion, 5 June 2008

USING U-SPIN

U-SPIN OVERVIEW

U -spin is a subgroup of $\mathrm{SU}(3)$
$>$ QCD effects same if decays are related by interchange of \mathbf{d} and \mathbf{s} quarks

$$
\begin{array}{r}
x_{s}=R_{b} a_{s} \\
x_{d}=-\left(\frac{\lambda^{2} R_{b}}{1-\lambda^{2}}\right) a_{d} \\
S=\frac{2 x_{q} \sin \left(\delta_{q}+\phi_{q}-\gamma\right)}{\left(x_{q}^{2}+1\right)}
\end{array}
$$

QCD effects are parameterized by strong amplitudes ($\mathbf{a}_{\mathbf{s}, \mathrm{d}}$) and phases ($\delta_{s, d}$)

Three different assumptions: equal phases and amplitudes, equal phases only, equal amplitudes only

Major advantage : no need to resolve \mathbf{x}_{d}
Ref: Fleischer, hep-ph/0304027

ASSUMING EQUAL STRONG PHASES

Can make a "minimal" U-spin assumption
Strong phase in $B \rightarrow D \pi$ is the same as in $B_{s} \rightarrow D_{s} K$
Introduce this as a Gaussian constraint in the contour plots to resolve the ambiguities
> Assume strong phase known to 20° (theoretical and experimental error) after 1 year
$>$ And 10° after 5 years
In this case, still need external kowledge of $\mathrm{X}_{\mathbf{d}}$

$B_{D} \rightarrow D \pi: 1$ YEAR, LARGE STRONG PHASE, U-SPIN

Informal discussion, 5 June 2008

$\mathrm{B}_{\mathrm{D}} \rightarrow \mathrm{D} \pi: 5$ YEARS, LARGE STRONG PHASE, U-SPIN

γ known to 10 degrees - useful for a global constraint!
Informal discussion, 5 June 2008

MORE SOPHISTICATED U-SPIN TREATMENT

Introduce new "orthogonal" CP-observables

$$
\begin{aligned}
& \left\langle S_{q}\right\rangle_{+}=\frac{S_{q}+\bar{S}_{q}}{2}=\frac{2 x_{q} \cos \delta_{q}}{1+x_{q}^{2}} \sin \left(\varphi_{q}+\gamma\right) \\
& \left\langle S_{q}\right\rangle_{-}=\frac{S_{q}-\bar{S}_{q}}{2}=\frac{2 x_{q} \sin \delta_{q}}{1+x_{q}^{2}} \cos \left(\varphi_{q}+\gamma\right)
\end{aligned}
$$

Will now use $B_{s} \rightarrow D_{s} K$ and $B \rightarrow D \pi$ information at the same time to get a combined constraint on γ

STRONG U-SPIN ASSUMPTION

Uses the relations

$$
\begin{aligned}
& \text { (1) }\left[\frac{a_{s} \cos \delta_{s}}{a_{d} \cos \delta_{d}}\right] R=-\left[\frac{\sin \left(\phi_{d}+\gamma\right)}{\sin \left(\phi_{s}+\gamma\right)}\right]\left[\frac{\left\langle S_{s}\right\rangle_{+}}{\left\langle S_{d}\right\rangle_{+}}\right] \\
& \text {(2) }\left[\frac{a_{s} \sin \delta_{s}}{a_{d} \sin \delta_{d}}\right] R=-\left[\frac{\cos \left(\phi_{d}+\gamma\right)}{\cos \left(\phi_{s}+\gamma\right)}\right]\left[\frac{\left\langle S_{s}\right\rangle_{-}}{\left\langle S_{d}\right\rangle_{-}}\right]
\end{aligned}
$$

to extract γ under the assumptions $\delta_{d}=\delta_{s}$ and $\mathbf{a}_{\mathrm{d}}=\mathbf{a}_{\mathbf{s}}$,
$\begin{aligned} & \begin{array}{l}\text { The parameter } \mathbf{R} \text { can be } \\ \text { determined from } \mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}} \mathrm{K}\end{array}\end{aligned} \quad R=\left(\frac{1-\lambda^{2}}{\lambda^{2}}\right)\left[\frac{1+x_{d}^{2}}{1+x_{s}^{2}}\right]$
$>\mathbf{x}_{\mathrm{d}}$ is a negligable second order correction.
Informal discussion, 5 June 2008

PHASE U-SPIN ASSUMPTION

Uses the relation

$$
\left[\frac{\tan \left(\phi_{d}+\gamma\right)}{\tan \left(\phi_{s}+\gamma\right)}\right]=\left[\frac{\tan \delta_{s}}{\tan \delta_{d}}\right]\left[\frac{\left\langle S_{s}\right\rangle_{-}}{\left\langle S_{s}\right\rangle_{+}}\right]\left[\frac{\left\langle S_{d}\right\rangle_{+}}{\left\langle S_{d}\right\rangle_{-}}\right]
$$

to extract γ under the assumption $\delta_{d}=\delta_{s}$. It does not require any assumption about the value of $\mathbf{a}_{\mathbf{d}}$ or $\mathbf{a}_{\mathbf{s}}$.

AMPLITUDE U-SPIN ASSUMPTION

Uses the relation

$$
\left(\frac{a_{s}}{a_{d}}\right) R=\sigma\left|\frac{\sin \left(2 \phi_{d}+2 \gamma\right)}{\left.\frac{\sin \left(2 \phi_{s}+2 \gamma\right)}{}\right)}\right| \sqrt{\frac{\left\langle S_{s}\right\rangle_{+}^{2} \cos ^{2}\left(\phi_{s}+\gamma\right)+\left\langle S_{s}\right\rangle_{-}^{2} \sin ^{2}\left(\phi_{s}+\gamma\right)}{\left\langle S_{d}\right\rangle_{+}^{2} \cos ^{2}\left(\phi_{d}+\gamma\right)+\left\langle S_{d}\right\rangle_{-}^{2} \sin ^{2}\left(\phi_{d}+\gamma\right)}}
$$

to extract γ under the assumption $\mathbf{a}_{\mathrm{d}}=\mathbf{a}_{\mathbf{s}}$. It does not require any assumption about the value of δ_{d} or $\delta_{s^{\prime}}$ apart from an assumption about their relative signs
if $\cos \left(\delta_{d}\right)$ has the same sign as $\cos \left(\delta_{s}\right)$,

$$
\sigma=-\operatorname{sgn}\left[\left\langle S_{s}\right\rangle_{+}\left\langle S_{d}\right\rangle_{+} \sin \left(\phi_{d}+\gamma\right) \sin \left(\phi_{s}+\gamma\right)\right]
$$

if $\sin \left(\delta_{d}\right)$ has the same sign as $\sin \left(\delta_{s}\right)$,

$$
\sigma=-\operatorname{sgn}\left[\left\langle S_{s}\right\rangle_{-}\left\langle S_{d}\right\rangle_{-} \cos \left(\phi_{d}+\gamma\right) \cos \left(\phi_{s}+\gamma\right)\right]
$$

EXAMPLE RESULT: $\gamma=60^{\circ}, \delta=60^{\circ}(\sim 1$ YEAR)

Informal discussion, 5 June 2008

ESTIMATING U-SPIN BREAKING

U-spin breaking is typically guesstimated at 30\%

Has been argued to be a better symmetry than SU(3) in certain cases...
> Because U-spin does not depend on assumptions about relative sizes of different decay topologies, unlike SU(3)*

Would be nice to have a detailed error budget before we try to publish a measurement...

Ideally a list as produced by Max Baak for \mathbf{x}_{d} :

> U-spin breaking effect \mathbf{X} can be estimated at Y\% from control channel(s) $\mathbf{Z}_{1,2,3, \ldots}$
*Ref: Soni\&Suprun, hep-ph/0609089

BACKUP

$B_{D}>D \pi: 1$ YEAR, FACTORIZATION LIMIT, U-SPIN

Informal discussion, 5 June 2008

$B_{D}>D \pi: 5$ YEARS, FACTORIZATION LIMIT, U-SPIN

Informal discussion, 5 June 2008

EXAMPLE RESULT: $\gamma=60^{\circ}, \delta=60^{\circ}(5$ YEARS)

Informal discussion, 5 June 2008

EXAMPLE RESULT: $\gamma=60^{\circ}, \delta=10^{\circ}(5$ YEARS)

Informal discussion, 5 June 2008

EXAMPLE RESULT: $\gamma=60^{\circ}, \delta=85^{\circ}(5$ YEARS)

Informal discussion, 5 June 2008

EXAMPLE RESULT: $\gamma=60^{\circ}, \delta=30^{\circ}(5$ YEARS)

Informal discussion, 5 June 2008

W-exchange amplitudes

> $\mathrm{SU}(3)$ breaking error on $\left.\mathrm{r}\left[\mathrm{D}^{*}\right) \mathrm{h}\right]$ from missing exchange diagram:

$$
\left|\frac{E}{T}\right|=\sqrt{\frac{B R\left(B^{0} \rightarrow D_{s}^{\left.()^{*}\right)-} K^{+}\right)}{B R\left(B^{0} \rightarrow D^{()^{*}-} \pi^{+}\right)}} \approx 10 \%
$$

> Ignores rescattering contribution to $\mathrm{D}_{\mathrm{s}} \mathrm{K}$ \Rightarrow overestimation of E
> W-exchange amplitudes from rescattering fit consistent with naive factorization estimates!

$$
\begin{aligned}
D \pi:\left|\frac{E}{T}\right|<0.029(0.058) @ 68 \%(95 \%) \\
D^{*} \pi:\left|\frac{E}{T}\right|<0.021(0.041) @ 68 \%(95 \%) \\
D \rho:\left|\frac{E}{T}\right|<0.033(0.066) @ 68 \%(95 \%)
\end{aligned}
$$

$$
\mathrm{b} \rightarrow \mathrm{c} \text { transition }
$$

$$
\left|\frac{E}{T}\right|=\frac{a_{2}}{a_{1}} \frac{f_{B}}{f_{\pi}}\left(\frac{m_{D}^{2}-m_{\pi}^{2}}{m_{B}^{2}-m_{D}^{2}}\right) \frac{F_{0}^{0 \rightarrow D \pi}\left[m_{B}^{2}\right]}{F_{0}^{B \rightarrow D}\left[m_{\pi}^{2}\right]} \square 0.7 \%
$$

> Large uncertainty on $|\mathrm{E} / \mathrm{T}|$ estimate for $b \rightarrow u$ transition:

1. Factorization uncertainty for $b \rightarrow u$
2. Value of Callan-Treiman prediction:

$$
F_{0}^{0 \rightarrow D \pi}\left[m_{B}^{2}\right] \square \frac{m_{D}^{2}}{m_{B}^{2}} \frac{f_{D}}{f_{\pi}}=0.21
$$

$\mathrm{b} \rightarrow \mathrm{u}$ transition

$$
\left|\frac{E}{T}\right|=\frac{a_{2}}{a_{1}} \frac{f_{B}}{f_{D}}\left(\frac{m_{D}^{2}-m_{\pi}^{2}}{m_{B}^{2}-m_{\pi}^{2}}\right) \frac{F_{0}^{0 \rightarrow D \pi}\left[m_{B}^{2}\right]}{F_{0}^{B \rightarrow \pi}\left[m_{D}^{2}\right]} \square 1.3 \%
$$

> Add 200\% error on predicted ratio:

$$
|\mathrm{E} / \mathrm{T}|<5.0 \%
$$

Informall discussion, 5 June 2008

Non-factorizable SU(3) breaking

> SU(3) breaking in amplitude ratio r from non-factorizable contributions:

- Additional $\operatorname{SU}(3)$ breaking proportional to non-factorizable contributions times perturbation parameter
- Assuming up to 3 times typical $\mathrm{SU}(3)$ breaking scale for $\mathrm{B}^{0} \rightarrow \pi^{-} \mathrm{D}_{(\mathrm{s})}{ }^{*}$:

$$
\begin{aligned}
\left|\bar{a}^{\mathrm{c}} \frac{2 m_{s}}{\Lambda_{\chi}}\right| & <2\left(\frac{2 m_{s}}{\Lambda_{\chi}}\right)\left|\frac{\operatorname{Re}\left(\tilde{a}_{s}^{\text {corr }}\right)+\frac{1}{2}\left|\tilde{a}_{s}^{\text {corr }}\right|^{2}}{\left|1+\tilde{a}_{s}^{\text {corr }}\right|^{2}}\right| \\
& <0.085(0.120) @ 68.3 \%(90 \%) \text { C.L. }
\end{aligned}
$$

Non-factorizable b \rightarrow u contributions

> Relative size of non-factorizable amplitude: $\tilde{a}_{s}^{\text {corr }}$

$$
\begin{aligned}
\left|1+\tilde{a}_{s}^{\text {corr }}\right| & \equiv \sqrt{\frac{\mathcal{B}_{\text {meas }}\left(B^{0} \rightarrow \pi^{-} D_{s}^{*+}\right)}{\mathcal{B}_{\text {resc }}\left(B^{0} \rightarrow \pi^{-} D_{s}^{*+}\right)}} \approx 1+\mathcal{R e}\left(\tilde{a}_{s}^{\text {corr }}\right)+\frac{1}{2}\left|\tilde{a}_{s}^{\text {corr }}\right|^{2} \\
& =1.176 \pm 0.167(\text { exp. }) \pm 0.057\left(f_{D_{s}^{*}}\right) \pm 0.014(\mathrm{rsc} .)
\end{aligned}
$$

$\left|\frac{\mathcal{R e}\left(\tilde{a}_{s}^{\text {corr }}\right)+\frac{1}{2}\left|\tilde{a}_{s}^{\text {corr }}\right|^{2}}{\left|1+\tilde{a}_{s}^{\text {corr }}\right|^{2}}\right| \approx\left|\frac{1}{\left|1+\tilde{a}_{s}^{\text {corr }}\right|}-\frac{1}{\left|1+\tilde{a}_{s}^{\text {corr }}\right|^{2}}\right|$

$$
<0.17(0.24) @ 68.3 \%(90 \%) \text { C.L. }
$$

> Limit should improve with updates of: $\mathrm{BR}(\mathrm{B} \rightarrow \pi \mid v), \mathrm{BR}\left(\mathrm{B}^{0} \rightarrow \pi^{-} \mathrm{D}_{\mathrm{s}}{ }^{*}\right), \mathrm{f}_{\mathrm{Ds}}$.
> Two definitions to describe $\mathrm{SU}(3)$ breaking from non-factorizable corrections:
\square

$2 m_{s} / \Lambda_{\chi}$	$\approx[0.16,0.26]$		
$f_{D_{s}} / f_{D}-1$	$=0.25 \pm 0.11 \approx 2 m_{s} / \Lambda_{\chi}$	\quad	typical SU(3) perturbation
:---:			
parameter			

$\mathrm{SU}(3)$ breaking parameter
in amplitude ratio $\left.\mathrm{r}^{\mathrm{D}} \mathrm{*}^{(}\right) \mathrm{h}$
(contains 1 unit of $2 \mathrm{~m}_{s} / \Lambda_{\chi}$)

$$
\begin{aligned}
r^{D^{(*)} h} & =\left(\tan \theta_{c}\right) \Delta_{0}\left|\frac{A\left(B^{0} \rightarrow D_{s}^{(*)+} h^{-}\right)}{A\left(B^{0} \rightarrow D^{(*)-} h^{+}\right)}\right| \\
\Delta_{0} & \equiv \frac{f_{D^{(*)}} F\left(m_{D^{(*)}}^{2}\right)}{f_{D_{s}^{(*)}} F\left(m_{D_{s}^{(*)}}^{2}\right)} R_{i}
\end{aligned}
$$

