ESTIMATING U-SPIN BREAKING IN $B_{d,s} \rightarrow D_{d,s}(\pi,K)$

Vladimir Gligorov

University of Glasgow

Informal discussion

5 June 2008

OVERVIEW

- Motivation for looking at $B_{d,s} \rightarrow D_{d,s}(\pi,K)$
- Constraining SU(3) uncertainties in B \rightarrow D π
- Expected precision from separate analyses of B_s→D_sK and B→Dπ
- Combined analysis with U-spin symmetry
- Further theoretical inputs required

MOTIVATION

MEASURING γ WITH $\mathbf{B_q} \rightarrow \mathbf{D_q} \mathbf{u_q}$

- The $B_q^0 \rightarrow D_q u_q$ family are tree level decays
 - ➤ Not sensitive to New Physics

Provide a SM baseline of γ for other measurements

Current SM values of CKM angles:

$$\alpha = (87.8^{+5.8}_{-5.4})^{\circ}$$

$$\beta = (21.5^{+1.0}_{-1.0})^{\circ}$$

$$\gamma = \left(72^{+34}_{-30}\right)^{\circ}$$
Ref: CKMFitter Moriond 2008

$$B^0$$
 b C D^-

$$B_s^0 \left\{ \frac{\overline{b}}{s} \right\} \frac{\sqrt{c}}{c} \left\{ \frac{\overline{s}}{s} \right\} D_s^-$$

$$B_{s}^{0}\left\{ \overline{b} \right\} \underbrace{K^{-}}_{s}^{\overline{s}} \left\{ \overline{b} \right\} K^{-}$$

LHCB PERFORMANCE PREVIEW

What is the expected LHCb precision on γ ?

- > 10° with 1 year of data taking (2fb⁻¹) in $B_s \rightarrow D_s K$
- \sim 20° with 1 year of data taking (2fb⁻¹) possible in B_d→Dπ

Can also use $B_d \rightarrow D^*\pi$, $B_s \rightarrow D_s^*K$

Will discuss in more detail later in the talk... just whetting your appetite for now.

DEPENDENCE ON γ

The dependence on γ comes from time dependent rate asymmetries:

$$A(B \to D_q \overline{u}_q) = \frac{C \cos(\Delta m \tau) + S \sin(\Delta m \tau)}{\cosh(\Delta \Gamma_q t/2) - A_{\Delta \Gamma} \sinh(\Delta \Gamma_q t/2)}$$

Since there are two possible final states, one obtains two asymmetries, and hence two (to first order) independent constraints on γ

ASYMMETRIES IN MORE DETAIL

C, S, A_{$\Delta\Gamma$} are the observable parameters, from which γ is extracted (from now on "CP observables"

- C can only be resolved for large x_q
- $\triangleright \mathbf{A}_{\Delta\Gamma}$ can only be resolved for large $\Delta\Gamma$

$$S = \frac{2x_q \sin(\delta_q + \phi_q - \gamma)}{(x_q^2 + 1)} \qquad C_q = -\frac{1 - x_q^2}{1 + x_q^2}$$

$$\left|A_{\Delta\Gamma}\left(B_q^0 \to D_q \overline{u}_q\right)\right|^2 + \left|C\left(B_q^0 \to D_q \overline{u}_q\right)\right|^2 + \left|S\left(B_q^0 \to D_q \overline{u}_q\right)\right|^2 = 1$$

And there are of course three analogous parameters for the "other" asymmetry

GOING DEEPER INTO THE TERMINOLOGY

The dependence on γ is contained in the CP-observable S

$$S = \frac{2x_q \sin(\delta_q + \phi_q - \gamma)}{(x_q^2 + 1)}$$

 $\mathbf{x_q}$ is the ratio of the interfering tree-level diagrams; the bigger $\mathbf{x_q}$, the more sensitive the decay is to γ

$$x_d = -\left(\frac{\lambda^2 R_b}{1 - \lambda^2}\right) a_d$$

$$x_s = R_b a_s$$

ONE FINAL STEP...

The formulas for $x_{d,s}$ come from the decay amplitudes

$$x_s = R_b a_s \approx 0.4$$

$$x_s = R_b a_s \approx 0.4 \quad x_d = -\left(\frac{\lambda^2 R_b}{1 - \lambda^2}\right) a_d \approx 0.02$$

x is large enough to fit from data

BUT

x_d must be externally constrained!

WHERE DOES THIS LEAVE US?

 $B_s \rightarrow D_s K$ and $B_d \rightarrow D\pi$ decays are sensitive to γ

We measure γ from time dependent CP asymmetries

The observables which carry the dependence on γ also depend on the ratio of the interfering tree level diagrams

 \succ This interference is big enough to fit from the data for the B_s case, but too small for B_d

In order to extract from $B_d \rightarrow D\pi$, we need an external constraint on $x_d!$

CONSTRAINING X_d

BEFORE WE PROCEED

In all following slides

$$r^{D(*)h} \equiv X_d$$

THE STARTING POINT

Estimate $r^{D(*)h}$ from $B^0 \rightarrow D_s^{(*)+}\pi^-/\rho^-$ using SU(3) symmetry [1]

$$r^{D^{(*)}h} = \sqrt{\frac{\mathcal{B}(B^0 \to D_s^{(*)+}h^-)}{\mathcal{B}(B^0 \to D^{(*)-}h^+)}} \left| \frac{V_{cd}}{V_{cs}} \right| \frac{f_{D^{(*)}}}{f_{D_s^{(*)}}}$$

Max Baak

CKM Workshop 2006, Nagoya

^[1] I. Dunietz, Phys. Lett. B 427, 179 (1998)

SOURCES OF SU(3) BREAKING

Amplitude relation assumes factorization

- Not (yet) been proven to work for wrong-charm b→u transitions
- i.e. No theoretical handle on size of non-factorizable contributions involved

Three potential sources of SU(3) breaking between $D_s^{(*)}h$ and $D_s^{(*)}h$:

- 1. Unknown SU(3) breaking uncertainty from non-factorizable contributions
- 2. Final state interactions: different rescattering diagrams
- Missing W-exchange diagrams in calculation

Accounted for by introducing theoretical uncertainty on amplitude ratio $r^{D(*)h}$

- Size of uncertainty not well understood
- Typically guestimated to be 30% of size of amplitude ratio.

Max Baak

CKM Workshop 2006, Nagoya

RESCATTERING CORRECTION

- 1. Rescattering is parametarized as a multiplicative correction to the amplitude ratio:
- 2. Rescattering is independent of formation process, so can be calculated from CKM-favoured modes
- 3. Fit to the strong-interaction rescattering matrix using experimental inputs to obtain correction factors
- 4. Can check validity of method by comparing predicted rescattering branching ratios to measured ones

BR (x10 ⁻⁴)	Factorized B	Rescattered B	Measured \mathcal{B}	χ
$B^+ \rightarrow \bar{D}^0 \pi^+$	48.6	48.6	49.2 ± 2.0	+0.29
$B^0 \rightarrow D^- \pi^+$	1,725,770,40,770	. ISTMINATO	I Bellevi Kramer de Gerande I Allies	rit scrinoverice
	32.7	28.0	28.3 ± 1.7	+0.20
$B^0 \rightarrow \bar{D}^0 \pi^0$	0.50	2.39	2.61 ± 0.24	+0.90
$B^0 \to D_s^- K^+$	0.00	0.25	0.27 ± 0.06	+0.41
$B^0 \rightarrow \bar{D}^0 \eta$	0.00	1.36	2.02 ± 0.35	+1.89
$B^0 \rightarrow \bar{D}^0 \eta'$	0.08	1.25	1.25 ± 0.23	+0.02
$B^+ \rightarrow D^0 K^+$	3.90	3.90	4.08 ± 0.24	+0.75
$B^0 \rightarrow D^- K^+$	2.6	2.2	2.0 ± 0.6	-0.27
$B^0\! o\!ar D^0 K^0$	0.08	0.53	0.52 ± 0.07	-0.12
$B^+ \rightarrow D^{*0}\pi^+$	50.3	50.3	46 ± 4	-1.08
$B^0 \to D^{*-} \pi^+$	33.0	28.3	27.6 ± 2.1	-0.34
$B^0\! o\!ar D^{*0}\pi^0$	0.60	2.51	1.73 ± 0.42	-1.86
$B^0 \rightarrow D_s^{*-}K^+$	0.00	0.23	0.18 ± 0.06	-0.87
$B^0\! o\!ar{D}^{*0}\eta$	0.07	1.34	1.78 ± 0.56	+0.79
$B^0\! o\!ar D^{*0}\eta'$	0.10	1.24	1.23 ± 0.35	-0.03
$B^+ \rightarrow \bar{D}^{*0}K^+$	3.88	3.88	3.7 ± 0.4	-0.44
$B^0 \to D^{*-}K^+$	2.53	2.10	2.1 ± 0.2	+0.21
$B^0\! o\! ar D^{*0}K^0$	0.09	0.53	0.36 ± 0.12	-1.35
$B^+ \rightarrow \bar{D}^0 \rho^+$	101	101	134 ± 18	+1.86
$B^0 \rightarrow D^- \rho^+$	76.3	71.1	75 ± 12	+0.32
$B^0 \rightarrow \bar{D}^0 \rho^0$	0.4	3.1	2.9 ± 1.1	-0.19
$B^0 \to D_s^- K^{*+}$	0.0	0.0	0.0 ± 6.6	0.00
$B^0 \rightarrow \bar{D}^0 \omega$	0.2	2.6	2.6 ± 0.6	-0.10
$B^0\! o\!ar{D}^0\phi$	0.0	0.0	-	-
$B^+ \rightarrow \bar{D}^0 K^{*+}$	5.9	5.9	6.3 ± 0.8	+0.49
$B^0 \rightarrow D^- K^{*+}$	4.2	3.9	4.5 ± 0.7	+0.79
$B^0\! o\!ar D^0K^{*0}$	0.08	0.36	0.40 ± 0.08	+0.48

Max Baak

CKM Workshop 2006, Nagoya

Naive amplitude ratio :

$$r^{D^{(*)}h} = \sqrt{\frac{\mathcal{B}(B^0 \to D_s^{(*)+}h^-)}{\mathcal{B}(B^0 \to D^{(*)-}h^+)}} \bigg| \frac{V_{cd}}{V_{cs}} \bigg| \frac{f_{D^{(*)}}}{f_{D_s^{(*)}}}$$

> SU(3) rescattering correction factor R_i to amplitude ratio r^{D(*)h}:

W EXCHANGE CORRECTION

- 1. Estimate from effective hamiltonians for the two processes (tree-level and exchange) using naive factorization
- 2. However, factorization is not reliable for colour-suppressed decays
- 3. Add a large systematic error to account for this:

No exchange diagram for final state $D_s \pi/\rho$

NON-FACTORIZABLE SU(3) CORRECTIONS

- 1. Estimate residual SU(3) breaking from non-factorizable contributions using $B \rightarrow D_s *\pi$
- 2. Relate the measured branching ratio to the rescatteringcorrected factorization prediction
- 3. Precise estimate from factorization is possible by relating $B \rightarrow D_s *\pi$ to semileptonic B decays
 - \triangleright Assuming up to 3 times typical SU(3) breaking scale for B⁰ $\to \pi$ -D_(s)*+:

$$\begin{split} \left| \bar{a}^{\text{c}} \, \frac{2m_s}{\Lambda_{\chi}} \right| &< 2 \left(\frac{2m_s}{\Lambda_{\chi}} \right) \left| \frac{\mathcal{R}e(\tilde{a}_s^{\text{corr}}) + \frac{1}{2} |\tilde{a}_s^{\text{corr}}|^2}{|1 + \tilde{a}_s^{\text{corr}}|^2} \right| \\ &< 0.085 \, \, (0.120) \, \, @ \, 68.3\% \, \, (90\%) \, \, \text{C.L.} \end{split}$$

Max Baak

CKM Workshop 2006, Nagoya

THE FINAL ERROR BUDGET

> Amplitude ratios after rescattering correction:

$$r^{D^{(*)}h} = \sqrt{\frac{\mathcal{B}(B^0 \to D_s^{(*)+}h^-)}{\mathcal{B}(B^0 \to D^{(*)-}h^+)}} \left| \frac{V_{cd}}{V_{cs}} \right| \frac{f_{D^{(*)}}}{f_{D_s^{(*)}}} R_i$$

Decay	Predicted $r^{D^{(*)}h}$ (×10 ⁻²)
$B^0 o D^\mp \pi^\pm$	$1.54 \pm 0.18 (\mathcal{B}) \pm 0.09 (r.f_{D_{(s)}}) \pm 0.17 (V_{cq}) \pm 0.01 (\text{rsc.})$
$B^0 o D^{*\mp}\pi^\pm$	$2.15 \pm 0.30 (\mathcal{B}) \pm 0.12 (r.f_{D_{(s)}}) \pm 0.24 (V_{cq}) \pm 0.01 (\text{rsc.})$
$B^0 o D^\mp ho^\pm$	$0.33 \pm 0.59 (\mathcal{B}) \pm 0.02 (r.f_{D_{(s)}}) \pm 0.04 (V_{cq})$

- ➤ New since PDG '06: large uncertaintainty from V_{cs}
- ➤ We add 9% Gaussian errors for SU(3) from nonfactorizable contributions and 5% flat errors for SU(3) breaking from W-exchange diagrams.

OVERALL ERROR NOW TAKEN AS 20%

Max Baak

CKM Workshop 2006, Nagoya

EXPECTED PRECISIONS AT LHCB

$$\gamma = 60^{\circ}$$

ASSUMED THROUGHOUT

B_s→D_sK

- Use untagged $B_s \rightarrow D_s K$ events to resolve $A_{\Lambda\Gamma}$
- Use $B_s \rightarrow D_s \pi$ events to help constrain $\Delta \Gamma_s$ and Δm_s
- Results in twofold ambiguity on γ

	Yield (2fb ⁻¹)	B/S
B _s →D _s K	6.2k	0.2
B _s →D _s π	140k	0.7

With 2fb⁻¹ of data:

	Precision with tagged & untagged events
γ + ϕ s	10.3 °
$\Delta_{\sf ms}$	0.007 ps ⁻¹
X _s	0.06

Ref: CERN-LHCb-2005-036 CERN-LHCb-2007-017 CERN-LHCb-2007-041

Two problems:

- 1) The uncertainty on $\mathbf{x_d}$ introduces correlations between the two asymmetries.
 - The errors on each observable worsen, and after some time are saturated by the correlations.
- 2) The negligible lifetime difference in the ${\bf B_d}$ system means ${\bf A}_{\Delta\Gamma}$ is not accesible
 - > The eight-fold ambiguity on γ remains. Also, the precisions vary with the value of the strong phases.

Both will be resolved by using U-spin symmetry!

$B_D \rightarrow D\pi$: 5 YEARS, FACTORIZATION LIMIT

$B_D \rightarrow D\pi$: 5 YEARS, LARGE STRONG PHASE

USING U-SPIN

U-SPIN OVERVIEW

U-spin is a subgroup of SU(3)

➤ QCD effects same if decays are related by interchange of **d** and **s** quarks

QCD effects are parameterized by strong amplitudes ($\mathbf{a}_{s,d}$) and phases ($\delta_{s,d}$)

$$x_{s} = R_{b} a_{s}$$

$$x_{d} = -\left(\frac{\lambda^{2} R_{b}}{1 - \lambda^{2}}\right) a_{d}$$

$$S = \frac{2x_q \sin(\delta_q + \phi_q - \gamma)}{(x_q^2 + 1)}$$

Three different assumptions: equal phases and amplitudes, equal phases only, equal amplitudes only

Major advantage: no need to resolve x_d

Ref: Fleischer, hep-ph/0304027

ASSUMING EQUAL STRONG PHASES

Can make a "minimal" U-spin assumption

Strong phase in $B \rightarrow D\pi$ is the same as in $B_s \rightarrow D_s K$

Introduce this as a Gaussian constraint in the contour plots to resolve the ambiguities

- Assume strong phase known to 20° (theoretical and experimental error) after 1 year
- > And 10° after 5 years

In this case, still need external kowledge of x_d

$B_D \rightarrow D\pi$: 1 YEAR, LARGE STRONG PHASE, U-SPIN

$B_D \rightarrow D\pi$: 5 YEARS, LARGE STRONG PHASE, U-SPIN

 γ known to 10 degrees – useful for a global constraint!

MORE SOPHISTICATED U-SPIN TREATMENT

Introduce new "orthogonal" CP-observables

$$\langle S_q \rangle_+ = \frac{S_q + \overline{S}_q}{2} = \frac{2x_q \cos \delta_q}{1 + x_q^2} \sin(\varphi_q + \gamma)$$

$$\langle S_q \rangle_{-} = \frac{S_q - \overline{S}_q}{2} = \frac{2x_q \sin \delta_q}{1 + x_q^2} \cos(\varphi_q + \gamma)$$

Will now use $B_s \rightarrow D_s K$ and $B \rightarrow D\pi$ information at the same time to get a combined constraint on γ

STRONG U-SPIN ASSUMPTION

Uses the relations

(1)
$$\left[\frac{a_s \cos \delta_s}{a_d \cos \delta_d} \right] R = - \left[\frac{\sin(\phi_d + \gamma)}{\sin(\phi_s + \gamma)} \right] \left[\frac{\langle S_s \rangle_+}{\langle S_d \rangle_+} \right]$$

(2)
$$\left[\frac{a_s \sin \delta_s}{a_d \sin \delta_d} \right] R = - \left[\frac{\cos(\phi_d + \gamma)}{\cos(\phi_s + \gamma)} \right] \left| \frac{\langle S_s \rangle_-}{\langle S_d \rangle_-} \right|$$

to extract γ under the assumptions $\delta_d = \delta_s$ and $a_d = a_s$

The parameter **R** can be determined from
$$B_s \rightarrow D_s K$$

$$R = \left(\frac{1 - \lambda^2}{\lambda^2}\right) \left|\frac{1 + x_d^2}{1 + x_s^2}\right|$$

 \triangleright $\mathbf{x_d}$ is a negligable second order correction.

PHASE U-SPIN ASSUMPTION

Uses the relation

$$\left[\frac{\tan(\phi_d + \gamma)}{\tan(\phi_s + \gamma)}\right] = \left[\frac{\tan\delta_s}{\tan\delta_d}\right] \left[\frac{\langle S_s \rangle_-}{\langle S_s \rangle_+}\right] \left[\frac{\langle S_d \rangle_+}{\langle S_d \rangle_-}\right]$$

to extract γ under the assumption $\delta_d = \delta_s$. It does not require any assumption about the value of a_d or a_s .

AMPLITUDE U-SPIN ASSUMPTION

Uses the relation

$$\left(\frac{a_s}{a_d}\right)R = \sigma \left|\frac{\sin(2\phi_d + 2\gamma)}{\sin(2\phi_s + 2\gamma)}\right| \sqrt{\frac{\langle S_s \rangle_+^2 \cos^2(\phi_s + \gamma) + \langle S_s \rangle_-^2 \sin^2(\phi_s + \gamma)}{\langle S_d \rangle_+^2 \cos^2(\phi_d + \gamma) + \langle S_d \rangle_-^2 \sin^2(\phi_d + \gamma)}}$$

to extract γ under the assumption $\mathbf{a_d} = \mathbf{a_s}$. It does not require any assumption about the value of δ_d or δ_s , apart from an assumption about their relative signs

if $\cos(\delta_d)$ has the same sign as $\cos(\delta_s)$,

$$\sigma = -\operatorname{sgn}\left[\left\langle S_{s}\right\rangle_{+}\left\langle S_{d}\right\rangle_{+}\sin(\phi_{d}+\gamma)\sin(\phi_{s}+\gamma)\right]$$

if $\sin(\delta_d)$ has the same sign as $\sin(\delta_s)$,

$$\sigma = -\operatorname{sgn}\left[\left\langle S_{s}\right\rangle_{-}\left\langle S_{d}\right\rangle_{-}\cos(\phi_{d} + \gamma)\cos(\phi_{s} + \gamma)\right]$$

EXAMPLE RESULT: γ =60°, δ =60° (~1 YEAR)

ESTIMATING U-SPIN BREAKING

U-spin breaking is typically guesstimated at 30%

Has been argued to be a better symmetry than SU(3) in certain cases...

Because U-spin does not depend on assumptions about relative sizes of different decay topologies, unlike SU(3)*

Would be nice to have a detailed error budget before we try to publish a measurement...

Ideally a list as produced by Max Baak for x_d :

 \triangleright U-spin breaking effect X can be estimated at Y% from control channel(s) $Z_{1,2,3,...}$

*Ref: Soni&Suprun, hep-ph/0609089

BACKUP

$B_D \rightarrow D\pi$: 1 YEAR, FACTORIZATION LIMIT, U-SPIN

$B_D \rightarrow D\pi$: 5 YEARS, FACTORIZATION LIMIT, U-SPIN

EXAMPLE RESULT: γ =60°, δ =60° (5 YEARS)

EXAMPLE RESULT: γ =60°, δ =10° (5 YEARS)

EXAMPLE RESULT: γ =60°, δ =85° (5 YEARS)

EXAMPLE RESULT: γ =60°, δ =30° (5 YEARS)

W-exchange amplitudes

SU(3) breaking error on r[D(*)h] from missing exchange diagram:

$$\left| \frac{E}{T} \right| = \sqrt{\frac{BR\left(B^0 \to D_s^{(*)-}K^+\right)}{BR\left(B^0 \to D^{(*)-}\pi^+\right)}} \approx 10\%$$

- Ignores rescattering contribution to D_sK ⇒ overestimation of E
- W-exchange amplitudes from rescattering fit consistent with naive factorization estimates!
- Large uncertainty on |E/T| estimate for $b \rightarrow u$ transition:
- 1. Factorization uncertainty for $b \rightarrow u$
- Value of Callan-Treiman prediction:

$$F_0^{0 \to D\pi} \left[m_B^2 \right] \Box \frac{m_D^2}{m_B^2} \frac{f_D}{f_\pi} = 0.21$$

Add 200% error on predicted ratio:

$$D\pi : \left| \frac{E}{T} \right| < 0.029 \ (0.058) \ @ 68\% \ (95\%)$$

$$D^*\pi : \left| \frac{E}{T} \right| < 0.021 \ (0.041) \ @ 68\% \ (95\%)$$

$$D\rho : \left| \frac{E}{T} \right| < 0.033 \ (0.066) \ @ 68\% \ (95\%)$$

 $b \rightarrow c$ transition

$$\left| \frac{E}{T} \right| = \frac{a_2}{a_1} \frac{f_B}{f_\pi} \left(\frac{m_D^2 - m_\pi^2}{m_B^2 - m_D^2} \right) \frac{F_0^{0 \to D\pi} \left[m_B^2 \right]}{F_0^{B \to D} \left[m_\pi^2 \right]} \square \quad 0.7\%$$

 $b \rightarrow u transition$

$$\left| \frac{E}{T} \right| = \frac{a_2}{a_1} \frac{f_B}{f_D} \left(\frac{m_D^2 - m_\pi^2}{m_B^2 - m_\pi^2} \right) \frac{F_0^{0 \to D\pi} \left[m_B^2 \right]}{F_0^{B \to \pi} \left[m_D^2 \right]} \square \ 1.3\%$$

|E/T| < 5.0%

Non-factorizable SU(3) breaking

1

> SU(3) breaking in amplitude ratio r from non-factorizable contributions:

$$\begin{split} |\Delta| &= \Delta_0 \left| \frac{1 + \tilde{a}_d^{\text{corr}}}{1 + \tilde{a}_s^{\text{corr}}} \right| & \text{Non-factorizable amplitude B}^0 \rightarrow \text{h·D(*)+} \\ &= \Delta_0 \left| 1 + \left(\frac{\tilde{a}_d^{\text{corr}} - \tilde{a}_s^{\text{corr}}}{1 + \tilde{a}_s^{\text{corr}}} \right) \right| \\ &\approx \Delta_0 \left(1 + \frac{\left[\mathcal{R}e(\tilde{a}_d^{\text{corr}}) + \frac{1}{2} \left| \tilde{a}_d^{\text{corr}} \right|^2 \right] - \left[\mathcal{R}e(\tilde{a}_s^{\text{corr}}) + \frac{1}{2} \left| \tilde{a}_s^{\text{corr}} \right|^2 \right]}{\left(1 + \tilde{a}_s^{\text{corr}} \right|^2} \right) \\ &\equiv \Delta_0 \left(1 + \overline{a}^c \frac{2m_s}{\Lambda_\chi} \right) \end{split}$$

$$< 0.17 @ 68.3\% \text{ CL}$$

- Additional SU(3) breaking proportional to non-factorizable contributions times perturbation parameter
- Assuming up to 3 times typical SU(3) breaking scale for B⁰→π⁻D_(s)*+:

$$\left| \bar{a}^{\text{c}} \frac{2m_s}{\Lambda_{\chi}} \right| < 2 \left(\frac{2m_s}{\Lambda_{\chi}} \right) \left| \frac{\mathcal{R}e(\tilde{a}_s^{\text{corr}}) + \frac{1}{2} |\tilde{a}_s^{\text{corr}}|^2}{|1 + \tilde{a}_s^{\text{corr}}|^2} \right|$$

$$< 0.085 \ (0.120) \ @ 68.3\% \ (90\%) \ \text{C.L.}$$

Non-factorizable b → u contributions

 \triangleright Relative size of non-factorizable amplitude: \tilde{a}_s^{corr}

$$|1 + \tilde{a}_{s}^{\text{corr}}| \equiv \sqrt{\frac{\mathcal{B}_{\text{meas}}(B^{0} \to \pi^{-}D_{s}^{*+})}{\mathcal{B}_{\text{resc}}(B^{0} \to \pi^{-}D_{s}^{*+})}} \approx 1 + \mathcal{R}e(\tilde{a}_{s}^{\text{corr}}) + \frac{1}{2}|\tilde{a}_{s}^{\text{corr}}|^{2}$$

$$= 1.176 \pm 0.167 \text{ (exp.)} \pm 0.057 \text{ (}f_{D_{s}^{*}}\text{)} \pm 0.014 \text{ (rsc.)}$$

$$\left| \frac{\mathcal{R}e(\tilde{a}_s^{\text{corr}}) + \frac{1}{2} |\tilde{a}_s^{\text{corr}}|^2}{|1 + \tilde{a}_s^{\text{corr}}|^2} \right| \approx \left| \frac{1}{|1 + \tilde{a}_s^{\text{corr}}|} - \frac{1}{|1 + \tilde{a}_s^{\text{corr}}|^2} \right|$$

$$< 0.17 \ (0.24) \ @ 68.3\% \ (90\%) \ \text{C.L.}$$

- \triangleright Limit should improve with updates of: BR(B $\rightarrow \pi l \nu$), BR(B $^0 \rightarrow \pi^- D_s^{*+}$), f_{Ds} .
- > Two definitions to describe SU(3) breaking from non-factorizable corrections: