y determination at LHCb

Angelo Carbone (INFN-Bologna) on behalf of LHCb collaboration

Focus Week "B@LHC"

27th May 2008

Overview

SM prediction

- Unitary Triangle prediction of SM γ is ~7°
- LHCb goal is to measure γ in SM-clean way to match the precision of indirect measurements and check if the prediction is correct
 - Tree processes \rightarrow very clean place to measure γ even if any New Physics effect in mixing will perturb the measurements
 - $B^{\pm} \rightarrow D^0 K^{\pm}$, $B^0 \rightarrow D^0 K^{0*}$
 - direct γ measurements using ADS, GLW and Dalitz methods
 - $B_s^0 \rightarrow D_s K^{\pm}$
 - measure γ -2 β_s
 - Loop processes → a discrepancy between this and the tree-level measurements may point out New Physics in the loops
 - B → h⁺h⁻
 - Measure combination of γ , β and β_s using SU(3) symmetry

Current experimental status on γ from UTfit

Direct measurements from B-DK, D*K and DK*

bound from B \rightarrow DK, D*K and DK* decays with present measurements using all the methods.

$$\gamma$$
= (88 ± 16)° ([41,123] @ 95% Prob.)
 γ up to π ambiguity

Measuring y from B→h+h-

- $B_d \rightarrow \pi^+ \pi^-$ and $B_s \rightarrow K^+ K^-$ can be used to extract γ up to U-spin breaking conditions
- The presence of penguins is an addition opportunity to mixing to spot ot new physics
 - New Physics might show up also in loops of the penguin diagrams
 - CKM quantities from these modes can differ from the ones from tree-level modes, assuming they are unaffected from NP
- Can also be used to probe the size of U-spin breaking, together with $B_d \rightarrow K^+\pi^-$ and $B_s \rightarrow \pi^+K^-$

U-spin ($d \leftarrow \rightarrow s$ quark exchange) symmetric modes

$B_d \rightarrow \pi^+\pi^-$	$B_s \rightarrow K^+K^-$
T+P+P ^C EW+PA+E	T+P+PC _{EW} +PA+E
$B_d \rightarrow \pi^+\pi^-$	$B_s \rightarrow \pi^+ K^-$
T+P+P ^C EW+PA+E	T+P+PCEW
$B_s \rightarrow K^+K^-$	$B_d \rightarrow K^+\pi^-$
T+P+P ^C EW+P A + E	T+P+PC _{EW}

T: tree
P: penguin
P^CEW: colour
suppressed
electroweak
penguin
PA: penguin
annihilation
E: exchange

- Not all exactly U-spin symmetric, E and PA contributions missing from flavour specific decays
- E and PA contributions expected to be relatively small, and can be experimentally probed by measuring the still unobserved $B_s \to \pi^+\pi^-$ and $B_d \to K^+K^-$ branching ratios (BR~10⁻⁸)

Event yields at LHCb up to 2fb-1

	$B_d \rightarrow \pi\pi$	$B_d \rightarrow K\pi$	$B_s \rightarrow KK$	$B_s \rightarrow \pi K$
L=0.01 fb ⁻¹	0.18k	0.69k	0.18k	0.05k
L=0.5 fb ⁻¹	9k	34.5k	9k	2.5k
L=2 fb ⁻¹	36k	138k	36k	10k
B/S	0.5	<0.06	0.15	1.9

 LHCb will be statistically competitive with the final luminosity of Tevatron (assuming L=6fb⁻¹) already when approaching L=0.5fb⁻¹

Performance of hadron PID: invariant mass spectra

■ One major advantage of LHCb with respect to the Tevatron (in addition to cross section of course): the particle identification system allows the different $B \rightarrow h^+h^-$ modes to be strongly separated

 Every h⁺h'- channel is potentially a background for the other channels...

Performance of hadron PID: invariant mass spectra

■ One major advantage of LHCb with respect to the Tevatron (in addition to cross section of course): the particle identification system allows the different $B \rightarrow h^+h^-$ modes to be strongly separated

 ...but impressive performance of RICH systems allows to select very clean samples

Tree, penguins and... Y

$$\mathbf{A}_{\pi^+\pi^-} = \mathbf{V}_{ub}^* \mathbf{V}_{ud} \cdot \mathbf{T}^u + \mathbf{V}_{ub}^* \mathbf{V}_{ud} \cdot \mathbf{P}^u + \mathbf{V}_{cb}^* \mathbf{V}_{cd} \cdot \mathbf{P}^c + \mathbf{V}_{tb}^* \mathbf{V}_{td} \cdot \mathbf{P}^t$$

$$\mathbf{A}_{\pi^{+}\pi^{-}} = \mathbf{C} \left(\mathbf{e}^{\mathbf{i}\gamma} - \mathbf{d}\mathbf{e}^{\mathbf{i}\vartheta} \right) \qquad \overline{\mathbf{A}}_{\pi^{+}\pi^{-}} = \mathbf{C} \left(\mathbf{e}^{-\mathbf{i}\gamma} - \mathbf{d}\mathbf{e}^{\mathbf{i}\vartheta} \right)$$

$$\mathbf{C} \equiv \lambda^3 \mathbf{A} \mathbf{R}_{b} \left(\mathbf{T}^{u} + \mathbf{P}^{u} - \mathbf{P}^{t} \right) \qquad \mathbf{d} \mathbf{e}^{i\vartheta} \equiv \frac{1}{\mathbf{R}_{b}} \left(\frac{\mathbf{P}^{c} - \mathbf{P}^{t}}{\mathbf{T}^{u} + \mathbf{P}^{u} - \mathbf{P}^{t}} \right)$$

$$\boldsymbol{A}_{\boldsymbol{K^{+}K^{-}}} = \boldsymbol{V}_{ub}^{*}\boldsymbol{V}_{us} \cdot \boldsymbol{T^{'u}} + \boldsymbol{V}_{ub}^{*}\boldsymbol{V}_{us} \cdot \boldsymbol{P^{'u}} + \boldsymbol{V}_{cb}^{*}\boldsymbol{V}_{cs} \cdot \boldsymbol{P^{'c}} + \boldsymbol{V}_{tb}^{*}\boldsymbol{V}_{ts} \cdot \boldsymbol{P^{'t}}$$

$$A_{K^+K^-} = \frac{\lambda}{1 - \lambda^2 / 2} C' \left(e^{i\gamma} + \frac{1 - \lambda^2}{\lambda^2} d' e^{i\vartheta'} \right)$$

$$\overline{A}_{K^+K^-} = \frac{\lambda}{1 - \lambda^2 / 2} C' \left(e^{-i\gamma} + \frac{1 - \lambda^2}{\lambda^2} d' e^{i\vartheta'} \right)$$

$$\mathbf{C'} \equiv \lambda^3 \mathbf{A} \mathbf{R}_{b} \left(\mathbf{T'}^{u} + \mathbf{P'}^{u} - \mathbf{P'}^{t} \right) \qquad \mathbf{d'} \mathbf{e}^{i\vartheta'} \equiv \frac{1}{\mathbf{R}_{b}} \left(\frac{\mathbf{P'}^{c} - \mathbf{P'}^{t}}{\mathbf{T'}^{u} + \mathbf{P'}^{u} - \mathbf{P'}^{t}} \right)$$

$$R_b \equiv \frac{1}{\lambda} \left(1 - \frac{\lambda^2}{2} \right) \left| \frac{V_{ub}}{V_{cb}} \right|$$

Using method and parameterization from R. Fleischer, PLB 459 (1999) 306

Tree, penguins and... Y

$$\mathbf{A}_{\pi^+\pi^-} = \mathbf{V}_{ub}^* \mathbf{V}_{ud} \cdot \mathbf{T}^u + \mathbf{V}_{ub}^* \mathbf{V}_{ud} \cdot \mathbf{P}^u + \mathbf{V}_{cb}^* \mathbf{V}_{cd} \cdot \mathbf{P}^c + \mathbf{V}_{tb}^* \mathbf{V}_{td} \cdot \mathbf{P}^t$$

$$\mathbf{A}_{\pi^{+}\pi^{-}} = \mathbf{C} \left(\mathbf{e}^{\mathbf{i}\gamma} - \mathbf{d}\mathbf{e}^{\mathbf{i}\vartheta} \right) \qquad \overline{\mathbf{A}}_{\pi^{+}\pi^{-}} = \mathbf{C} \left(\mathbf{e}^{-\mathbf{i}\gamma} - \mathbf{d}\mathbf{e}^{\mathbf{i}\vartheta} \right)$$

$$\overline{\mathbf{A}}_{\pi^{+}\pi^{-}} = \mathbf{C} \left(\mathbf{e}^{-\mathbf{i}\gamma} - \mathbf{d}\mathbf{e}^{\mathbf{i}\vartheta} \right)$$

$$\mathbf{C} \equiv \lambda^3 \mathbf{A} \mathbf{R}_{\mathrm{b}} \left(\mathbf{T}^{\mathrm{u}} + \mathbf{P}^{\mathrm{u}} - \mathbf{P}^{\mathrm{t}} \right)$$

$$C \equiv \lambda^3 A R_b \left(T^u + P^u - P^t \right) \qquad de^{i\vartheta} \equiv \frac{1}{R_b} \left(\frac{P^c - P^t}{T^u + P^u - P^t} \right)$$

$$\boldsymbol{A}_{\boldsymbol{K^{+}K^{-}}} = \boldsymbol{V}_{ub}^{*}\boldsymbol{V}_{us} \cdot \boldsymbol{T^{'u}} + \boldsymbol{V}_{ub}^{*}\boldsymbol{V}_{us} \cdot \boldsymbol{P^{'u}} + \boldsymbol{V}_{cb}^{*}\boldsymbol{V}_{cs} \cdot \boldsymbol{P^{'c}} + \boldsymbol{V}_{tb}^{*}\boldsymbol{V}_{ts} \cdot \boldsymbol{P^{'t}}$$

$$\mathbf{A}_{\mathbf{K}^{+}\mathbf{K}^{-}} = \frac{\lambda}{1 - \lambda^{2} / 2} \mathbf{C}' \left(e^{i\gamma} + \frac{1 - \lambda^{2}}{\lambda^{2}} \right) \mathbf{d}' e^{i\vartheta'} \right)$$

$$\overline{A}_{K^+K^-} = \frac{\lambda}{1 - \lambda^2 / 2} C' \left(e^{-i\gamma} + \frac{1 - \lambda^2}{\lambda^2} d' e^{i\vartheta'} \right)$$

$$\mathbf{C'} \equiv \lambda^3 \mathbf{A} \mathbf{R}_{b} \left(\mathbf{T'}^{u} + \mathbf{P'}^{u} - \mathbf{P'}^{t} \right) \qquad \mathbf{d'} \mathbf{e}^{i\vartheta'} \equiv \frac{1}{\mathbf{R}_{b}} \left(\frac{\mathbf{P'}^{c} - \mathbf{P'}^{t}}{\mathbf{T'}^{u} + \mathbf{P'}^{u} - \mathbf{P'}^{t}} \right)$$

$$R_b \equiv \frac{1}{\lambda} \left(1 - \frac{\lambda^2}{2} \right) \left| \frac{V_{ub}}{V_{cb}} \right|$$

 $R_b \equiv \frac{1}{\lambda} \left(1 - \frac{\lambda^2}{2} \right) \left| \frac{V_{ub}}{V} \right|$ d' is double Cabibbo enhanced... i.e. by a factor 20. For d' = 0.5 the weak CP-violating term in the amplitude - which is sensitive to γ - is 10 times less significant than the hadronic CP-conserving one

Tree, penguins and... Y

$$\begin{split} \mathbf{A}_{\pi^{+}\pi^{-}} &= \mathbf{V}_{ub}^{*} \mathbf{V}_{ud} \cdot \mathbf{T}^{u} + \mathbf{V}_{ub}^{*} \mathbf{V}_{ud} \cdot \mathbf{P}^{u} + \mathbf{V}_{cb}^{*} \mathbf{V}_{cd} \cdot \mathbf{P}^{c} + \mathbf{V}_{tb}^{*} \mathbf{V}_{td} \cdot \mathbf{P}^{t} \\ \mathbf{A}_{\pi^{+}\pi^{-}} &= \mathbf{C} \Big(e^{i\vartheta} - \mathbf{d} e^{i\vartheta} \Big) & \overline{\mathbf{A}}_{\pi^{+}\pi^{-}} &= \mathbf{C} \Big(e^{-i\gamma} - \mathbf{d} e^{i\vartheta} \Big) \\ \mathbf{C} &\equiv \lambda^{3} \mathbf{A} \mathbf{R}_{b} \Big(\mathbf{T}^{u} + \mathbf{P}^{u} - \mathbf{P}^{t} \Big) & \mathbf{d} e^{i\vartheta} &\equiv \frac{1}{\mathbf{R}_{b}} \Bigg(\frac{\mathbf{P}^{c} - \mathbf{P}^{t}}{\mathbf{T}^{u} + \mathbf{P}^{u} - \mathbf{P}^{t}} \Bigg) \end{split}$$

$$\mathbf{A}_{\mathbf{K^+K^-}} = \mathbf{V}_{ub}^* \mathbf{V}_{us} \cdot \mathbf{T'}^u + \mathbf{V}_{ub}^* \mathbf{V}_{us} \cdot \mathbf{P'}^u + \mathbf{V}_{cb}^* \mathbf{V}_{cs} \cdot \mathbf{P'}^c + \mathbf{V}_{tb}^* \mathbf{V}_{ts} \cdot \mathbf{P'}^t$$

$$A_{K^+K^-} = \frac{\lambda}{1 - \lambda^2 / 2} C' \left(e^{i\gamma} + \frac{1 - \lambda^2}{\lambda^2} d' e^{i\vartheta'} \right)$$

$$\overline{A}_{K^+K^-} = \frac{\lambda}{1 - \lambda^2 / 2} C' \left(e^{-i\gamma} + \frac{1 - \lambda^2}{\lambda^2} d' e^{i\vartheta'} \right)$$

$$\mathbf{C'} \equiv \lambda^3 \mathbf{A} \mathbf{R}_{b} \left(\mathbf{T'^{u}} + \mathbf{P'^{u}} - \mathbf{P'^{t}} \right) \qquad \mathbf{d'} \mathbf{e}^{i\vartheta'} \equiv \frac{1}{\mathbf{R}_{b}} \left(\frac{\mathbf{P'^{c}} - \mathbf{P'^{t}}}{\mathbf{T'^{u}} + \mathbf{P'^{u}} - \mathbf{P'^{t}}} \right)$$

$$R_b \equiv \frac{1}{\lambda} \left(1 - \frac{\lambda^2}{2} \right) \left| \frac{V_{ub}}{V_{cb}} \right|$$

(P'u, P'c, P't) $R_b \equiv rac{1}{\lambda} igg(1 - rac{\lambda^2}{2} igg) igg| rac{V_{ub}}{V} igg|$ Relating by the U-spin symmetry the two amplitudes one gets d=d' and $\theta=\theta'$

Extraction of γ from observables

$$\begin{split} &C(B_d^0 \to \pi^+\pi^-) = f_1(d,\vartheta,\gamma) \\ &S(B_d^0 \to \pi^+\pi^-) = f_2(d,\vartheta,\gamma,\varphi_d) \\ &C(B_s^0 \to K^+K^-) = f_3(d',\vartheta',\gamma) \\ &S(B_s^0 \to K^+K^-) = f_4(d',\vartheta',\gamma,\varphi_s) \end{split} \qquad A_{CP}^{th}(\tau) = \frac{C \cdot cos(\Delta M \cdot \tau) - S \cdot sin(\Delta M \cdot \tau)}{cosh\bigg(\frac{\Delta \Gamma}{2} \cdot \tau\bigg) - A_{\Delta \Gamma} \cdot sinh\bigg(\frac{\Delta \Gamma}{2} \cdot \tau\bigg)} \end{split}$$

- Once the direct and mixing-induced CP-violating terms are measured, one has a system of
 - 7 unknowns
- However, the mixing phase ϕ_d (ϕ_s) is (will be) precisely measured from $B_d \rightarrow J/\psi K_S$ ($B_s \rightarrow J/\psi \phi$)
 - 5 unknowns
- Finally, relying on U-spin symmetry one eliminates two further unknowns
 - d=d', $\theta=\theta'$
 - \blacksquare 3 unknowns, system over-constrained, γ can be extracted unambiguously
 - one of the two U-spin relations can also be not used

LHCb sensitivity on γ using time dependent measurements of $B_d \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$

- Weak use of U-spin assumption
 - Strong phases θ and θ' left free during the fit (no U-spin assumed)
 - Strong magnitude related by U-spin d=d', but allowing for a 20% U-spin breaking
 - Fit results
 68% probability, excluding non-SM solution
 - $\sigma(\gamma) = 10^{\circ}$
 - $\sigma(\theta) = 9^{\circ}$
 - $\sigma(\Delta\theta) = 17^{\circ}$
 - $\sigma(d) = 0.18$

Same exercise, but with 5 years (L=10fb⁻¹)

Fit results
 68% probability,
 excluding non-SM
 solution

$$\bullet$$
 $\sigma(\gamma) = 5^{\circ}$

$$\bullet$$
 $\sigma(\theta) = 5^{\circ}$

•
$$\sigma(\Delta\theta) = 8^{\circ}$$

•
$$\sigma(d) = 0.09$$

More details CERN-LHCb-2007-059

Measuring γ from $B \rightarrow DK$

- parameters for CKM favoured $B \rightarrow \overline{D}^{0}K$ and disfavoured $B \rightarrow D^{0}K$
- if D^o and D^o are reconstructed in common final state than interference term involving gamma is accessed
- amplitude ratio $r_B = |A(B \rightarrow D^0K)|/|A(B \rightarrow \overline{D}^0K)|$
- δ_B , strong phases between amplitude $\rightarrow A(B \rightarrow D^0K) = A(B \rightarrow \overline{D}^0K) r_B e^{i(\delta_B \gamma)}$

 B^0 decays (both diagrams colour suppressed $\rightarrow r_B \sim 0.4$)

Combining ADS+GLW

• GLW method \rightarrow D° decays in CP eigenstate (h=K, π)

$$\Gamma(B^- \to (h^+ h^-)_D K^-) = N^{hh} (1 + r_B^2 + 2r_B \cos(\delta_B - \gamma)),$$

 $\Gamma(B^+ \to (h^+ h^-)_D K^+) = N^{hh} (1 + r_B^2 + 2r_B \cos(\delta_B + \gamma)).$

 $r_{D} = \frac{|A(D^{0} \rightarrow K^{+}\pi^{-})|}{|A(D^{0} \rightarrow K^{+}\pi^{-})|}$ $\delta_{D}^{K\pi} \text{ strong phase between amplitudes}$

• ADS method \rightarrow D⁰ decays in not CP eigenstate, $K\pi$

$$\Gamma(B^{-} \to (K^{-}\pi^{+})_{D}K^{-}) = N^{K\pi}(1 + (r_{B}r_{D}) + 2r_{B}r_{D}\cos(\delta_{B} - \delta_{D}^{K\pi} - \gamma))
\Gamma(B^{-} \to (K^{+}\pi^{-})_{D}K^{-}) = N^{K\pi}(r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos(\delta_{B} + \delta_{D}^{K\pi} - \gamma))
\Gamma(B^{+} \to (K^{+}\pi^{-})_{D}K^{+}) = N^{K\pi}(1 + (r_{B}r_{D}) + 2r_{B}r_{D}\cos(\delta_{B} - \delta_{D}^{K\pi} + \gamma))
\Gamma(B^{+} \to (K^{-}\pi^{+})_{D}K^{+}) = N^{K\pi}(r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos(\delta_{B} + \delta_{D}^{K\pi} + \gamma))$$

- Unknowns: r_B , δ_B , $d_D^{K\pi}$, γ , $N_{K\pi}$, N_{hh} (r_D =0.06 well measured)
- With knowledge of the relevant efficiencies and BRs, the normalisation constants ($N_{K\pi}$, N_{hh}) can be related to one another
- Important constraint from CLEO-c $\sigma(\cos(d_D^{K\pi}))=0.1-0.2$
- Overconstrained: 6 observables and 5 unknowns
- same relations in the neutral system but r_B expected to be ~ 0.4

Combining ADS+GLW

• GLW method \rightarrow D° decays in CP eingenstate (h=K, π)

$$\Gamma(B^{-} \to (h^{+}h^{-})_{D}K^{-}) = N^{hh}(1 + r_{B}^{2} + 2r_{B}\cos(\delta_{B} - \gamma)),$$

$$\Gamma(B^{+} \to (h^{+}h^{-})_{D}K^{+}) = N^{hh}(1 + r_{B}^{2} + 2r_{B}\cos(\delta_{B} + \gamma)).$$

 $r_{D} = \frac{|A(D^{0} \rightarrow K^{+}\pi^{-})|}{|A(D^{0} \rightarrow K^{+}\pi^{-})|}$ $\delta_{D}^{K\pi} \text{ strong phase between amplitudes}$

• ADS method \rightarrow D⁰ decays in not CP eingenstate, $K\pi$

 $r_D V^- r_D e^{i\delta_D}$

Only relative rates are measured, no flavour tagging id needed full LHCb statistics can be used

- With knowledge of the relevant efficiencies and BRs, the normalisation constants ($N_{K\pi}$, N_{hh}) can be related to one another
- Important constraint from CLEO-c $\sigma(\cos(d_D^{K\pi}))=0.1-0.2$
- Overconstrained: 6 observables and 5 unknowns
- same relations in the neutral system but r_B expected to be ~ 0.4

Measuring γ from B[±] \rightarrow D⁰K[±] (ADS+GLW)

Integrated luminosity 2fb-1				
Modes Signal Yield B/S				
$B \rightarrow D(K\pi)K$, favoured	56k	0.6		
$B \rightarrow D(K\pi)K$, suppressed 0.71k 2				
B→D(h+h-)K	7.8k	1.8		

- γ sensitivity of 10.8° - 13.8° in $2fb^{-1}$, depending on the strong phase in the D decays
- input parameters:
 - $r_B = 0.01$
 - $\delta_{\rm R} = 130^{\rm o}$
 - $r_D = 0.06$
 - $\gamma = 60^{\circ}$
 - Cleo-c results on $\delta_D^{K\pi}$ included

More details

CERN-LHCb-2008-011

Measuring γ from B⁰ \rightarrow D⁰K*⁰ (ADS+GLW)

Integrated luminosity 2fb-1				
Modes Signal Yield B/S (90%CL				
$B^0 \rightarrow D^0(K\pi)K^{*0}$, favoured	3.4k	[0.4, 2.1]		
$B^0 \rightarrow D^0(K\pi)K^{*0}$, suppressed 0.5k [2.2, 12.8]				
$B^0 \rightarrow D(K^+K^-)K^{*0}$	0.5k	[0, 4.1]		
$B^0 \rightarrow D(\pi^+\pi^-)K^{*0}$	0.1k	[0, 14]		

- sensitivity of 9° with integrated luminosity of 2fb-1
- input:
 - $rB_d = 0.4$
 - $\delta_{\rm B} = 10^{\circ}$
 - $\gamma = 60^{\circ}$

More details CERN-LHCb-2007-043

Measuring γ from $B^{\pm} \rightarrow D^{0}(K_{s}\pi^{+}\pi^{-})K^{\pm}$

- amplitude analysis of the D⁰ Dalitz plot leads to a determination of γ
 - Model-dependent [Giri, Grossman, Soffer, Zupan Phys. Rev. D68 054018 (2003)]
 - Model-independent [A. Bondar and A. Poluektov, Eur.Phys.J. C47 (2006) 347-353 and arXiv:0801.0840]

Integrated luminosity 2fb⁻¹

Input $r_B = 0.10$, $\gamma = 60^{\circ}$

More details

CERN-LHCb-2007-048

CERN-LHCb-2007-141

CERN-LHCb-2007-142

Mode	Signal Yield	B/S
$B \rightarrow D(K_s \pi^+ \pi^-)K$	5k	<0.7

Mode	sensitivity	Systematic error
$B \rightarrow D(K_s \pi^+ \pi^-)K \text{ model-depen.}$	7°-12°	10°
		(model dependence)
$B \rightarrow D(K_s \pi^+ \pi^-) K \text{ model-indepen.}$	9°-13°	3°-5°
		(Cleo-c statistics)

Sensitivity spread due to different background scenarios

Sensitivity on y from ADS+GLW+Dalitz

- A global fit combining individual χ^2 from the different ADS/GLW rates and Dalitz model-independent has been performed
 - Use relative efficiencies and branching fractions to relate normalisation factors
 - Include constraints from CLEO-c as additional terms in the χ^2
 - Included in the global fit sensitivity from $B \rightarrow D(K3\pi)K$

Integrated luminosity 2fb⁻¹

δ _B (°)	0	45	90	135	180
Combined B+/B ⁰ ADS/GLW	4.6°	7.6°	6.3°	7.1°	4.6°
+ model independent Dalitz	4.2°	5.7°	5.3°	5.7°	4.2°

Measuring γ from $B_s \rightarrow D_s K^{\pm}$

- Tree level decay
 - Not affected by New Physics
- Need flavour tagging analysis to distinguish initial B^0 and \overline{B}^0
- Four time dependent decay rate

Decay rates are sensitive to γ -2 β_s and strong phases difference between T1 and T2

The mixing phase β_s will be precisely measured from $B_s \rightarrow J/\psi \phi$, hence we can determine gamma

Yields

Estimated branching fraction for full B_s decay

$B_s \rightarrow D_s^- \pi^+$	(3.4±0.7)·10 ⁻³
$B_s \rightarrow D_s^- K^+$	(2.0±0.6)·10 ⁻⁴
$B_s \rightarrow D_s^+ K_s^-$	(2.2±0.7)·10 ⁻⁵

Event yields

	$B_s \rightarrow D_s \pi$	$B_s \rightarrow D_s K$
L=0.01 fb ⁻¹	0.7k	0.03k
L=0.5 fb ⁻¹	35k	1.6k
L=2 fb ⁻¹	140k	6.2k

- $B_s \rightarrow D_s \pi$: specific background
 - Not only background but is also a control channel for measuring tagging dilution.

Sensitivity studies on y

- Unbinned likelihood fit on decay time distributions simultaneously on $B_s \rightarrow D_s K$ and $B_s \rightarrow D_s \pi$
 - Including $B_s \to D_s \pi$ events in a simultaneous fit to constrain $\Delta \Gamma_s$ and Δm_s
 - Used tagged and untagged sample

Integrated luminosity 2fb⁻¹

	sensitivity	Input values
γ-2β _s	10.3°	60°
Δm_s	0.007 ps ⁻¹	17.5 ps ⁻¹
$\Delta_{T1/T2}$	10.3°	0°
λ	0.06	0.37

Sensitivity on γ (0.5 fb⁻¹, 10 fb⁻¹)

	Sensitivity on γ , global fit						
		0.5 fb	-1				
δ _B (°)	0	45	90	135	180		
$B \rightarrow DK$	9.2°	12.2°	10.5°	10.7°	8.6°		
+ TDCPV	7.7°	9.3°	8.5°	8.6°	7.4°		
		10 fb	-1	•			
δ _B (°)	0	45	90	135	180		
$B \rightarrow DK$	2.4°	3.5°	2.9°	3.4°	2.3°		
+ TDCPV							

Sensitivity on γ with loops				
	0.5 fb ⁻¹	10 fb ⁻¹	Weak U-spin	
Loops	20°	5°	assumption	

Conclusion

- LHCb will be able to measure γ with a precision of 5° with 2fb^{-1} matching the precision of indirect measurements
 - lacktriangleright Comparison between of γ measured at LHCb and indirect determination will become a stringent test of the SM
- ${\color{red} \bullet}$ Comparison between γ from trees and loops may show up New Physics in loops
- LHCb will be achieve a sensitivity of 2°-3° with 10 fb⁻¹
- LHCb's potential in charmless B->hhh (h= π or K) also under study .
- Other modes under consideration:
 - B->D($K\pi\pi^0$)K, D(K_sKK)K, D*K, D* π
 - $B^0 \rightarrow D^*\pi$, $B^0 \rightarrow D^*\rho$, $B^0 \rightarrow D^*a_1$, $B_s \rightarrow D_s^*K$ (time dependent)
 - U-spin combinations as well