THEORY ISSUES IN MEASURING Y

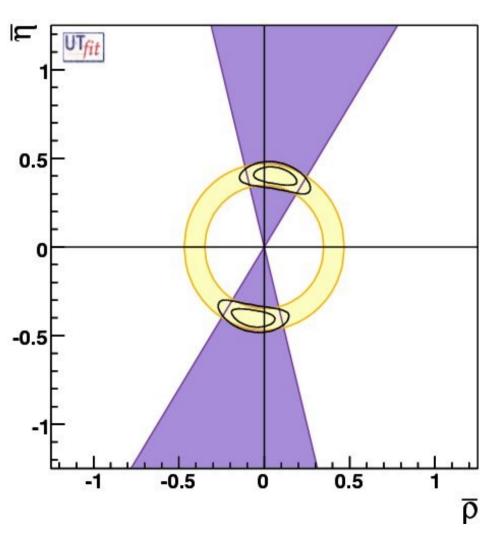
Luca Silvestrini

INFN, Rome

Introduction

 γ from tree $B_{(s)}$ decays

 γ from penguin $B_{(s)}$ decays


Extracting the tree from penguin B_s decays

Conclusions

INTRODUCTION - I

- The extraction of γ from tree-level decays is of fundamental importance for NP searches:
 - Fix ρ and η from tree-level V_{ub} and $\gamma\!:$ insensitive to loop-mediated NP
 - Determine NP contributions to loop-mediated
 FCNC and CPV (meson mixing, penguin decays,...)
- Precision measurement of γ needed to fully exploit the constraining power of K and B mixing

INTRODUCTION - II

- Impressive achievement of B-factories: tree-level determination of the UT
- Allows to constrain new CPV in K and B_d mixing at the 10% level

INTRODUCTION - III

- The extraction of γ from penguin decays is sensitive to NP
- Some knowledge of hadronic parameters is necessary
- Several strategies based on hadronic models and/or flavour symmetries
- Quantifying hadronic uncertanties is the main issue

Y FROM TREE DECAYS

- Basic idea: use interference between $b \rightarrow c\overline{u}q$ and $b \rightarrow u\overline{c}q$ decays, with q=d,s.
- No penguins present: no loop-mediated NP
- Methods can be classified according to the charge of the decaying B meson and to the final state f in which the D meson is reconstructed

Y FROM TREE DECAYS - B±

- Define $A(DK^+)/A(DK^+)=r_B e^{i(\delta B+\gamma)}$, with $r_B=0.37 |\overline{C}+A|/|T+C|$.
- Ratio of hadronic matrix elements difficult to estimate, expect $r_{\rm R} \sim 0.1$.

Y FROM TREE DECAYS - B±

• GLW: use f CP = eigenstate, measure

$$\begin{split} R_{CP^{\pm}} &= \frac{\Gamma(B^{+} \to D_{CP^{\pm}}^{0}K^{+}) + \Gamma(B^{-} \to D_{CP^{\pm}}^{0}K^{-})}{\Gamma(B^{+} \to D^{0}K^{+}) + \Gamma(B^{-} \to \bar{D}^{0}K^{-})} = 1 + r_{B}{}^{2} \pm 2r_{B}\cos\gamma\cos\delta_{B} \\ A_{CP^{\pm}} &= \frac{\Gamma(B^{+} \to D_{CP^{\pm}}^{0}K^{+}) - \Gamma(B^{-} \to D_{CP^{\pm}}^{0}K^{-})}{\Gamma(B^{+} \to D_{CP^{\pm}}^{0}K^{+}) + \Gamma(B^{-} \to D_{CP^{\pm}}^{0}K^{-})} = \frac{\pm 2r_{B}\sin\gamma\sin\delta_{B}}{R_{CP^{\pm}}} \end{split}$$

extract $r_{\rm B}$ and γ with a four-fold ambiguity

Gronau & Wiler 91; Gronau & London 91

• ADS: f non CP eigenstate. Define Atwood, Dunietz & Soni 97, 01 $A(D \rightarrow f)/A(D \rightarrow f)=r_D e^{i\delta D}$ and measure

$$R_{ADS} = \frac{\Gamma(B^{+} \to fK^{+}) + \Gamma(B^{-} \to fK^{-})}{\Gamma(B^{+} \to fK^{+}) + \Gamma(B^{-} \to \bar{f}K^{-})} = r_{D}^{2} + r_{B}^{2} + 2r_{B}r_{D}\cos\gamma\cos(\delta_{B} + \delta_{D})$$

$$A_{ADS} = \frac{\Gamma(B^{-} \to fK^{-}) - \Gamma(B^{+} \to \bar{f}K^{+})}{\Gamma(B^{-} \to fK^{-}) + \Gamma(B^{+} \to \bar{f}K^{+})} = r_{B}r_{D}[\cos(\delta + \gamma) + \cos(\delta - \gamma)]/R_{ADS}.$$

Y FROM TREE DECAYS - B*

- γ , $r_{\rm B}$ and $\delta_{\rm B}$ are common to all final states f
- $r_{\rm Df}$ can be measured from D decays, so for each f add one unknown ($\delta_{\rm Df}$) and two observables ($R_{\rm f}$ and $A_{\rm f}$)
- The same analysis can be repeated for D* or K*
- Add as many final states as possible!

Y FROM TREE DECAYS - B*

- GGSZ: use Dalitz analysis of multi-body CP eigenstate final states (equivalent of measuring a continuum of final states)
- model-dependent approach: fit $A(D \rightarrow f)$ from the Dalitz plot
- model-independent approach: bin the Dalitz plot and determine the D decay strong phase from the B decay data. Need much more

Giri, Grossman, Soffer & Zupan 03

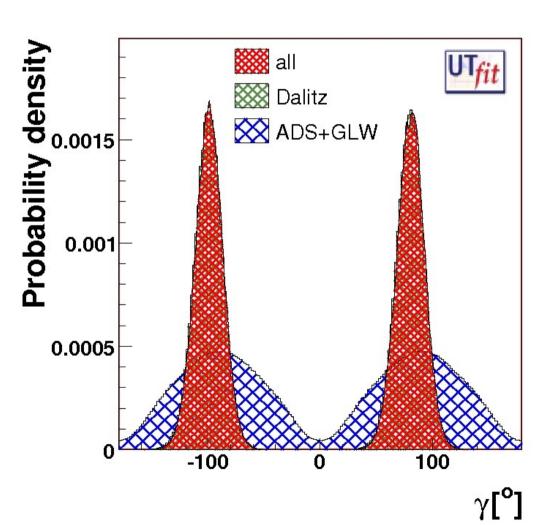
Y FROM TREE DECAYS - Bd

- Can use DK final states also for B_d decays
- Define $A(DK^0)/A(\overline{D}K^0)=r_{B0}e^{i(\delta BO+\gamma)}$, with $r_{B0}=0.37$ $|\overline{C}|/|C|$ expected around $r_{B0}\sim0.4$
- If final state is self-tagging (e.g. $K^{*0} \rightarrow K^{+}\pi^{-}$) no B_d mixing
- If final state admits mixing (e.g. $B^0 \rightarrow D^-K^0\pi^+$) need a time-dependent analysis, measure

 $2\beta + \gamma$ CERN 27/5/2008

Y FROM TREE DECAYS - Bs

• A time-dependent analysis of $B_s \rightarrow D_s^{\pm} K^{\pm}$ gives access to $\phi_s + \gamma$


Dunietz & Sachs 88; Aleksan, Dunietz & Kaiser 92; Dunietz 98

- Combining this with the measurement of the B_s mixing phase ϕ_s one can extract γ
- There is however an eightfold ambiguity (fourfold if $\Delta\Gamma_s$ effects are observable)
- The ambiguity can be resolved using SU(3)

related
$$B_d \rightarrow D^{\pm}\pi^{\pm} decays$$
CERN, 27/5/2008

L. Silvestrini - B@LHC focus week

Y FROM TREE DECAYS TODAY

 Combining all results gives

$$\gamma = (80 \pm 13)^{\circ}$$
 $r_{B} = 0.10 \pm 0.02$
 $r_{R}^{*} = 0.09 \pm 0.04$

 Theory error is (and will remain in the future) negligible

Y FROM PENGUIN DECAYS

- Idea: extract γ using the interference of tree (V_{ub}) and penguin (V_{tb}) amplitudes
- Sensitive to NP contributions to penguins
- Need some control of hadronic matrix elements
- The main issue is the determination of hadronic uncertainties: theoretical errors are dominant in this case

γ FROM B \rightarrow K π

- Quark level transition is $b \rightarrow s q \overline{q}$ (q=u,d)
- $V_{ub}V_{us}^*$ contribution is doubly Cabibbo suppressed w.r.t. $V_{tb}V_{ts}$: interference effects expected at the level of 10% or smaller
- Six independent hadronic matrix elements \Rightarrow 11 real hadronic parameters + γ
- 9 observables, 2 quadrangular isospin relations ⇒ need some theory input

γ FROM B \rightarrow K π - II

- Most popular approaches: neglect of some contributions (annihilations, electroweak penguins, ...) and/or B → ππ plus flavour
 symmetries
 Fleischer 96; Fleischer & Mannel 98; Fleischer 99; Atwood & Soni 98; Gronau & Rosner 98, 02; Neubert & Rosner 98; Neubert 99; Buras & Fleischer 99, 00; Kim, Oh & Yoon 07; ...
- Theoretical error can only be guessed: no way to check it on data
- Cannot conclude from vanishing CP
 asymmetries that one amplitude dominates:
 can be just due to vanishing strong phases
 L. Silvestrini B@LHC focus week

$\gamma \text{ FROM B}_s \rightarrow \text{KK and B} \rightarrow \pi\pi$

- Using SU(3) can combine $B_s \to KK$ and $B \to \pi\pi$ to obtain a determination of γ Fleischer 99; Fleischer & Matias 02 London, Matias & Virto 05; Baek, London, Matias & Virto 06; ...
- The same considerations on hadronic uncertainties apply here: to estimate the theory error need to quantify the amount of SU(3) (U-spin) breaking

$\gamma \text{ FROM B}_s \to \text{K}^*\pi$

- Idea: isolate tree decay amplitude using a Dalitz plot analysis and extract its phase
- Quark level transition is $b \rightarrow d \overline{q} q (q=u,d)$
 - tree contribution ($V_{ub} V_{ud}^*$) is not Cabibbo suppressed w.r.t. $V_{tb} V_{td}^*$
 - electroweak penguins are negligible
- Analogous to the extraction of α from $B_d \to \rho\pi$ decays Ciuchini, Pierini & L.S. 06; Gronau, Pirjol, Soni & Zupan 06, 07

$\gamma \text{ FROM B}_s \to \text{K}^*\pi - \text{II}$

 Extract γ using the following amplitude isospin relations:

$$\begin{split} A_{s} &= A(B_{s} \to K^{*-} \pi^{+}) + \sqrt{2} A(B_{s} \to K^{*0} \pi^{0}) = -V_{ub}^{*} V_{ud}(E_{1} + E_{2}) \\ \bar{A}_{s} &= A(\bar{B}_{s} \to K^{*+} \pi^{-}) + \sqrt{2} A(\bar{B}_{s} \to K^{*0} \pi^{0}) = -V_{ub} V_{ud}^{*}(E_{1} + E_{2}) \end{split}$$

$$R_{s} = \frac{\overline{A}_{s}}{A_{s}} = \frac{V_{ub}V_{us}^{*}}{V_{ub}^{*}V_{us}} = e^{-2i\gamma}$$

• $A(B_s \to K^{*-}\pi^{+})$ and $A(B_s \to K^{*0}\pi^{0})$ can be extracted from $B_s \to K^{-}\pi^{+}\pi^{0}$ Dalitz plot, and the conjugate amplitudes from $B_s \to K^{+}\pi^{-}\pi^{0}$

$\gamma FROM B_s \rightarrow K^*\pi - III$

- To obtain the relative phase of the $B_s \rightarrow K^ \pi^+\pi^0$ and $B_s \to K^+\pi^-\pi^0$ Dalitz plots, use the $B_s \to$ $K_s \pi^+ \pi^-$ Dalitz plot, exploiting interference of $K^{*+}\pi^{-}$ and $K^{*-}\pi^{+}$ with $\rho^{0}K_{s}$ and other $\pi^{+}\pi^{-}$ resonances.
- At hadron colliders, the sensitivity is given by the Re $\lambda \Delta \Gamma_s / \Gamma_s$ term in the timeintegrated rate ($\lambda=q/p$ A/A). Of course, a time-dependent analysis would also help.

 L. Silvestrini - B@LHC focus week

CONCLUSIONS

- The extraction of γ from tree-level amplitudes plays a crucial role in looking for NP in the flavour sector
- Theory uncertainties are negligible in treelevel decays
- Tree-level amplitudes can be successfully isolated in $B_s\to K^*\pi$ decays same procedure as in $B_d\to \rho\pi$

CONCLUSIONS - II

- The extraction of γ from the interference of tree and penguin amplitudes looks much more problematic
- Some theoretical input needed to reduce the number of unknown hadronic parameters
- Theoretical uncertainties very difficult to estimate, cannot be verified using data
- Use penguin channels to look for NP in penguin amplitudes, taking γ as input!