

4th HERA and the LHC Workshop

Expectations for QCDwith first LHC Data

On behalf of the ATLAS and CMS Collaborations
Klaus Rabbertz
University of Karlsruhe

Outline

- Construction
 - LHC Racing Rules
- Practice
 - Tracks
- Qualifying
 - Jets
- Warming-up
 - Photons
- Pit stop
 - PDFs
- The Race
 - New physics
- Final Score

The Race will be on soon ...

The Audience arrives ...

CERN OpenDays 5./6. April 2008: 76000 Visitors

Blue flag for CDF and D0

The Circuit: LHC

Training: End of June **Qualifying: August?**

Fuel regulations:

→ Engineering: Low grade 85 fuel:

 E_{cm} = 900 GeV, some days

→ Start-up: 2008 with 90 octane only:

 E_{cms} = 10 TeV, L_{int} ~ 40/pb

→ Race: From 2009 with high grade 95

octane:

 $E_{cms} = 14 \text{ TeV}$

Bunch patterns:

43x43, 156x156

Specific luminosity: 3*10³⁰ – 6*10³¹ cm⁻² s⁻¹

For the current machine status see talk by M. Lamont

Most results presented in the following are for 14 TeV! Only exception next slide ...

Ratio 10 TeV / 14 TeV

Inclusive kT cross section in 6 bins in rapidity y, D = 0.6

Klaus Rabbertz

NLO code by NLOJET++, Z. Nagy

Tracks: The Drivers

Track based analyses:

Good candidates for measurements at 900 GeV

- Charged hadron spectra
- Underlying event from transverse region of charged particle jets

Phys.Lett.Vol.107B, no. 4

First UA1 Publication

QCD

17. Dezember 1981

Recall:

SOME OBSERVATIONS ON THE FIRST EVENTS SEEN AT THE CERN PROTON—ANTIPROTON COLLIDER

Charged Hadron Spectra

One of the first analyses possible ...

Technique:

Tracks from pixel hit triplet seeding (Mis-alignment under investigation)

Tracking down to pT of 75 MeV/c **Systematic:**

Trigger, feed-down, geom. acceptance, alg. efficiency

Assuming one month running with 1 Hz allocated bandwidth

ATLAS Track reconstruction

Largest systematic: Mis-alignment

Charged Hadron Spectra

Model expectations for charged particles at $|\eta| = 0$ vs. \sqrt{s} :

→ Pythia: ~ In²(s)

Simulation result from CMS: Charged particle pseudo rapidity

- Charged particle pseudo-rapidity distribution
- Pythia tune DWT

CMS PAS QCD-07-001

ATLAS

The Underlying Event

The Underlying Event is everything but the hard scatter.

See also talks by R. Field and in multi-jets Tuesday morning session!

A measurement possibility:

 Charged particle and Ptsum densities in transverse region of leading charged jet

The Underlying Event

Charged particle density in transverse plane vs. leading charged jet pT

Extrapolation to LHC from CDF data

Comparison of different Pythia tunes

ATLAS

CMS PAS QCD-07-003

Jets: The Drivers

Jet algorithms

Talks by P.-A. Delsart, Chr. Sander

- **Jet energy calibration**
- <u>Jet analyses (calorimeter):</u>
 - Dijet azimuthal decorrelation

Talk by M. Dasgupta

Klaus Rabbertz

CERN. 26.05.2008

4th HERA and the LHC Workshop

K. Kousouris

Jet Algorithms

Avoid pit stops for changing to a safe jet algorithm later ...

Algorithms in use by ATLAS and CMS

ATLAS:

- → Iterative Cone R = 0.4, 0.7
- SISCone in future??
- -kT D = 0.4, 0.6

CMS:

- → Iterative Cone R = 0.5
- → SISCone R = 0.5, 0.7
- +kT D = 0.4, 0.6

For many more details, see talk by G. Salam and in multi-jets Tuesday afternoon sessions!

Jet energy resolution from CMS performance study

SISCone performs equally well as MidPoint Cone

Jet Energy Calibration

Description simplified, jet energy corrections are a very complex matter!

Factorized multi-level Calibration: CMS

- → offset correction for pile-up, noise, thresholds
- relative correction for response variations in η (di-jets)
- → absolute correction to particle level (pT balance in γ/Z + jet, M_W,M_{top} in ttbar → WbWb

$\begin{array}{c|c} Reco \\ Jet \end{array} \longrightarrow \begin{array}{c|c} L1 \\ Offset \end{array} \longrightarrow \begin{array}{c|c} L2 \\ Rel: \eta \end{array} \longrightarrow \begin{array}{c|c} L3 \\ Abs: p_T \end{array}$

Habitual jet input:

- calorimeter towers (ATLAS & CMS)

Additionally:

topological clusters of IAr cells (ATLAS)

Local Hadron Calibration: ATLAS

- calibrate clusters independent of any jet algorithm to individual particle scale
- make jets out of calibrated clusters

Projection of uncertainties on TeV jets

(Jets with pT = 1 TeV, $|\eta| < 2$)

Dijet Azimuthal Decorrelation

Dijets in pp collisions:

 $\Delta \phi$ dijet = $\pi \rightarrow$ Exactly two jets, no further radiation

 $\Delta \phi$ dijet small deviations from $\pi \rightarrow$ Additional soft radiation outside the jets

 $\Delta \phi$ dijet as small as $2\pi/3 \rightarrow$ One additional high-pT jet

Δφ dijet small – no limit → Multiple additional hard jets in the event

hep-ex/0409040 PRL 94, 221801 (2005)

Run 178796 Event 67972991 Fri Feb 27 08:34:15 2004

Dijet Azimuthal Decorrelation

ATLAS comparison between generated and reconstructed Δφ in two bins of ET Cone jet algorithm: → R=0.7

→ N_{iets} = 2

 $|\eta_{jet}| < 0.5$

→ ET_{jet #2} > 80 GeV

600 < ET MAX < 1200 GeV

Jet Shapes

A possibility to look into details of QCD and jet structure!

Norm. transverse energy distribution:

$$\rho(r) = \frac{\sum p_{\rm T}(r - \Delta r/2, r + \Delta r/2)}{\Delta r \sum p_{\rm T}^{Jet}}$$

Good reproduction of general properties (central region $|\eta| < 1$, matched jets)

Jets from generator particles

CMS PAS JME-07-003

Inclusive Jets at the Tevatron

CDF Incl. kT jets, D=0.7 Theory: NLO with CTEQ6.1M

CDF: p_T^{JET} [GeV/c] Z+jets (Phys.Rev.Lett.100:102001,2008)

W+jets (Phys.Rev.D77:011108,2008)

Incl. midpoint cone jets (Phys.Rev.D74:071103,2006)

D0 Incl. Midpoint cone jets, R=0.7 Theory: NLO with CTEQ6.5M

Gamma + jet + X (arXiv:0804.1107 [hep-ex])

Color code:

Blue: Good description by NLO

Red: Not described by NLO (photons ...)

arXiv:0802.2400 [hep-ex]

Inclusive Jets at the LHC

Evaluation of jet cross section uncertainties by ATLAS

Jet Energy Scale → 10% shift

- 5% shift
- 1% shift

Statistics:

Estimated as $\sqrt{N/N}$ from NLO cross section

- / fb
- 0.1 / fb

100/pb LHC: 2% at 1 TeV

30% at 2 TeV

Tevatron limit 600 GeV

Scale Uncertainty: By varying $\mu_r = \mu_r$ from pT/2 to 2 pT (in pseudorapidities): -0.05

- → 2 < |n| < 3
- **→ 1 < |η| < 2**
- → 0 < |n| < 1

Inclusive Jets at the LHC

Expected PDF uncertainties according to standard procedure with error sets from CTEQ 6.5

(1996)

Phys.Rev.Lett.

Pit Stop: PDF uncertainties

The data are compared with QCD predictions for various sets of parton distribution functions.

The cross section for jets with \$E_T>200\$ GeV is significantly higher than current predictions based on O(\$\alpha_s^3\$) perturbative QCD calculations. ...

Explained by change in gluon density which then can be constrained by jets! Today:

Much better estimates of PDF uncertainties
But still ...

Klaus Rabbertz

CERN, 26.05.2008

4th HERA and the LHC Workshop

KR

20

Photons: The Drivers

Photon processes:

- Direct photon production
- Di-photons
- Photon + n jets

Gauge boson production gives important additional information:

- Luminosity measurement
- Detector calibration
- PDFs
- Background for new physics :-(

Photon Rates

=	# bunches	β* (m)	I_b	$L (cm^{-2}s^{-1})$	Pileup	Photons/hour $(p_T > 20 \text{GeV})$	
_	1×1	18	10^{10}	10^{27}	low	$3.2 \cdot 10^{-1}$	_
	43x43	18	$3 \cdot 10^{10}$	$3.8 \cdot 10^{29}$	0.05	$1.2 \cdot 10^2$	→ Photon pT > 20GeV
	43×43	4	$3 \cdot 10^{10}$	$1.7 \cdot 10^{30}$	0.21	$5.4 \cdot 10^2$	→ Photon η < 2.5
	43×43	2	$4 \cdot 10^{10}$	$6.1 \cdot 10^{30}$	0.76	$2.0 \cdot 10^{3}$	
	156x156	4	$4 \cdot 10^{10}$	$1.1 \cdot 10^{31}$	0.38	$3.6 \cdot 10^3$	
	156x156	4	$9 \cdot 10^{10}$	$5.1 \cdot 10^{31}$	1.9	$1.6 \cdot 10^4$	
CMS	156x156	2	$9 \cdot 10^{10}$	$1.1 \cdot 10^{32}$	3.9	$3.6 \cdot 10^5$	

Not taken into account —

ATLAS trigger simulation results for $L = 10^{31} cm^{-2} s^{-1}$:

- → Trigger on photon pT > 20 GeV in |eta| < 2.4</p>
- Signal sample: γ+jet (γ generated with pT >10 GeV)
- → Background from jet-jet sample generated with pT > 15 GeV is 7 Hz

ATLAS

	Jet energy range (GeV)	Trigger Efficiency%) γ20
1	17-35	75.1 ±0.3
2	35-70	83.5 ±0.3
3	70-140	89.3 ±0.2
4	140-280	91.7 ±0.2
5	280-560	94.4 ±0.2
6	560-1120	92.4 ±1.1

Photon Conversion & Isolation

Important steps:

- Good efficiency including photon conversions
- Proper photon isolation to suppress background

ATLAS photon efficiency:

- -> 80% at low luminosity
- including converted & unconverted photons

CMS photon study:

- Photon pT spectrum for 1/fb
- Background QCD jets in blue
- After photon isolation cuts

Eur. Phys. J. C 53, 49-58 (2008). P^γ_T

ATLAS

New Physics: The Drivers

New Physics with Jets:

Need

Contact interactions

- Di-jet mass distribution
- Resonances
 - ★ W' & Z' (Grand Unified Theory)
 - ★ E₆ diquarks (D) (Superstrings & GUT)
 - Excited quarks (q*) (Compositeness)
 - RS Gravitons (G) (Extra Dimensions)

Colorons (C) & Axigluons (A) (Extra Color)

			Cross Section (pb)					
			M=0.7 TeV		M=2.0 TeV		M=5.0 TeV	
Model	J	Color	$ \eta < 1$	$ \eta < 1.3$	$ \eta < 1$	$ \eta < 1.3$	$ \eta < 1$	$ \eta < 1.3$
q*	1/2	Triplet	7.95×10^2	1.27×10^3	9.01	1.36×10^{1}	1.82×10^{-2}	I
A,C	1	Octet	3.22×10^2	5.21×10^{2}	5.79	8.82	1.55×10^{-2}	
D	0	Triplet	8.11×10^{1}	1.26×10^2	4.20	5.97	4.65×10^{-2}	5.75×10^{-2}
G	2	Singlet	3.57×10^{1}	5.47×10^{1}	1.83×10^{-1}	2.60×10^{-1}	2.64×10^{-4}	3.19×10^{-4}
W'	1	Singlet	1.46×10^{1}	2.37×10^{1}	3.49×10^{-1}	5.31×10^{-1}	8.72×10^{-4}	1.17×10^{-3}
Z'	1	Singlet	8.86	1.44×10^{1}	1.81×10^{-1}	2.77×10^{-1}	5.50×10^{-4}	7.26×10^{-4}

Contact Interaction

Contact Interactions

Sensitive to Scale
$$\Lambda >> \sqrt{s}$$
!

$$L_{qq} = rac{Ag^2}{2\Lambda^2}(\overline{q}_L\gamma^\mu q_L)(\overline{q}_L\gamma_\mu q_L)$$

Recent Limits

Tevatron limit on contact interaction scale (qqqq): > 2.4 - 2.7 TeV

Dijet resonance search

Excluded (GeV) Excluded (GeV) Resonance Resonance A or C 260 - 1250 D 290 - 630 260 - 1110 w. 280 - 840 Ртя Z. q* 260 - 870 320 - 740

CDF Preliminary 03/2008

Exclusion limits for W' and Z'

New Physics from Di-jets

Search for deviation from expected event rate:

- QCD from PYTHIA (here) or NLO
- Contact interaction: PYTHIA or LO

Cross section ratios

Search for resonances

Possible signals of q* relative to QCD prediction, visible for < 2 TeV (statistical uncertainty only!)

One means to avoid systematics is by looking into cross section ratios in η

Spare Cars

- Very important to have ...
- Only test drive today:
 - Forward jets:
 - Fwd jets in HF, 3 < |η| < 5
 probe x ~ 10⁻⁴
 - Fwd jets in CASTOR, 5.1 < |η| < 6.5 probe x down to 10⁻⁶
 - Sensitivity to possible PDF saturation effects
- Many talks during this workshop!

CMS

Spare Cars

- Very important to have ...
- But did not race at all this time:
 - Drell-Yan
 - Event shapes
 - 3-jets, 3-jet rates
 - 4-jets:
 - From QCD
 - From double parton interactions
 - From ttbar → bbar qq'bar lv₁
 - Double parton interactions in γ + 3 jets
 - -

Talk by G. Luisoni

Talk by D. Treleani

Talk by F. Bechtel

Outlook

- Team ATLAS and Team CMS are preparing for first LHC data soon!
- Some tough experimental systematics to deal with
 - Trigger, alignment, jet energy scale, photon isolation, ...
- LHC will explore unknown territory in QCD
- First measurements, even with low grade 900 GeV fuel, will be QCD:
 - Minimum Bias tracks, Underlying Event
 - Important for detector alignment and MC tuning
- Measurements of jets and photons are important tests of QCD:
 - Angular distributions, inclusive jets, di-jets, photon+jets, di-photons, forward jets
 - Calibration of the calorimeters
 - Better understanding of dominant background to many new physics channels
 - Constraints on PDFs
- New physics might be just ahead!

Final Score

And QCD is in the Pole Position! What about you?

Thanks to all colleagues helping in preparing this presentation!

Backups

ATLAS Detector

Inner Detector (ID) tracker:

- Si pixel and strip + transition rad. tracker
- $\sigma(d_0) = 15 \mu m@20 GeV$
- $\sigma/p_T \approx 0.05\%p_T \oplus 1\%$

Calorimeter

- Liquid Ar EM Cal, Tile Had.Cal
- EM: $\sigma_E/E = 10\%/\sqrt{E} \oplus 0.7\%$
- Had: $\sigma_E/E = 50\%/\sqrt{E} \oplus 3\%$

Muon spectrometer

- Drift tubes, cathode strips: precision tracking
- RPC, TGC: triggering
- σ/p_T≈ 2-7%

Magnets

- Solenoid (ID) → 2T
- Air toroids (muon) → up to 4T

Full coverage for $|\eta|$ <2.5, calorimeter up to $|\eta|$ <5

CMS Electromagnetic Calorimeter

Barrel (EB):

- η segments: 2x85
- φ segments: 360
- \rightarrow 61200 crystals (PbWO₄, 26 X₀)
- \rightarrow Δη x Δφ \approx 0.0174 x 0.0174

Energy resolution from test beam:

S = 3.63%, N = 124 MeV, C = 0.26%

$$\left(\frac{\sigma}{E}\right)^2 = \left(\frac{S}{\sqrt{E}}\right)^2 + \left(\frac{N}{E}\right)^2 + C^2$$

Endcaps (EE):

- (x,y) grid on two halfs
- front face 28 x 28 mm²
- \rightarrow 2 x 2 x 3662 crystals = 14648 (PbWO₄, 25 X₀)

CMS Hadronic Calorimeter

HCAL (tower structure):

- Barrel (HB): $|\eta| < 1.4$, 2304 towers
- Endcaps (HE): $1.3 < |\eta| < 3.0$, "towers
- Outside coil (HO): $|\eta| < 1.26$ (tail catcher)
- \rightarrow 4608 towers (Plastic scintillator tiles, \approx 10 $\lambda_{\rm M}$
- \rightarrow $\Delta\eta$ x $\Delta\phi$ \approx 0.087 x 0.087 \rightarrow 0.350 x 0.175

- Forward (HF): $2.9 < |\eta| < 5.0$ (not shown)
- → 2 x 900 towers (Quartz fibers, \approx 10 λ_{N})
- → $\Delta \eta \times \Delta \phi \approx 0.111 \times 0.175 \rightarrow 0.302 \times 0.350$

<u>CASTOR calorimeter</u> (not shown):

 $-5.1 < |\eta| < 6.5, \approx 22 X_0, \approx 10 \lambda_{M}$

CMS Pixel Triplets

One of the first analyses possible ...

Here: 1.9 million events, assuming one month of running with 1 Hz

allocated bandwidth

CMS pixel detector:

 3 barrel layers (4, 7 and 10 cm radii) and 2 endcap on each side

100 × 150 µm² pixels, 2% occupancy even at dN/dch = 5000

Hit triplets:

- Use pixel hit triplets instead of pairs, loss of acceptance but lower fake rate
- Reconstructing down to pT = 0.075 GeV/c

Hadron Spectra Systematics

CMS Pixel triplets

 $\Delta N_{\rm corrected} = \frac{(1-{\rm fakeRate}) \cdot (1-{\rm feedDown})}{{\rm geomAccep} \cdot {\rm algoEffic} \cdot (1-{\rm multiCount})} \cdot \Delta N_{\rm measured} \\ \begin{array}{c} {\sf ATLAS} \\ {\sf track} \\ {\sf reconstruction} \\ {\sf TakeRate} \\ {\sf$

Correction	Dependence on			Corr.	Syst.
Correction	kine	part	mult	[%]	
Trigger	no	no	yes	15	5
Geometrical acceptance	yes	yes	no	10-20	2
Algorithmic efficiency	yes	yes	no	10-20	2
Multiple track counting	yes	no	no	small	small
Fake track rate	yes	no	yes	small	small
Feed-down	yes	yes	no	2-15	1-2
η , p_T resolution	no	no	no	1-5	1-5
Total	yes	yes	yes		7-9

CMS PAS QCD-07-001

Summary of systematic uncertainties

Track selection cuts	2%
Mis-estimate of secondaries	1.5%
Vertex reconstruction	0.1%
Mis-alignment	6%
Beam-gas & pile-up	1%
Particle composition	2%
Diffractive cross-	0.1%
sections	
Total:	6.9%

ATLAS

Hadron Spectra: dE/dx

Kaon and proton spectra with dE/dx analysis

CMS PAS QCD-07-001

Tracking Performance

Comparison of tracking performance for:

- Ideal conditions
- Start-up (misaligned)
- Alignment Position Error application Fake rate

Track reconstruction efficiency

SISCone / kT

SISCone, **R=0.7** / **kT**, **D=0.6**

About 12 – 8% higher x section compared to kT

Jet Input

Habitual jet input:

- calorimeter towers (ATLAS & CMS)

Additionally:

- topological clusters of IAr cells (ATLAS)

Pro's & Con's

Towers

- \Rightarrow + fixed size $\Delta \phi$ × $\Delta \eta$ ≈ 0.1 × 0.1
- → + no seeds all cells end up in towers
- no noise or pile-up suppression
- do not contain showers

Clusters

- + provide efficient noise and pile-up suppression
- + optimized to contain showers of individual hadrons
- - typically have detector region dependent
 size

seed cluster maker olors o'

Colors show |E____ on log scale in MeV

FCal1C

Determines topological clusters

Cells in signal region reintegrate previously -0.05

ATLAS

Constraining PDFs

One example:

Include in ZEUS fit:

ATLAS pseudo jet data, 0< η <1,1< η <2, 2< η <3, pT up to 3 TeV, L_{int} = 10/fb

Gluon fractional uncertainty

Did not mention:

Drell-Yan
Forward jets
Photon + jets ...

Previous talk and PDF sessions on Wednesday Reduced systematics has larger effect than just statistics

Recent Limits

Tevatron limit on contact interaction scale (qqqq): > 2.4 - 2.7 TeV

Dijet resonance search

CDF Preliminary 03/2008

Resonance	Excluded (GeV)	Resonance	Excluded (GeV)	
A or C	260 - 1250	D	290 - 630	
Ртв	260 - 1110	w.	280 - 840	
q*	260 - 870	z.	320 - 740	

Dijet Ratios

Sensitivity to new physics from dijet ratios in pseudo-rapidity

CMS PAS SBM-07-001

Some UA1 Quotations

Quotations from Phys. Lett. Vol. 107B, no. 4:

- ... dipole magnet which produces a field of 0.7 T over a volume of 7m x 3.5m x 3.5m ...
- ... yields space points at centimetre intervals on the detected tracks
- ... two short accelerator development periods in October and November 1981 ...
- The events were scanned by physicists on a Megatek display.
- ... was examined independently by all physicists who participated in the scanning. The combined effect of the scanner variations ...