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Outline

Cross-section measurements : single process
LuminosityLuminosity
Efficiency (scale, resolution…)
Acceptance

l i l iMultiple processes : ratios
Cross-normalizing experiment
Cross-normalizing theory

Examples:
Z as case study
Applications to W, high-mass Drell-Yan, top pairs, 
HiggsHiggs

Discussion
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Cross-section measurements

Counting rate : BALN += εσCounting rate :

(function of)
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Assume B/N small and/or well known:
Term decreases statistically

To be addressed -
Auxiliary measurements
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Term decreases statistically Auxiliary measurements



Example selections : Z ee, μμ

Events (/104) in 50 pb-1

ATLAS CSC
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1 : Luminosity measurement

(material : TDR and Per Grafstrom, LHCC, May 08)

Machine estimatesMachine estimates
Early running : 20-25%
Using special calibration runs with simplified machine parameters : 
get to 10% or better

Dedicated experiment
Relative luminosity monitors : 

LUCID ZDCLUCID, ZDC
LAr/Tile currents; MBTS activity…

Absolute luminosity measurement : ALFA
Elastic scattering at small angles : well calculable Coulomb process
Dedicated machine optics; low luminosity. Result scaled to normal running 
conditions using the monitors

Used before : UA4, but also e+e- machines (Bhabha scattering)
Aim : <3%
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ATLAS forward detectors
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Absolute luminosity 
from low-t elastic scattering

General expression of the elastic cross-section at 0 angle:

Allows a 4-parameter fit to L and hadronic parameters σtot, ρ, b

Requires : 
Detecting protons at θ ~ 3.5 μrad (UA4 : 120 μrad). 
Special machine parameters : parallel-to-point focusing; L ~ 1027p p p p g;
Edgeless detector for optimal acceptance
Precision mechanics controlling movement towards/away from beam
Backgrounds low and under control
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The detector and the Roman Pot
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Performance – Test beam
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Backgrounds
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Expected performancep p
~100 hours at 1027
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2 : Efficiency

Simplest example : Z production. Two isolated leptons – Tag & probe

Tag Muon: Track in Inner Detector ANDTag Muon: Track in Inner Detector AND 
Muon Spectrometer (+Isolation and pT-Cuts)

Probe Muon: Track in Inner Detector 
(+Isolation and pT-Cuts)

If this di-muon mass is near 91 GeV and Δφ>2, 
then the probe muon is assumed to be a real muon

muon efficiency is given by the fraction of probemuon efficiency is given by the fraction of probe
muons with tracks in the Muon Spectrometer
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Efficiency results

Electron and muon channels
ATLAS CSCATLAS CSC

Lepton efficiency : dεl/εl ~ 2% (50 pb-1); 0.5% (1 fb-1)
Th l b k d h ff t th ffi i d t i tiThe low backgrounds have ~no effect on the efficiency determination

Cross-section : dεZ/εZ ~ 3% (50 pb-1); 0.8% (1 fb-1)
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3 : Acceptance

Total Z cross-section : which fraction of events lies within the detector 
acceptance?

Two factors : PDF( Z ) and PDF( e,μ | Z )

First factor : dσ/dy, dσ/dpT, related to proton PDFs and parton showers
Not well knownNot well known

Second factor : angular distributions and QED/EW radiation in Z rest 
frame.

ll di d i f h l ( C@ O hWell predicted using state of the art tools (MC@NLO+Photos, ResBos, 
Horace, Winhac/Zinhac…)
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Acceptance

arXiv:0712.1199arXiv:0805.2093

Proton PDF induced uncertainty dA/A ~ 1%
QCD higher orders and resummation contributes dA/A ~ 3%

Our ATLAS study; also CMS note 2006/082; Mangano, Frixione, 2004 (W 
production); Adam, Halyo, Yost, 2008 (Z production)
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Summary, so far

Z total cross-section:
dL/L 10% <3%dL/L ~ 10% <3%
dε/ε ~ 3% <1%
dA/A ~ 3% irreducible at this stage

Acceptance uncertainties will play a dominant role, especially when 
measuring cross-section ratios where L cancels

arXiv:0802.3251

Z as luminosity monitor : account 
for overall normalization uncertainty
~5% : this is, at best, a temporary 
hackhack
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Differential cross-sections 

Total cross-section measurements are thus limited by the very effects we 
want to constrain! Differential cross sections provide more insightwant to constrain! Differential cross-sections provide more insight -
acceptance uncertainties small (cf slide 14)

ATLAS CSC

~200 pb-1
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Differential cross-sections 

Total cross-section measurements are limited by the very effects we want 
to constrain Differential cross sections provide better constraintsto constrain. Differential cross-sections provide better constraints -
acceptance uncertainties small (cf slide 14)

10 fb 1
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Ratios :
cross-normalizing experimentcross-normalizing experiment

Measure R = σ / σ f : )/()/(0 REFREFREF AAdddNdNdR ⊕⊕⊕⊕= εεMeasure R  σ / σref : 
)/()/(

0
REFREFREF AANNR

⊕⊕⊕⊕=
εε

Statistical terms No lumi term! Additional terms from REF

So careful : the interest of this is not always obvious!
Gain : no luminosity dependence

Statistical terms No lumi term! Additional terms from REF

But additional terms from εREF and AREF

Might be good (if one expects correlated ε ~ εREF and A ~ AREF) : even 
more cancelation;
or bad (if uncorrelated) : larger uncertainty

Conversely : when possible, define R keeping this in mind, i.e 
maximize correlation with REF
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Ratios (2)

Random example : σtt

ATLAS CSC

Th ti t Z d ti / k littlThe ratio to Z production, σtt/σZ, makes little sense
Cancels out L indeed
All other systematics are essentially independent; also add Z rate uncertainty
hence a worse result
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Ratios (3)

G ld l /

arXiv:0802.0007

Golden example : σW / σZ

Very similar experimentally 
isolated leptons, same pT range
Can be selected using same trigger
(difference : EtMiss)

Quark initial state; singlet final state
similar QCD corrections

Behave similarly under PDF variationsBehave similarly under PDF variations

In σW / σZ, almost everything cancels
Hence a beautiful test of QCD
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Ratios : 
cross-normalizing theorycross-normalizing theory

Data-driven predictions : ( )meas
REF

pred
REFpred σ

σ
σσ ⎟

⎠
⎞

⎜
⎝
⎛=

Poor prediction Precise prediction Measurement

σpred can then be :
compared against σmeas : e.g search for, or interpretation of new physics
Used as input for precision measurements
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Data-driven predictions (1)

Example : W mass. Need to predict W distributions (not rates), e.g dσW/dy

Define : 
dyd

dyd
dyddyd Z

Z

W
W /

/
// σ

σ
σσ ×→

Use RMS of rapidity distribution, ry
W,Z,  to quantify dσ/dy and their variations 

(choice not unique): 

Raw prediction MeasuredPrecise prediction

arXiv:0805.2093

predict

measure
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dσW/dy

Spread of R : 

41 CTEQ 6.1 PDF sets

dR

Ratio prediction  ~20x more precise than raw

R = ry
W / ry

Z
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dσW/dy

Careful : precise but incompatible predictions!

CTEQ 6.1
CTEQ 6.5

MRST 2006

CTEQ 6.6

Studied sets agree on correlations, not on central values 
– different starting assumptions and theoretical frameworks

R = ry
W / ry

Z
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Data-driven predictions (2)

Example : High-mass DY. Motivation:
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High-mass Drell-Yan

Current LHC uncertainty : ~6-7% for 100 GeV < M < 1 TeV and y~0

Gain a factor ~5. To do this, relate:

Specifically, write: )0()0()0( 2 ≠=×= yMymyM σσσ
)0,(

)0,(
)0,(

)0,()0,()0,( 2 =
≠×

≠
=×=→=

ym
yM

yM
ymyMyM Z

Z σ
σ

σ
σσσ

Smaller PDF dependence? MeasuredRaw prediction

chosing m, M and y such that m = MZ e-y ; M = MZ e+y

Work with Florent chevallier, in preparation
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High-mass Drell-Yan

dσ/σ (y=0)
Raw (CTEQ61)

From ratio

M (GeV)

80 203040506070 10
m (GeV)

0 1 2 2
yZ

0 80 4 1.0 1.5
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High-mass Drell-Yan

Measured quantities:
d /d (Z) l d h t h ( )dσ/dy (Z) already shown too much ( )

dσ/dm at low mass:

ATLAS CSCATLAS CSC
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Summary & Conclusions

Cross-section measurements
C l t h ll i tComplete program : a challenge in every aspect

dL/L   : luminosity program well underway
Efficiency, scale, resolution : many auxiliary measurements
Need to measure distributions to minimize acceptance effects

Ratios : a possible simplification (normalization or data-driven predictions)Ratios : a possible simplification (normalization, or data driven predictions)
Need to be defined carefully : eliminating L can easily introduce other, possibly larger 
sources of uncertainty
A good reference process should be correlated theoretically and experimentally to the 
target. And SM-certified

SM cross-sections : not just background control

LHC physics and PDFs : Intrinsically tiedp y y

PDF uncertainty sets : a great tool
Most important application : more than error estimation, investigation of 
correlations among different physics processes
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correlations among different physics processes


