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A QCD sum-rule calculation of hadron parameters involves two steps:
(i) one calculates the operator product expansion (OPE) series for a relevant correlator, and

obtains the sum rule which relates this OPE to the sum over hadronic states.
(ii) one extracts the parameters of the ground state by a numerical procedure.
The first step lies fully within QCD and allows (at least in principle) a rigorous treatment of

the uncertainties.
The second step lies beyond QCD: even if several terms of the OPE for the correlator are known
precisely, the hadronic parameters might be extracted by a sum rule only within some error, which
may be treated as a systematic error of the method. For many applications of sum rules, espe-
cially in flavor physics, one needs rigorous error estimates of the theoretical results for comparing
theoretical predictions with the experimental data.

To study the systematic errors of the bound-state parameters extracted with sum rules, one needs
a model where the exact values can be calculated by other methods. Then comparing the exact
values with the ones obtained with sum rules allows one to probe the accuracy of the method.
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Extraction of decay constants from SVZ sum rules
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MODEL:
H = H0 + V(r), H0 = ~p2/2m, V(r) = mω2~r2

2 , G(E) = (H − E)−1.

Polarization operator Π(E) is defined through the full Green function G(E):

Π(E) = (2π/m)3/2 〈~r f = 0|G(E)|~ri = 0〉,

Consider the Borel transform E → µ: 1
H−E → exp(−H/µ).

The Borel transformed Π(µ) is the evolution operator in imaginary time 1/µ:

Π(µ) = (2π/m)3/2 〈~r f = 0| exp(−H/µ)|~ri = 0〉 =

(
ω

sinh(ω/µ)

)3/2

.

OPE:
Expanding in inverse powers of µ gives the OPE series for Π(µ) to any order:

ΠOPE(µ) ≡ Π0(µ) + Π1(µ) + Π2(µ) + · · · = µ3/2
[
1 − ω2

4µ2 +
19
480

ω4

µ4 −
631

120960
ω6

µ6 + · · ·
]
.
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When the exact expression is not known, each term may be calculated from the expansion of G(E):
The full and the free Green functions satisfies the operator equation

G−1(E) −G−1
0 (E) = V,

which may be solved iteratively by constructing an expansion in powers of the interaction V:

G(E) = G0(E) −G0(E)VG0(E) + · · · .
Respectively, for the polarization operator Π(E) we obtain power expansion in the interaction:

++ +

(E) (E)Π
0

Π (E)1 Π2

with

Π0(µ) =

∞∫

0

dzρ0(z) exp(−z/µ), ρ0(z) =
2√
π

√
z.

Π0(µ) is the free propagation and does not depend on the confining potential.
Higher terms depend on the potential:

Π1(µ) ∼ ω2

∞∫

0

dz
z3/2

(
e−z/µ − 1

)
∼ − ω

2

√
µ
.
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The “phenomenological” representation for Π(µ) - in the basis of physical eigenstates:

Π(µ) = (2π/m)3/2 〈~r f = 0| exp(−H/µ)|~ri = 0〉 =

∞∑

n=0

Rn exp(−En/µ),

En - energy of the n-th bound state, Rn = (2π/m)3/2|Ψn(~r = 0)|2.

E0 = 3
2ω, R0 = 2

√
2ω3/2, E1 = 7

2ω, R1 = 3
√

2ω3/2.

How to calculate E0 and R0 from Π(µ) known numerically?

At small µ (large Euclidean time τ = 1/µ) the ground state saturates the correlator:

− ∂

∂(1/µ)
log Π(µ)→ E0,

Π(µ) exp(E0/µ)→ R0.
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Black - exact Π(µ); Red - OPE with 4 power corrections, Green - OPE with 100 power corrections.

If one could calculate 100 terms of the OPE,
then the parameters of the ground state may be reliably extracted.

In QCD this way is completely excluded because higher-dimension condensates are unknown.

In practice, only a few terms of the OPE are known.
The method of QCD sum rules is aimed at the extraction of ground-state parameters working in the
region, where this bound state does not (yet) saturate the correlator.
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SUM RULE
The equality of the correlator calculated in the “quark” basis and in the hadron basis:

R0e−E0/µ + Πcont(µ) = µ3/2
[
1 − ω2

4µ2 +
19

480
ω4

µ4 −
631

120960
ω6

µ6 + · · ·
]
.

Recall that the zero-order term µ3/2 on the r.h.s. may be written as µ3/2 =
∞∫
0

dzρ0(z) exp(−z/µ).

Effective continuum threshold zeff(µ):

Πcont(µ) ≡
∞∫

zcont

dz ρphys(z) exp(−z/µ) =

∞∫

zeff(µ)

dz ρ0(z) exp(−z/µ).

Rewrite sum rule in the form

R0 exp(−E0/µ) = Π(µ, zeff(µ)) ≡ 2√
π

zeff(µ)∫

0

dz
√

z exp(−z/µ) + µ3/2
[
− ω

2

4µ2 +
19
480

ω4

µ4 −
631

120960
ω6

µ6 + · · ·
]
.

The cut correlator Π(µ, zeff(µ)) satisfies the equation:

E(µ) ≡ − d
d(1/µ)

log Π(µ, zeff(µ)) = E0.

zeff(µ) cannot be a µ-independent constant!
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eff

fB+
x x

M2
B

2
bm 2

πB*cont  s     =(M  +m  )

Im    (s)Π

s

theoretical
physical

s

Πcont(M2) ≡
∞∫

scont

ds ρphys(s) exp(−s/M2) =

∞∫

seff(M)

ds ρ0(s) exp(−s/M2).
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What can we learn from this sum rule about R0? Set E0 equal to its exact known value, E0 = 3
2ω.

For and R0 within the range 0 ≤ R0 ≤ Rmax
0 there exists zeff(µ,R0) which solves the sum rule exactly.
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In a limited range of µ OPE alone cannot say much about ground-state parameters. What really
matters is the continuum contribution, i.e. zeff(µ).
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Without knowing the continuum contribution or imposing constraints on zeff(µ),
the OPE alone in a limited range of µ can provide only an upper limit on R0.

In several important problems, the contribution of hadron continuum is not known:

- Calculation of heavy-hadron observables
- Properties of exotic hadrons

Still, QCD sum rules are being extensively applied to these problems, and give predictions.

How can these predictions be obtained at all?

How reliable are these predictions?
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A CLOSER LOOK AT THE STANDARD PROCEDURE:

Let us work with 3 power corrections: then in the region ω/µ < 1.1 one has

ΠOPE(µ) − Π(µ)
Π(µ)

≤ 0.5%

We know the ground-state parameters, so we fix 0.7 < ω/µ, where the ground state gives more
than 60% of the full correlator.
So the ”fiducial” range is 0.7 < ω/µ < 1.1.
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One seeks an (approximate) solution to the equation

R0 exp(−E0/µ) = Π(µ, zeff(µ) ≡ 2√
π

zeff(µ)∫

0

dz
√

z exp(−z/µ) + µ3/2
[
− ω

2

4µ2 +
19

480
ω4

µ4 −
631

120960
ω6

µ6 + · · ·
]
.

in the range 0.7 < ω/µ < 1.1.

We set E = E0 = 3
2ω and denote as R the values extracted from the sum rule. The notation

R0 = 2
√

2ω is reserved for the known exact value.

Remarks:

a low-energy part of this contribution is attributed to the ground state;

can also be represented as a spectral integral Π1(µ) ∼ ω2
∞∫
0

dz
z3/2

(
e−z/µ − 1

)
∼ − ω2√

µ
. In

this case, however, the full integral parameterized as power correction (”condensate” in QCD)
is referred to the ground state. Therefore, higher states acquire no ”nonperturbative” contribu-
tions. Local condensates are OK for OPE, but should be “delocalized” if one tries to resolve the
individual hadron contributions.
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Only by imposing constraints on zeff(µ) one can extract hadron parameters:
1. ANSATZ: zeff(µ)→ zc = const

2. CRITERION FOR FIXING zc:
E.g. one calculates E(µ, zc) = − d

d(1/µ) log Π(µ, zc). This now depends on µ due to approximating
zeff(µ) with a constant. One determines µ0 and zc as the solution to the system of equations

E(µ0, zc) = E0,
∂

∂µ
E(µ, zc)|µ=µ0 = 0,
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zc = 2.35ω (green); zc = 2.454ω (red); zc = 2.54ω (blue).

UNPLEASANT SURPRISE:

After assuming zeff = const, the most stable R(µ) is NOT the best estimate for the true R!
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We obtained:

1. A very good description of Π(µ) in the full range 0.7 ≤ µ/ω ≤ 1.1: better than 1% accuracy.
2. The deviation of the E(µ, zc) from E0: less than 1%.
3. Extreme stability of R(µ, zc) in the fiducial range: much better than 1% accuracy

Nevertheless, a 4% error in the extracted value of R!

No way to guess these 4%! As seen from the plot, it would be incorrect to estimate the error, e.g.,
from the range covered by R when varying the Borel parameter µ within the fiducial interval.

In the model under consideration the sum rule gives a good estimate for the parameter R0. This
might be due to the following specific features of the model:
(i) a large gap between the ground state and the first excitation that contributes to the sum rule;
(ii) an almost constant exact effective continuum threshold in a wide range of µ.
Whether or not the same good accuracy may be achieved in QCD, where the features mentioned
above are absent, is not obvious.

Even in this simple model, one cannot provide error estimates for the extracted value of R.



16

Comparison with the existing QCD calculations

QCD sum rule for fMQ
in the HQ limit

Right panel - E. Bagan et. al. Phys. Lett. B278, 457 (1992): rescaled f̂MQ =
√mQ fMQ in the infinite

heavy-quark mass limit.
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QCD sum rule for f
Π

f 2
π (s0,M2) =

1
4π2

(
1 +

αs

π
+ O(α2

s)
) ∫ s0

0
dse−s/M2

+
〈αs
π

G2〉
12πM2 +

176παs〈q̄q〉2
81M4 + · · · .

〈αs
π

G2〉 = 0.012 GeV4, 〈q̄q〉 = −(0.240 GeV)3
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τ ≡ 1/M, αs = 0.3.
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QCD sum rule for f
Π

From OPE one can obtain an upper bound on fπ:

f 2
π <

1
4π2

(
1 +

αs

π
+ O(α2

s)
)

M2 +
〈αs
π

G2〉
12πM2 +

176παs〈q̄q〉2
81M4 + · · · .

blue - 1 power correction, red - 2 power corrections:
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QCD sum rule for fB

The upper bound on fB:

[The correlator calculation from Jamin, Lange, PRD65, 056005 (2002)].
MS scheme: mb(mb) = 4.21 GeV, O(αs) corrections are 11%, O(α2

s) corrections are 2%.
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We use the OPE here which includes only O(1) term + quark condensate.
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Conclusions to decay constants

1. The correlator alone (known with any accuracy!) in a limited range of the Borel parameter
is not sufficient for an extraction of the ground-state parameters. Without knowing the physi-
cal continuum contribution, a sum-rule extraction of the ground-state parameters suffers from
uncontrolled systematic errors
[not to be confused with the errors related to quark masses, αs, renormalization point, condensates, etc].

2. In a typical sum-rule analysis of HEAVY-MESON observables hadron continuum is not known
and is often modeled by a constant effective continuum threshold treated as a fit parameter.
In this case:

a. The independence of the extracted hadron parameter of the Borel mass does not lead
to the extraction of the true value; moreover
the most stable solution does not give the best estimate for the hadron parameter.

b. It is not possible to determine how far is the true value from the one obtained by
the sum-rule numerical procedure. Therefore,
no rigorous error estimates for hadron parameters obtained with sum rules can be given.
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Extraction of form factors from light- cone sum rules
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The basic object is

Γ(p2, q2) = i
∫

d4x exp(iqx)〈Meson(p′)|T
(

jweak(x)J†(0)
)
|0〉 → Γ(q2, β).

1. Even if one knows the correlator Γ(q2, β) precisely in a limited range of β, the contribution of
the ground state (i.e. the form factor) may be extracted with some (uncontrolled) accuracy.

Qualitatively, the situation is similar to Π(β), but in practice it is more complicated (i.e. the effec-
tive continuum threshold depends not only on β, but also on q2).

2. I will not analyse the details of this extraction procedure. I will only discuss the calculation of
the correlator and its expansion near the light cone and address the question:

Are higher- twist contributions suppressed compared to lower twist?
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The B®P form factor

Basic object: heavy-to-light correlator

Γµ(p, p′) = i
∫

d4x exp(ipx)〈Pq(p′)|T
{
q̄(x)γµb(x) b̄(0)iγ5u(0)

}
|0〉, q = p − p′.

(i) Isolate the relevant Lorentz structure and obtain dispersion representation in p2

Γ(p2, q2) =

∫
ds

s − p2 − i0
∆(s, q2)

(ii) Borel image 1
s−p2 → exp

(
− s

2mQβ

)
, β � mQ;

Cut at s0 = (mQ + zeff)2, relate this representation to FMQ→M:

fMQ FMQ→M(q2) = exp
(

M2
Q

2mQβ

)
Γ(β, q2, s0) ≡

s0∫
(mQ+m)2

ds exp
(
− s−M2

Q
2mQβ

)
∆th(s, q2).
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Schematically:

Γth(p2, q2|λ) =
1

(2π)4

∫
d4kd4x exp (ipx − ikx)

1
m2

Q − k2 − i0
〈0|Tϕ(x)ϕ(0)|M(p′)〉λ.

Q

soft

soft k

q

p
Ψ

Set q2 = 0 and neglect the mass of the light meson in the final state.
Substitute the LC expansion of Ψsoft(x, p′|λ) ≡ 〈0|Tϕ(x)ϕ(0)|M(p′)〉λ:

Γth(p2|λ) =
1

(2π)4

∫
d4k d4x exp (ipx − ikx)

1
m2

Q − k2 − i0

∞∑

n=0

(x2)n

1∫

0

du exp(−ip′xu)φn(u, λ)

=

1∫

0

du φ0(u, λ)
m2

Q − p2(1 − u)
− 8m2

Q

1∫

0

du φ1(u, λ)
[
m2

Q − p2(1 − u)
]3 + · · · ≡ Γ0 + Γ1 + · · ·

φ0(u, λ) = C0(λ)u(1 − u).

Now, Borel transform: 1
s−p2 → exp

(−s/2mQβ
)
, β � mQ
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The B®P form factor

q2 = 0, and the ′′+′′ component of the correlator.
I. Borel transformed uncut correlator (not related to the B→ P form factor):

Γ(β) = e−
mb
2β fP

[
mb

∫ 1

0
du

φ(u)
(1 − u)

e−
mbu

2β(1−u) + µP

∫ 1

0
du φP(u)e−

mbu
2β(1−u)

]
+ . . . ,

Twist − 2 DA : φas(u) = 6u(1 − u) Twist − 3 DA : φas
P (u) = 1, µP =

M2
P

mu + mq

The integrals are dominated by end-point region u ' β/mb and

G3 HΒL
�������������������
G2 HΒL

=
ΜP

�����������
6 Β

There are contributions of higher twist not suppressed by heavy-quark mass compared to lower
twist, but the suppression parameter is µP/β.

II. The cut correlator related to the B→ P form factor:
for zeff � β the integrals are dominated by u ' zeff/mb and

G3 HΒ, zeffL
��������������������������������
G2 HΒ, zeffL

~
ΜP

����������������
6 zeff

Here zeff is not a free parameter, but a number fixed by the data, zeff ' 1 GeV.
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Twist expansion of the pion form factor

Fπ(Q2) = F(2)(Q2) + F(4)(Q2) + F(2,α)(Q2) + F(6)(Q2).

In the region s0, δ
2 � M2 � Q2 one finds [Bijnens, Khodjamirian, EPJC26, 67 (2002)]

F(2) =
6M4

Q4

[
1 −

(
1 +

s0

M2

)
exp(−s0/M2)

]
→ 3s2

0

Q4 ;

F(4) =
40δ2

πM2

3Q4

[
1 − exp(−s0/M2)

]
→ 40s0δ

2
π

3Q4 ;

F(6) → 4πCFαs

Nc f 2
π

〈q̄q〉2 1
Q4 ;

F(2,α) → 3CFαs

2π
s0

Q2

At order O(1):

The contribution of twist-4 is not suppressed compared to twist-2
neither by powers of 1/Q2 nor by powers of the Borel parameter.

Numerically, δ2
π(1 GeV) ' 0.2GeV2, s0 = 4π2 f 2

π = 0.7 Gev2, such that 40δ2
π/3 ' 3s0 and F(2) ' F(4).

Also numerically the contribution of twist-4 is of the same order as that of twist-2.
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FINAL CONCLUSIONS

The extracted values of the parameters of the individual bound states depend on two ingredients:
(i) the field-theoretic calculation of the relevant correlator.
(ii) the technical “extraction procedure” (cutting of the correlator, determination of the effec-

tive continuum threshold) which is external to the underlying field theory.

The second ingredient introduces a systematic error which is very hard to control in any version of
QCD sum rules, even if the correlator is known exactly in the limited range of the Borel parameter.

The accuracy of the calculation of the correlator IS NOT automatically transformed into improv-
ing the accuracy of the hadron parameter which you extract from this correlator: i.e. knowing
the correlator with N...NLO accuracy does not mean knowing the extracted hadron parameter
with the same accuracy.

The impossibility to provide rigorous error estimates should be seriously taken into account
when using the results from QCD sum rules for heavy-hadron parameters in electroweak physics.


