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B-Physics on the lattice

B-Physics on the lattice for

Matrix elements relevant for CKM parameters:

B and D mesons decay constants [Vub,Vcd ]
BB(s)

and ξ [Vtd ,Vts ]
B semileptonic decays (B → π, B → D) [Vub,Vcb]

V*td

V*cd

Vub Vtb
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V*ud

C

A

β

B

γ

α

(ρ,η)

b-quark mass

Spectrum and lifetimes of b-hadrons.
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B-Physics on the lattice

The problems

Competition of two systematical effects that should be kept small:

finite volume effects are mainly triggered by the light degrees of
freedom. The usual requirement is mPSL > 4 and mPS is typically
around the kaon mass in real lattice simulations ⇒ L ' 2 fm.
cutoff effects are tuned by the heavy quark mass.
a << 1/mb ' 0.03 fm .

⇒ L/a ' 100 is needed to have those systematics under control !!
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B-Physics on the lattice

Charm is just doable, although cutoff effects might be large.

Example: Quenched charm quark mass from a < 0.1 fm in a O(a)
improved regularization [Sint and Rolf, 02]. Three different lattice definitions:

]
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B-Physics on the lattice

Approaches

1) Extrapolations in 1/mh from around the charm quark mass.
Continuum limit and b-mass limit should be taken in the correct order

lim
mh→mb

lim
amh→0

F (mh, amh)

2) Anisotropic lattices [Peardon, Ryan & co.]: at�as . Delicate (non-perturbative)
fine tuning needed in taking the continuum limit (eg at fixed as/at)

3) Rome II (step-scaling) method [Petronzio & co.]. Idea: finite size effects
should not depend strongly on the heavy mass. One defines

σ(L, s,mh) =
F (sL,mh)

F (L,mh)
, s > 1

starting at L0 ' 0.4 fm . The extrapolation of σ to mb is expected to
be smooth, so far confirmed numerically. Result in large volume

F (4L0) = σ(2L0, 2,mb)σ(L0, 2,mb)F (L0,mb)

where the last σ is extrapolated to mb from around mc .
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B-Physics on the lattice

4) Fermilab approach [El-Khadra, Kronfeld, Mackenzie ’96]. Partial resummation of
Symanzik’s expansion for lattice QCD, used at amh ' 1. The result
breaks relativistic invariance.
It relies on the assumption that the expansion converges up to
amh ' 1. Numerically it seems to be OK.

5) Effective theories:
HQET [Eichten and Hill ’89]: formal expansion in 1/mh:

L = ψ̄hD0ψh + O(1/mh) ,

NRQCD [Thacker and Lepage ’91]: expansion in v :

L = ψ̄hD0ψh −
1

2mh
ψ̄hD

2ψh + O(v4)

6) Combinations of 1) and 5) [MDM et al., ALPHA ’07] or 3) and 5) [Guazzini, Tantalo,

Sommer ’08].
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B-Physics on the lattice

Remarks

1 Non-perturbatively NRQCD is non-renormalizable even at the lowest
order, as the Lagrangean includes dimension 5 operators. The lattice
theory is defined at finite cutoff a ' 1/mh only.
On the contrary the LO HQET is non-perturbatively renormalizable
and higher orders (in 1/mh) can be treated as insertions in correlation
functions.

2 Effective theories contain power law-divergences due to the mixings of
operators of different dimensions. The dimensionful mixing
coefficients ck need to be computed non-perturbatively to take the
continuum limit (if it exists)

∆ck '
g

2(l+1)
0

a
∝ 1

a[ln(aΛ)]l+1
→∞ as a → 0 ,

for a l−loops computation of ck [Rainer’s talk].
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B and D mesons decay constants

B and D mesons decay constants

〈0|Aµ|P〉 = FPpµ describes leptonic decays of the pseudoscalar P

Experimentally

B(B− → τ−ν̄τ ) = (1.36± 0.48)× 10−4 av. Belle and Babar [Faccini, 2006]

|Vub|excl = (3.47± 0.29± 0.03)× 10−3
[J. Flynn and J. Nieves, after HPQCD revision]

⇒ FB = 254(50) MeV

Bs leptonic decays not yet observed. FBs = 229± 9 MeV ± granum
salis from UTangles fits.

FDs = 274± 10 MeV and FDs/FD = 1.23± 0.10 [Rosner, Stone for PDG 2008]
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B and D mesons decay constants

0 0.2 0.4 0.6 0.8 1
valence mq/ms          [mq=ml]

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Φ
[G

eV
3/

2 ]

a=0.12 fm NRQCD 20
3
x64 

a=0.09 fm Fermilab 28
3
x96

Nf = 3

Fermilab, HPQCD

FB=216(9)(19)m(4)(6) MeV

FBs/FB = 1.20(3)stat+χ(1)

= 1.27(2)(6)χ

msea down to about ms/10 ⇒ great improvement in chiral behavior
compared to few years ago (some sensitivity to logs in Fermilab data)
same SχPT formulae used ⇒ cutoff effects visible
perturbative renormalization only also for power divergent
subtractions in NRQCD
Fermilab result updated with two additional coarser lattice spacings:
FB = 191(5)(8) MeV and FBs/FB = 1.30(3)(4), [Simone LAT07]
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B and D mesons decay constants

Nf = 2

NP ren. of static axial current in SF
[MDM, P. Fritzsch, J. Heitger ’07]

PT applicable for µ ≥ 4 GeV !!
but no sign within PT !!

PT off by'5% at the hadronic scale

Preliminary result: F stat
Bs

= 297(14) MeV

@a = 0.08 fm and msea = ms

more work to be done, ongoing ALPHA project
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B and D mesons decay constants

Comparing three Nf = 0 determinations beyond the static approximation

FBs =193(6) MeV [ALPHA ’07]

Explicit fully non-perturbative computation of the 1/mb corrections in
HQET, preliminary result FBs = 185(21) MeV [Garron LAT07] and more later

Rome II SSF method with static constraints: FBs = 191(6) MeV
[Guazzini, Sommer and Tantalo ’07]
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B and D mesons decay constants

FDs
and FD

HPCQD + UKCQD, arXiv:0706.1726

Nf = 3 HISQ ml down to ms/10

V a amc

163 × 48 0.15 fm 0.85
203 × 64 0.12 fm ' 0.65
243 × 64 0.12 fm ' 0.65
283 × 96 0.09 fm ' 0.43

FDs =241(3)MeV,FDs/FD =1.162(9)

This could be state of the art if:

effect of rooting completely clarified [Creutz LAT07, Kronfeld LAT07]

Discussion of the errors based on more details, in particular on:
Bayesian fits
Chiral (and continuum limit) fits
Algorithmic details (missing for msea < 0.2ms and largest a)
[longer publication announced]
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B and D mesons decay constants

Preliminary Nf = 2, ETMC

maximal twist: automatic O(a)
improvement, no Z factors needed for FPS

msea down to ms/5, V = 243 × 48,
a ' 0.09 fm [323 × 64, a ' 0.07 fm], LW
gauge action

FDs = 271(6)(4)(5)a MeV and
FDs/FD = 1.35(4)(1)(7)χ. [Blossier LAT07] 1 1.25

1/am
PS

0.08

0.1

0.12

a
3
/2

f P
S
m

P
S

1
/2

1/am
D

0 0.05 0.1 0.15 0.2 0.25

a
2
[GeV

-2
]

160
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240

260

280

f D
s[M

eV
]

QCDSF 07
ALPHA 03
ALPHA 05
UKQCD 01
Chiu et al 05

Nf = 0, QCDSF

Clover quarks, a ' 0.04 fm, V = 403 × 80
linear chiral extrap from mπ ' 500 MeV:
FDs = 220(6)(5)(11)a MeV and
FDs/FD = 1.068(18)(20).
[Ali-Khan LAT07] including also preliminary
results on D → πlν form factors.
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B and D mesons decay constants

Summary of recent determinations of FDs

180 200 220 240 260 280 300
MeV

FDs

Exp  

Nf=0 QCDSF  ’07

Nf=0 ALPHA  ’03

Nf=2 ETMC  ’07

Nf=3 HPQCD  ’07

Nf=3 Fermilab  ’07

more than 3 sigmas discrepancy between the Experimental and the
HPQCD results. That can be accomodated in some 2HD models or
R-parity violating Supersymmetric models [Dobrescu, Kronfeld ’08].
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B and D mesons decay constants

• Decay constants are now ’measured’ at experiments and the precision
will improve in the future.

• In lattice computations the quenched approximation has been almost
removed.

• Also small quark masses have been reached and better agreement
with NLO χPT formulae is found.

• In most cases continuum limit extrapolations are missing (in some
cases, like for NRQCD, not even possible in theory).

• NP renormalization (when needed) done only in few cases.

• FDs is one of the quantities best measured experimentally and on the
lattice. Quenching effects (Nf = 3 vs Nf = 0) do not appear to be
large after continuum limit extrapolation. Still the lattice result lie at
the lower end of the experimental ones from CLEO-c and BaBar.
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B(s) − B(s) mixing

B (s) − B(s) mixing

∆mq =
G 2

Fm2
W

6π2
|V ∗

tqVtb|2ηS0(xt)mBqF
2
Bq

BBq

〈Bq|OVV+AA|Bq〉 =
8

3
F 2

Bq
BBqm

2
Bq

Experiments: ∆md = 0.507± 0.005ps−1
[PDG]

∆ms = 17.35± 0.25ps−1
[CDF,D0]

Exp. errors here are at the percent level !

In Effective theories (eg HQET):

OQCD
VV+AA(mb) = CL(mb, µ) OHQET

VV+AA(µ)+ CS(mb, µ) OHQET
SS+PP(µ)+O(1/mb)
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B(s) − B(s) mixing

Nf = 3 : AsqTad, ml/ms = 0.5, 0.25, NRQCD, a'0.12 fm, V =203 × 64.

No dep. on ml visible:FBs

√
BRGI

Bs
=281(21)m+stat MeV⇒2l BBs (mb)=0.76(11)

Results also for ∆Γs and preliminary estimates of BB [HPQCD ’07 and Davies LAT07]

Operators of dim 7 are included in the matching between NRQCD
and QCD ⇒ power divergent contributions have to be subtracted

the way this is done is critical, with the 1 loop coeff the subtraction is
10% of the final number for BBs !

Staying in PT the problem will only get worse when decreasing a

Nf = 3 by RBC-UKQCD: static approximation (HYP2 action) with light
domain wall fermions [Wennekers LAT07]. L ' 2 fm, L5 = 16 and a ' 0.12 fm

F stat
Bs

= 220(32) MeV, F stat
Bs

/F stat
B = 1.10(+11

−5 ),

Bstat
Bs

(mb) = 0.79(4) and Bstat
B (mb) = 0.74(10)

Preliminary results obtained by using 1-loop renormalization and matching
and by linearly extrapolating from “pions” of 400 MeV.
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B(s) − B(s) mixing

Nf = 0, 2 : With Wilson fermions (in the static approximation) the mixings
with operators of wrong chirality can be removed by using tmQCD [MDM ’04,

Palombi et al. ’05]. NP renormalization for the relevant parity odd operators
completed in the SF scheme

PT seems to work for µ≥1 GeV for both Nf = 0, 2 [Papinutto and Pena LAT07].
For Nf = 2 the errors on the ren. factors are a bit large (up to 5%).
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B(s) − B(s) mixing

• Experimental numbers are very precise. Errors on CKM parameters
extracted from ∆mq are dominated by uncertainties on the hadronic
matrix elements. It is important to reduce them, although it seems
difficult to do better than 10% on F 2

Bq
BBq

• Not many new lattice results, especially for BB

• Anyway the quenched approximation is being removed and rather
small sea quark masses reached

• No results in the continuum limit

• In the static approximation the NP renormalization has been
completed for the twisted mass approach and for Nf = 0, 2

• No clear expectation about 1/M corrections
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Semileptonic B decays

Semileptonic B decays

prototype: B → πlν, q = lepton pair momentum, ∆m2 = (m2
B −m2

π)/q2

dΓ

dq2
=

G 2
F |Vub|2

192π3m3
B

[κ(q2)]3/2|f+(q2)|2

〈π(~k)|V µ|B(~p)〉 = f+(q2)(p + k − q∆m2)µ + f0(q
2)qµ∆m2

1 for PS → V transitions 4 form factors.
2 In the heavy → heavy case, HQET gives relations among them valid

up to O(1/M). In the static limit the Isgur-Wise function ξ(v · v ′)
describes all the form factors.

3 Experiments measure in the small q2 region (dΓ ∝ p3
π), lattice can

access the large q2 one (a eff.). Also, HQET is applicable only there.
4 The kinematical factor in front of f+ vanishes at qmax =(mB−mπ,~0).
5 Lattice results cover a small region of q. Parameterization of the form

factors are then used (which include kin. constraints, HQET scaling
and disp. rel.) [Becirevic and Kaidalov ’99]
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Semileptonic B decays

B → πlν
Nf = 3 HPQCD, same set as for BBs but ml/ms down to 0.125.
~pπ = (000, 001, 011, 111)× 2π

L

0 0.2 0.4 0.6 0.8
m

q
/m

s

0
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1.5

f ⊥
 (

G
e
V

-1
/2

)

Staggered Chiral perturbation theory fit
linear fit
Eπ=0.8 GeV
Eπ=1.0
Eπ=1.1
Eπ=1.2
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1.8

2

2.2
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f
0
(q

2
) HPQCD

f
+
(q

2
) HPQCD

source of error size of error (%)

statistics + chiral extrapolations 10

two-loop matching 9

discretization 3

relativistic 1

Total 14

- gB∗Bπ varies in the SχPT fits as a function of Eπ (required for large Eπ)

- Stat. errors grow at large q2. Statistic is being accumulated

1

|Vub|2

∫ q2
max

16GeV 2

dΓ

dq2
dq2 = 2.07(41)(39)ps−1 ⇒HFAG |Vub| = 3.55(25)(50)×10−3

the tension with the inclusive value (4.49(33)× 10−3
[Lubicz ’07]) is still there

(or maybe not, |V incl
ub | = 3.69(13)(31)× 10−3

[Aglietti et al. ’08] and [Ricciardi on Wed.])
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Semileptonic B decays

Alternative approach for large q2 by Heavy flavor χPT

f+(q2) = −FB∗

2Fπ

[
gB∗Bπ

(
1

v · kπ −mB∗ + mB
− 1

mB

)
+

FB

FB∗

]
[FB∗ ] = 2

In the static approx. 〈B∗(0)|Aµ|B(0)〉 = 2mB ĝεµ = gB∗BπFπεµ + O(1/M)

-New Nf =0 result using all to all propagators with 100 ev [J. Foley et al. ’05] for 2 and

3 pt functions on 32 confs at β=6, 163× 48 (Clover, HYP1) and mπ≥ 650 MeV

ĝ = 0.517(16) [Negishi, Matsufuru and Onogi ’06]

Preliminary Nf = 2 result [Ohki LAT07]

a ' 0.2 fm, HYP1, 200 ev, PT ren
ĝ = 0.54(3)(3)χ(3)PT (6)disc

0 0.5 1 1.5 2

m
PS

2
(GeV

2
)

0.4

0.45

0.5

0.55

0.6

0.65

g

Our result (n
f
=2)

Becirevic et al. (n
f
=2)

Negishi et al. (n
f
=0)

Abada et al. (n
f
=0)

Towards a computation of f+(q2) in HQET:

scale independent ratio
Z stat

V
Z stat

A
computed NP for Nf = 0 and various static

actions (EH, APE, HYP) using WI [Palombi ’07]
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Semileptonic B decays

Heavy→ heavy transitions

B → Dlν [⇒ |Vcb|] in the Rome II SSF approach [ROME II ’07 and Tantalo LAT07]
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this work
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BELLE

1 The computation is done in quenched QCD starting in small volumes (0.4
fm, where b and c quark are accessible)

2 (3 times) Larger volumes are reached through 2 SSF:

σi→f (w , L0, L1) =
F i→f (w , L1)

F i→f (w , L0)
idea: FSE might be large but depend mildly on mheavy and can be
extrapolated in 1/M from masses, in the last step, around the charm

3 Results in the continuum limit , although using two lattice resolutions for
the ssf

4 Momenta injected by phases in the boundary conditions for fermions
5 Chiral limit by extrapolating from m ≥ ms/4
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Semileptonic B decays

Preliminary Nf = 2 results from tmQCD

PS to PS form factors around the charm,
ξ(ω) agress with Nf = 0, Rome II with larger
stat errors, different systematics [Simula LAT07]

B → D∗lν at 0 recoil, Fermilab Collab. [Laiho LAT07]

Rate larger than B → D, preferred for |Vcb|
At 0 recoil only 1 (hA1) of the 4 form
factors. Matrix element of the axial current

1 ’double ratio’ (where most of the ren.
constants cancel) instead of considering
heavy mass dependence of 3 double ratios

hA1(1) = 0.924(12)(20)

Same lattices as for FD(s)
[Nf = 3]

0 0.1 0.2 0.3

mπ
2 (GeV2)

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

h A
1(1

)

medium coarse (0.15 fm)
coarse (0.12 fm)
fine (0.09 fm)
extrapolated value
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Semileptonic B decays

• Increasing efforts in recent times, especially in leaving the quenched
approximation

• Still other systematics (mainly continuum limit for Nf > 0) are poorly
studied

• Many different heavy-light and heavy-heavy processes considered and
with different approaches

• Rather satisfactory overlap with experiments concerning the choice of
processes and the accessible q2 region. Improving on the latter
requires considering very small lattice spacings.
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mb and FBs in HQET

HQET on the lattice at O(1/mb)

[mb and FBs
]

LPHAA
Collaboration

In collaboration with B. Blosssier, P. Fritzsch, N. Garron, J. Heitger,
M. Papinutto and R. Sommer
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mb and FBs in HQET

Why do we like HQET[Eichten and Hill ’89] ?

Theoretically very sound

Can be treated non-perturbatively including renormalization (and
O(1/M)) [Heitger and Sommer ’03]

Subleading corrections can be computed systematically or estimated
by combining with relativistic quarks around the charm

The continuum limit is well defined and can be reached numerically
[ALPHA ’03]

Unquenching can be included now

Can be used together with other methods, eg the Rome II method
[Guazzini, Sommer and Tantalo ’08]

still it might be a little involved ....
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mb and FBs in HQET

A bit of notation

Field content: ψh s.t. P+ψh = ψh with P+ = 1+γ0
2

SHQET = a4
∑
x

{
ψ̄h(D0 + δm)ψh + ωspinψ̄h(−σB)ψh + ωkinψ̄h

(
−1

2
D2

)
ψh + . . .

}

3 parameters (we’ll get rid of one through spin-average) to be set in
order to reproduce QCD up to O(1/m2

b).

ωspin and ωkin formally O(1/mb).

Renormalization and matching !

The two steps could be performed separately. In particular at leading
order in 1/mb matching can be done in perturbation theory. Here we
are interested in 1/mb corrections and do the two things at the same
time and non-perturbatively.
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mb and FBs in HQET

We don’t include the next to leading terms of the 1/mb expansion in the
action, the theory would be non renormalizable. We treat them as
insertions into correlation functions and consider the static action only.

e−(Srel+SHQET ) = e−(Srel+Sstat) × [1− a4
∑
x

L(1)(x , ωspin, ωkin) + . . . ]

and Sstat = a4
∑

x ψ̄h(x)DHYP
0 ψh(x) [spin-flavor symmetric]

x
0

A, dA

0 T

f
1

x
0

Okin/spin

x
0

f
1
kin/spin

f A, dA (x  )
0

x
0

y
0 y

0

Okin/spin

0A, dA
f        (x  )

kin/spin

A, dA
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mb and FBs in HQET

Overview of the approach

We will use a finite volume scheme (Schrödinger functional). The
volume L1 should be small enough to simulate relativistic b-quarks
(a<<1/mb) but also such that 1

L1mb
' ΛQCD

mb
(in the end L1'0.4 fm.)

Considering spin-averaged quantities, we are left with two coefficients.
Strategy: define two (sensible) quantities Φk and require (in small
volume)

ΦHQET
k = ΦQCD

k k = 1, 2

Evolve these quantities in the effective theory to large volumes
(through Step Scaling Functions σ). There the B-meson mass
expressed in terms of Φk and large volume HQET quantities can be
used to fix the b-quark mass.

experiment Lattice with amq ≪ 1

mB = 5.4GeV Φ1(L1,Mb),Φ2(L1,Mb)

? ?

ΦHQET
1 (L2),Φ

HQET
2 (L2) ΦHQET

1 (L1),Φ
HQET
2 (L1)�

σm(u1)

σkin
1 (u1), σ

kin
2 (u1)

L2 = 2L1
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mb and FBs in HQET

The Bs meson decay constant

Operators have an expansion in 1/mb too.

AHQET
0 = ZHQET

A

(
Astat

0 + (O(a) + O(1/mb))× cHQET
A A

(1)
0

)
,

A
(1)
0 (x) = (ψ̄l(x)γjDj)ψh(x)

In our notation ZHQET
A includes the matching coefficient.

For the decay constant 4 Φi ’s are needed in the small volume matching to
QCD. The SSF also becomes a 4× 4 matrix [ALPHA LAT07]
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mb and FBs in HQET

12 matching conditions. All results agree, indicating very small O(1/m2
b).

θ0 r0 M
(0)
b r0 Mb = r0 (M

(0)
b + M

(1a)
b + M

(1b)
b )

θ1 = 0 θ1 = 1/2 θ1 = 1
θ2 = 1/2 θ2 = 1 θ2 = 0

0 17.25(20) 17.12(22) 17.12(22) 17.12(22)
0 17.05(25) 17.25(28) 17.23(27) 17.24(27)

1/2 17.01(22) 17.23(28) 17.21(27) 17.22(28)
1 16.78(28) 17.17(32) 17.14(30) 17.15(30)

For FBs as well (Preliminary !!)

F stat
Bs

[MeV] F stat
Bs

+ F
(1)
Bs

[MeV]

θ0 θ1 = 0 θ1 = 0.5 θ1 = 1
θ2 = 0.5 θ2 = 1 θ2 = 0

0 224± 5 185± 21 186± 22 189± 22
0.5 220± 5 185± 21 187± 22 189± 22
1 209± 5 184± 21 185± 21 188± 22

Results are more consistent than suggested by the errors, as eg

F
stat+(1)
Bs

(θ0 = 0, θ1 = 1, θ2 = 0)−F
stat+(1)
Bs

(θ0 = 1, θ1 = 0, θ2 = 0.5) = 4±2 MeV .
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Conclusions

Conclusions

1 To keep the pace with forth-coming experiments and really help in the
quest for New Physics, lattice results in Heavy Flavor Physics must
aim at high precision.

2 To this end all the systematics must be kept under control.
Unquenching, renormalization, continuum limit, chiral extrapolations,
each of them can easily have a 5− 10% uncertainty associated.

3 A great effort has been put in recent years in removing the quenched
approximation, with great success.

4 In my view it is now time to tackle also the other systematics.
5 I’ve given an example how this can be done discussing the b-quark

mass in HQET. Almost done, it was quenched. Unquenching is
ongoing [Fritzsch and Heitger LAT07]

1 The approach can be extended to other quantities, eg for FBs or BB(s)

2 The approach can be extended to other formulations, eg for the
non-perturbative determinations of the parameterts in Fermilab-like
actions [Christ, Li and Lin ’06].
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